Lighting Application Guide for K-12 Classrooms

Similar documents
Reduce lighting energy costs with controls

Lighting Control Strategies. to meet code requirements save energy and improve building performance

MANDATORY MEASURES INDOOR LIGHTING CONTROLS. (Reference: Sub-Chapter 4, Section 130.1)

Light control solutions

Code Compliance. Lightcloud. Guides for California Title 24 & ASHRAE

Dissecting Lighting Control Requirements ANSI/ASHRAE/IES Standard & 2013

UBC Technical Guidelines Section Edition Interior Building Lighting Page 1 of 5

Mini Product Guide.

Teacher Control Center

MANDATORY MEASURES MANDATORY LIGHTING CONTROLS (a) Area Controls: Manual controls that control lighting in each area separately

High Performance Lighting. Terry Egnor Senior Consultant NBI

Code Compliance Commercial Application Guide

California s 2008 Building Energy Efficiency Standards for Residential and Nonresidential Buildings

Advanced Lighting Control for High Building Performance

Lord Stirling Community School

Vive Solutions. Commercial Application Guide Code Compliance Lighting Controls IECC 2015

miniz Quick Start Guide

Sensors Explained AUTOMATION

Lighting Controls. Energy-Saving Solutions For Efficient Buildings

Ceiling Mount Sensors B4-B9. Occupancy and Vacancy Sensors B10-B15 B16-B17. Wall Mount Occupancy Sensors B-1

Vive Solutions. Commercial Application Guide Code Compliance Lighting Controls IECC 2012

Balance LC. classroom light control fixture solution. simple to order simple to install simple to use

Infrared Wall Mount Occupancy Sensor

Daylighting Control Design and Application Guide

A Guide for Applicants and Lighting Designers

Advanced Lighting For Office

MANDATORY MEASURES INDOOR LIGHTING CONTROLS. (Reference: Sub-Chapter 4, Section 130.1)

Vive Solutions. Commercial Application Guide Code Compliance Lighting Controls IECC 2015

Lincoln Public Schools

, ,

Integrated Classroom Control System. Installation and Operation Manual

PIR/INT & PIR/INT-D. Batten mount PIR detectors. Product Guide. Overview. Features

Energy Codes. Connected Lighting simplified by Eaton. design and application guide

MANDATORY MEASURES INDOOR LIGHTING CONTROLS. (Reference: Sub-Chapter 4, Section 130)

ANSI/ASHRAE/IES

TITLE 24 ICONOGRAPHY. Iconography System

ANSI/ASHRAE/IES

Overview. The Reading Room

Product Guide. Ceiling PIR presence detector DALI / DSI dimming. PIR Sensor. IR Receiver. Light Level Sensor. Status LEDs.

Waste not, want not. As part of our efforts to ensure we practice sustainability in our business, we ve printed this brochure on recycled paper.

High bay PIR presence detector 1-10V dimming. PIR Sensor. IR Receiver. Light Level Sensor. Status LEDs. IR Receiver

B. It is recognized that these standards are updated irregularly and lighting technology is changing rapidly.

WSA120: New Energy Codes and Lighting Controls

LPC3BSP65 & LPC3BDP65

C ontrolsystems Themostadv ingenious a n cedsensor-basedcontrols.now integratedintoourmostpopularfixtures.

ASHRAE October 18, 2013

ESL-IC Smart Room Control

Lighting Controls: The Next Big Thing in Lighting. June 18th, 2014

EBMPIR-MB. Batten mount PIR detectors. Product Guide. Overview. Features

Buidling 661 Annual Daylight Performance Modeling Studies

1. When using the COMcheck software, the compliance report submitted by the permit holder shall indicate that the applicable code is.

Lighting Existing Conditions and Design Criteria Report Brian Regan Ltg./Elect. Virginia Historical Society 10/8/03

PSC-ID-x-CM Series Ceiling Mount Occupancy Sensor

IECC. nlight Applications Guide.

High bay PIR presence detector DALI / DSI dimming. PIR Sensor. IR Receiver. Light Level Sensor. Status LEDs. IR Receiver

Dual Technology Wall Mounted Occupancy Sensor. Manual & Specification

Applied Lighting Controls

Note: A summary of the applicable code sections is shown in the CEC _Table100A.

Ceiling PIR presence detector DALI / DSI dimming. PIR Sensor. IR Receiver. Light Level Sensor. Status LEDs. PIR Sensor.

Lindsey Beane. Executive Summary

WVU DESIGN GUIDELINES & CONSTRUCTION STANDARDS DIVISION 26 ELECTRICAL

Ceiling PIR HS presence detector 1-10V, low temperature. PIR Sensor. IR Receiver. Light Level Sensor. Status LEDs. IR Receiver

LPCMPIRM65 & LPCMPIRDSI65

visual environment technologies etcconnect.com

Vive PowPak Fixture Controls

Integrated PIR detectors

Surface Materials. Surface Material Reflectance. Acoustic Ceiling 80% Tile. Painted Gypsum 75% Wall Board. Vinyl Composition 32% Tile

NRG SYSTEMS, HINESBURG, VT

FR-A180 FR-A360. Occupancy detector. Use

Product Guide. Ceiling microwave presence detector DALI / DSI. Microwave Sensor. IR Receiver. Light Level Sensor. Status LEDs.

Tri-level Control HF Sensor

Ceiling PIR HS presence detector. Product Guide. Overview. Features

Shannon J Markey LC, LEED AP Legrand BCS / Wattstopper Western Regional Manager. Yesterday, Today & Tomorrow

Catalog Number. Notes

Ceiling Microwave presence detector - DALI / DSI 12-24V AC/DC. Microwave Sensor. IR Receiver. Light Level Sensor. Status LEDs.

Some Basics of School Library Design

FROM THE WORLD S FIRST GFCI RECEPTACLE TO OUR GAME-CHANGING LINE OF PASS & SEYMOUR PLUGTAIL DEVICES, PASS & SEYMOUR PRODUCTS HAVE A REPUTATION FOR

Dimming Ballast + Controls and CALCTP Bonus. New Product Overview

MWS5. Miniature Microwave Presence Detector (standalone) Product Guide. Overview. Features

Main Lobby Area (North Vestibule thru South Vestibule):

Technical Report One

Aesthetic, energyefficient. control solutions for hospitality facilities QUICK GUIDE TO LIGHTING CONTROL FOR HOTELS

Lighting Summary - Interior

Thesis Proposal. Brian Regan The Virginia Historical Society Building West Wing Addition RICHMOND, VIRGINIA

DUFFERIN-PEEL CATHOLIC DISTRICT SCHOOL BOARD

2005 CERTIFICATE OF ACCEPTANCE (Part 1 of 3) LTG-1-A

ARCHWAY TM PASSAGE TM

Lighting Solutions for Active Workspaces

Princeton Joint Unified School District Invitation for Bid Installation of District-Wide Lighting Occupancy Sensors

Lighting Proposal Memo. Lighting Proposal. Angela Nudy Lighting/Electrical Dr. Mistrick Lighting Proposal Memo 1

Infrared Ceiling Mount Sensor

Instructions PRODUCT RANGE NEWLEC DALI OCCUPANCY DETECTOR PART NUMBER NL5701DALI

The Bahen Centre for Information Technology. Meeting Room Lighting Redesign. Introduction. University of Toronto ~ Toronto, Ontario, Canada

LIGHTING CONTROLS

Thesis Proposal Update #2

Analogue Dimming Microwave Presence/Absence Detector

IDOO.PENDANT POWER OVER ETHERNET (PoE) SUSPENDED LUMINAIRE

IN2 Lighting Control Devices

Product Specifications Dialog Room Controller* (*patent pending)

Transcription:

Lighting Application Guide for K-12 Classrooms

Lighting Controls for Today's Classroom Commercial building energy codes contain detailed mandatory lighting control requirements related to buildings such as K-12 schools. The high-performance school design movement extends these requirements by demanding additional flexibility to support the contemporary learning experience in today s classroom. This application guide by the Lighting Controls Association describes various control strategies that can be applied to classrooms to minimize operating costs, enact energy code compliance and support high-performance school design. To learn more, talk to your building professional or manufacturers' representatives, or visit: LightingControlsAssociation.org

Strategies Manual control Manual controls enable users to turn ON/OFF or reduce their lighting in response to visual needs. Incorporating flexibility provides a selection of light levels and can increase satisfaction while producing energy cost savings. The Lawrence Berkeley National Laboratory (LBNL) estimates average lighting energy savings of 31-36%. Occupancy sensing Occupancy sensing controls turn lighting OFF or reduce it in response to whether the space is occupied. LBNL estimates average lighting energy savings of 24%. Daylight-responsive Control Daylight harvesting controls turn lighting OFF or reduce it based on the contribution of daylight to task lighting needs. LBNL estimates average lighting energy savings of 28%.

High-Performance Classrooms New teaching methods such as A/V systems, smart boards, tablets and web-based learning tools continue to transform the modern classroom. Today, teachers need conveniently accessible, easy-to-use and flexible lighting controls allowing them to establish optimal lighting conditions for various teaching tasks. Founded in 1999, the Collaborative for High-Performance Schools (CHPS) developed a point-based rating and recognition system promoting construction of healthy, green schools. CHPS published updated national criteria (2014) allowing adoption across the United States beyond those states currently using customized CHPS criteria.

High-Performance Classrooms The 2014 national CHPS criteria provides 4 points for achieving superior electric lighting performance via flexible lighting controls. With the exception of specialty classrooms where not required, all classrooms should be designed with indirect/direct general lighting equipped with multiscene controls. These controls enable selection of two operating modes: General and AV. In General mode, the lights are ON at full output. In AV mode, lighting is reduced to accommodate AV-based learning methods. Whiteboards should be illuminated by general lighting luminaires or a dedicated luminaire that is separately switched. Teachers should be provided convenient access to a control device that permits selection of General/AV mode, whiteboard lighting and a manual override of occupancy sensor time delays.

Energy Codes The latest building energy codes are based on ASHRAE/IES 90.1-2010 or 2013 or the International Energy Conservation Code (IECC) 2012 or 2015. These codes require that all interior lighting be turned OFF when it's not in use. Occupancy sensors are specifically required in the majority of classrooms. The occupancy sensor must be either manual-on or auto-on to <50% of lighting power, necessitating the addition of a manual switch. The switch must be readily accessible to occupants, which typically entails location at the classroom entrance. Classrooms receiving ample daylight via sidelighting (e.g., windows) or toplighting (e.g., skylights) must designate lighting in daylight zones as being separately controllable from the rest of the room s general lighting. If the energy code is based on IECC-2012, a separate manual switch or dimmer-switch is permitted. If 90.1, the lighting must be controlled by a daylight-responsive automatic controller. This controller must be capable of either continuous or step dimming. This guide is based on compliance with ASHRAE/IES 90.1-2010 and IECC 2012.

Classroom Space: 30 ft. x 30 ft. Ceiling height: 10 ft. Daylight: 20 ft. of windows along one wall, 8 ft. window height (floor to top of glazing) Lamping: Pendant luminaires may be LED with continuous dimming, fluorescent luminaires with continuous dimming, or fluorescent luminaires with separately ballasted direct (1 lamp, inboard) and indirect (2 lamps, outboard) distribution Luminaires: Pendant indirect/direct luminaires and dedicated wall-washer whiteboard luminaire; similar strategies as in this guide, however, may be enacted with troffers/panels or no dedicated whiteboard luminaire. Window Luminaire #1 Whiteboard Luminaire Luminaire #2

Occupancy Sensing Control need: Automatically turn lights OFF when not needed Occupant enters: Lights must be turned ON manually or automatically to <50% of lighting power Occupant exits: Lights are turned OFF automatically within 30 minutes Suggested sensor type: Dual-technology for reliable detection, passive-infrared when classroom features hanging objects such as mobiles Other functionality: Manual override OFF, manual override of time delay via switch Suggested placement: Corner mounting facing opposite corner, near teacher s desk, at same height as luminaires (see blue icon) Occupancy sensor control zone Occupancy sensor

Automatic Daylight-Responsive Control (Sidelighting) Control need: Reduce lighting in sidelighted (e.g., windowed) daylight zones when ample daylight available Operation: Lighting in daylight zone automatically raises or lowers based on degree to which daylight increases light levels Input: Manual (allowed by IECC 2012) or automatic (allowed by IECC 2012 and required by 90.1-2010) Output: Bi-level switching or step dimming with outboard lamps (uplight) controlled by the light sensor (step between <35% of lighting power which may include OFF, a step between 50-70% of lighting power, and full ON) Continuous dimming to <35% of lighting power, recommended for automatic control as the space will normally be occupied during light reduction Luminaire should be mounted at a distance from window of 1-2 times effective window height (sill or 3 ft. off floor to top of window) Sensor should be aimed so its view does not receive direct electric light or sunlight or is otherwise blocked by a luminaire or fan Sensor should not be aimed directly over a desk Sensor can be mounted on a luminaire Suggested sensor type: As the windows feature blinds that can be closed, closed-loop or dual-loop sensor is recommended, with appropriate range of light level response Other: Light sensor takes precedence for upper light level limit over manual dimming Recommended threshold: Daylight contribution is 150-200% of design light level for switching; threshold should also allow dead band with high and low set-points to avoid overly frequent switching Daylight contribution is 150% of design light level for continuous dimming Suggested placement: A single light sensor per 30 linear ft. of glazing; in this classroom, one sensor controls the luminaire row in closer proximity to the windows

Automatic Daylight-Responsive Control (Sidelighting) Daylightresponsive control zone Light sensor 15 ft ceilingheight opaque partition WH 60 + in. permanent partition 2 ft. 2 ft. IECC 2012 ASHRAE/IES 90.1-2010 Daylight zones as required by major energy standards. WH = window height.

Automatic Daylight-Responsive Control (Toplighting) Control need: Reduce lighting in toplighted (e.g., skylighted) daylight zones when ample daylight available Operation: Lighting in daylight zone automatically raises or lowers based on degree to which daylight increases light levels Input: Manual (allowed by IECC 2012) or automatic (allowed by IECC 2012 and required by 90.1-2010) Suggested placement: A single light sensor mounted in a skylight well, aimed outside A sensor should not receive direct sunlight Suggested sensor type: Open-loop, with appropriate range of light level response Other: Light sensor takes precedence for upper light level limit over manual dimming Output: Bi-level switching or step dimming with outboard lamps (uplight) controlled by the light sensor (step between <35% of lighting power which may include OFF, a step between 50-70% of lighting power, and full ON) Continuous dimming to <35% of lighting power, recommended for automatic control as the space will normally be occupied during light reduction Recommended threshold: Daylight contribution is 150-200% of design light level for switching; threshold should also allow dead band with high and low set-points to avoid overly frequent switching Daylight contribution is 150% of design light level for continuous dimming

Automatic Automatic Daylight-Responsive Daylight-Responsive Control Control (Toplighting) Light sensor Skylight Daylightresponsive control zone A A A A A = ceiling height A = 0.7 x ceiling height IECC 2012 ASHRAE/IES 90.1-2010 Daylight zones as required by major energy standards. WH = window height.

Automatic Manual Control Daylight-Responsive Control Control need: Manually control lights for visual needs and to override automatic operation Operation: ON/OFF switching (whiteboard luminaire) and bi-level switching, stepped dimming or continuous dimming (general lighting) Sequence of operations: Occupant enters the room and, using a wall switch by the door: 1) leaves lights at stepped level or turns lights ON to full output if occupancy sensor set to auto-on-to-<50% operation, or 2) turns lights ON to stepped level or full output if manual-on sensor During instruction, using a teacher wall control station adjacent to the main teaching board, teacher can select: 1) turn the whiteboard luminaire ON/OFF, if present 2) select General or AV mode for the general lighting or otherwise dim the lights for AV presentation, and 3) override the time delay of the occupancy sensor for up to 3 hours during written examinations Whiteboard switch control zone Manual switch control zone Whiteboard luminaire switch $ $ Manual switch

Get Control of Your Classroom Lighting Reducing energy costs and complying with energy codes is only part of the equation for good lighting control for K-12 classrooms. The lighting system should also be flexible so as to support the array of visual needs in today s dynamic learning environment. With the right lighting control solution, the modern classroom can support learning while minimizing operating costs. The Lighting Controls Association offers numerous resources to facilitate selection and design, including online education courses, articles and access to products and news from member companies. To learn more, visit: www.lightingcontrolsassociation.org Lighting Controls Association 1300 North 17th Street, Suite 900 Arlington, VA 22209 info@aboutlightingcontrols.org