HORTICULTURAL CHARACTERISTICS OF HASS AVOCADO ON COMMERCIAL CLONAL AND SEEDLING ROOTSTOCKS IN CALIFORNIA

Similar documents
Book 1. Chapter 4. Avocado Rootstocks

SELECTION OF AVOCADO SCIONS AND BREEDING OF ROOTSTOCKS IN SOUTH AFRICA

EXPERIMENTS WITH ETTINGER CULTIVAR GRAFTED ON CLONAL AVOCADO ROOTSTOCKS, IN ISRAEL

Selection of Clonal Avocado Rootstocks in Israel for High Productivity under Different Soil Conditions

EFFECTS OF SALINITY ON GROWTH AND PHOTOSYNTHESIS OF 'HASS' AVOCADO ON THREE ROOTSTOCKS.

VENTURA COUNTY AVOCADO ROOT ROT RESISTANCE PLOT

Screening and Evaluation of New Rootstocks with Resistance to Phytophthora cinnamomi

Salinity Chloride Interactions and their Influence on Avocado Yields

FIELD TRIALS FOR RESISTANCE TO PHYTOPHTHORA ROOT ROT

AVOCADO INARCH GRAFTING TRIALS WITH ROOT ROT RESISTANT VARIETIES

AVOCADO ROOTSTOCK-SCION RELATIONSHIPS: A LONG-TERM, LARGE-SCALE FIELD RESEARCH PROJECT. II. DATA COLLECTED FROM FRUIT-BEARING ORCHARDS 1

USE OF THE ETIOLATION TECHNIQUE IN ROOTING AVOCADO CUTTINGS

ENHANCEMENT OF AVOCADO PRODUCTIVITY. PLANT IMPROVEMENT: SELECTION AND EVALUATION OF IMPROVED VARIETIES AND ROOTSTOCKS

Progress in Avocado Pathology Research at Merensky Technological Services

Sweet Cherry Rootstock Traits Lynn E. Long, Oregon State University

Alternate Irrigation of Avocados: Effects on Growth, Cropping, and Control of Rosellinia Necatrix

Proceedings V World Avocado Congress (Actas V Congreso Mundial del Aguacate) pp

Developing new varieties

PERFORMANCE OF AVOCADO CLONAL ROOTSTOCKS IN SOUTH AFRICA. Denis Roe Westfalia Technological Services (WTS)

4. VEGETATIVE PROPAGATION

TOLERANCE OF OPEN-POLLINATED DICKINSON AVOCADO SEEDLINGS TO LIME SOIL

SALINITY AND WATER MANAGEMENT IN AVOCADO. Joseph Shalhevet Institute of Soils, Water and Environmental Sciences The Volcani Center, Bet-Dagan, Israel

EFFECT OF ROOTSTOCK CULTIVAR ON RIPE FRUIT QUALITY

HOW DO YOU THIN A ROOT ROT REPLANT BLOCK?

Canopy Management Strategies

MORE ON AVOCADOS IN ISRAEL

Efficacy of Dimethomorph against Phytophthora Root Rot of Avocado

FACTORS IMPORTANT FOR OPTIMAL IRRIGATION SCHEDULING OF AVOCADO ORCHARDS

Managing Avocado Fertilization and Irrigation Practices for Improved Yields and Fruit Quality

GROWTH AND PERFORMANCE OF OWN-ROOTED CHANDLER AND VINA COMPARED TO PARADOX ROOTED TREES

Book 1. Chapter 6. Planting the Avocado Tree

A comparison of irrigation scheduling by tensiometer versus evaporation pan

AVOCADO ROOT ROT RESEARCH PROGRAM

The Sun-Blotch Disease of Avocado

Variety selection is important to minimize disease incidence and severity

Results of a high density avocado planting

5 Rootstocks. Choosing a Rootstock. General Notes on Rootstock Descriptions. Mikeal L. Roose

Enhancement of Avocado Productivity. Plant Improvement: Selection and Evaluation of Improved Varieties and Rootstocks

Tree Recovery After the December 1990 Freeze

Selecting Burley Tobacco Varieties

METHODS OF INCREASING AVOCADO FRUIT PRODUCTION

PROPAGATION OF AVOCADO ROOTSTOCKS

California Avocado Society 1958 Yearbook 42: GRAFT COMPATIBILITY IN THE GENUS PERSEA

Rooting Leafy Non-Etiolated Avocado Cuttings from Gibberellin-Injected Trees

Horticulture Department

Salinity Management in Avocado Orchards

Drought Induced Problems in Our Orchards. Ben Faber

Salt-stress effects on avocado rootstock growth. I. Establishing criteria for determination of shoot growth sensitivity to the stress

GENERATION AND SELECTION OF PHYTOPHTHORA CINNAMOMI RESISTANT AVOCADO ROOTSTOCKS THROUGH SOMACLONAL VARIATION

STRATEGY FOR COMBATTING AVOCADO ROOT ROT

Avocado sensitivity to salinity revisited Akko Experiment

Oxygen Diffusion, Water, and Phytophthora cinnamomi in Root Decay and Nutrition of Avocados 1

STONE FRUIT ROOTSTOCKS

Your Florida Dooryard Citrus Guide - Young Tree Care 1

P.J. Hofman Department of Primary Industries Queensland 19 Hercules St, Hamilton, Australia

Sandy, low CEC, irrigated soil Acidic ph High ph Cold soils Soil low in P content or available P

FERTILIZER, IRRIGATION STUDIES ON AVOCADOS AND LIMES ON THE ROCKDALE SOILS OF THE HOMESTEAD AREA

Viticulture - Characteristics of the vine - Rootstocks & Grafting

Evaluation of new low- and moderate-chill peach cultivars in coastal southern California

UNITED STATES DEPARTMENT OF AGRICULTURE Agricultural Research Service Washington, D.C

PROPAGATION AND RETESTING OF WALNUT ROOTSTOCK GENOTYPES PUTATIVELY RESISTANT TO PESTS AND DISEASES

Relationship of Soil Moisture and Drainage Conditions to Tree Decline in Avocado Orchards *

The response of avocado to salinity and water-fertilizer management

Rootstock Options for the southern Sac Valley. Kat Pope Orchard Advisor, Sac-Solano-Yolo Feb 3 rd, 2016

Reasons for the use of clonal avocado rootstocks around the world.

REVIEW OF AVOCADO FERTILIZER PRACTICES IN SAN DIEGO COUNTY

Steps in the Solution of Avocado Problems

Eliminating Alternate Bearing of the Hass Avocado

One Shields Avenue Madera CA Davis CA USA

SOIL EFFECTS ON PHYTOPHTHORA ROOT ROT OF AVOCADOS

California Avocado Society 1960 Yearbook 44: NITROGEN FERTILIZATION OF THE MacARTHUR AVOCADO

Effect of Different Scion Varieties of Mango on Growth and Biomass Production per Formance of Stone Grafts (Mangifera indica L.)

COMPARISON OF VARIOUS METHODS FOR THE ISOLATION OF PHYTOPHTHORA CINNAMONI FROM AVOCADO SOILS

UC Agriculture & Natural Resources California Agriculture

THE ROLE OF TISSUE CULTURE IN THE AVOCADO PLANT IMPROVEMENT SCHEME

FAILURE TO CONTROL PHYTOPHTHORA CINNAMOMI AND PYTHIUM SPLENDENS WITH METALAXYL AFTER ITS PROLONGED USE

2016 World Crops Research Update - Okra and Eggplant

Apple Rootstock Trials in British Columbia, Canada

Integration of Tree Spacing, Pruning and Rootstock Selection for Efficient Almond Production

2003 NTEP Bentgrass Putting Green Cultivar Evaluation Performance Data, Cale A. Bigelow and Glenn A. Hardebeck

Evaluating rootzone stresses and the role of the root system on rose crop productivity and fertilizer-water use efficiency:

PRELIMINARY OBSERVATIONS ON WHITE LUPINE AT MADRAS AND REDMOND, OREGON, IN J. Loren Nelson '

CAUTION KEEP OUT OF REACH OF CHILDREN COUNTRY. Metalaxyl. Systemic Fungicide Granules. ACTIVE CONSTITUENT: 50 g/kg METALAXYL D

Growth and nutrient absorption of grapes as affected by soil aeration. I. With non-bearing Delaware grapes A. KOBAYASHI, K. IWASAKI and Y.

PHYTOPHTHORA ROOT AND RUNNER ROT OF CRANBERRY IN WISCONSIN- THE CURRENT SITUATION

FUTURE ORCHARDS Crop Loading. Prepared by: John Wilton and Ross Wilson AGFIRST Nov 2007

CPICOOP.COM SEED GUIDE PUBLICATION

Managing Orchard Salinity During and After Drought. December 9, 2015

Project Leader: Gary S. Bender* 1

MEDLEY 50G SYSTEMIC GRANULAR FUNGICIDE

Fall Juvenile Pistachio Freeze Damage

Pear Rootstocks. How many trees would I plant? ± 3,000 per ha. What I believe growers need to be doing to be successful in the Year 2012.

Swingle Citrumelo Decline in Belize

EVALUATION OF CHANDLER CLONE WALNUT TREES ON VARIOUS ROOTSTOCKS INCLUDING ITS OWN ROOTS

COMMENTS ON THE SOUTH AFRICAN AVOCADO INDUSTRY

California Cling Peach Board ANNUAL REPORT-2010 IMPROVED ROOTSTOCKS FOR PEACH AND NECTARINE. Ted DeJong, Professor, University of California, Davis.

Phytophthora Root Rot of Avocado An Integrated Approach to Control in California

Pruning Blueberry Plants in Florida 1

Welcome to Balsgård. Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU)

FACTORS AFFECTING AVOCADO FRUITFULNESS

Transcription:

Proceedings V World Avocado Congress (Actas V Congreso Mundial del Aguacate) 2003. pp. 171-175. HORTICULTURAL CHARACTERISTICS OF HASS AVOCADO ON COMMERCIAL CLONAL AND SEEDLING ROOTSTOCKS IN CALIFORNIA Larry S. Rose Brokaw Nursery, Inc. 1419 Lirio Avenue, Saticoy, California 93007, USA E-mail: larry@brokawnursery.com SUMMARY Long-term commercial use of clonal rootstocks has confirmed many benefits but also exposed shortcomings of various cultivars. Clonal rootstock selection has expanded to include analysis of multiple traits of soil stress factors and productivity. The quality of new introductions is potentially greatly improved. Acceptance of new commercial clonal rootstocks now requires higher production and well rounded adaptability. INTRODUCTION Clonal avocado rootstocks have been commercially planted in California since 1977. By 1981 clonal rootstocks predominated commercial plantings. Through the 1990s, 95% of trees sold by Brokaw Nursery were on clonal rootstocks. In spite of a 50% price premium of clonal trees versus trees on Mexican seedling rootstocks, avocado growers recognized the potential of various clonal rootstocks for greater productivity, uniformity and benefits of adaptability to soil stress factors. During this current boom of avocado planting in California, nurseries are supplying trees for at least 3,500 new acres per year, with clonal trees representing approximately 75% of that market. Growing avocados in arid Southern California is never as simple as dealing with a single stress factor. Typically Phytophthora cinnamomi infested soils can lack important aeration due to finely textured soils, poor soil structure or impervious layers in the soil profile. Heavy winter rains on cold soils can compound the problems of soil saturation and root asphyxiation. Faced with these factors rootstock selection has generally been limited to Mexican race cultivars due to their adaptability to poor aeration and cold winter temperatures. However, Mexican rootstocks are generally highly sensitive to chloride and sodium toxicity thereby complicating planting choices where poor drainage precludes leaching of salts. Although initial clonal rootstocks were selected for tolerance 171

V Congreso Mundial del Aguacate to Phytophthora cinnamomi, they also demonstrated consistent growth and canopy uniformity. In addition to tolerance of P. cinnamomi, some cultivars also possess resistance to other fungal diseases, reduced absorption of salts and resistance to lime-induced chlorosis. Most importantly, select clonal rootstocks have greater fruit productivity when grafted to the Hass fruiting cultivar. Over the years, the formal research and screening of potential commercial rootstocks in California has been broadened from its focus on P. cinnamomi to include tolerance to other diseases, salinity, tree size, productivity and a tendency to begin bearing early in the life of the tree. However, field experience with trees on clonal rootstocks ultimately defines the range of tolerance to soil stress factors inherent in various cultivars, their benefits and limitations. No commercial clonal rootstock today is perfect for all situations but since clonal rootstocks have come to dominate orchard plantings in California, growers and nurseries alike have come to a better understanding of custom-selection of the best rootstock cultivar for each situation. UNDERSTANDING CLONAL ROOTSTOCK WEAKNESSES Duke 7, the first commercially available clonal rootstock in California is a Mexican selection made by Zentmyer over 50 years ago. The Duke 7 has had a checkered history. Assumptions made about the performance of clonal rootstocks in general were inaccurately attributed to this premier cultivar when planted in severe locations and given normal care. Many failures of Hass on Duke 7 were attributed to the rootstock cultivar itself while specific sensitivities of all clonal rootstocks were generally unknown (Coffey 1987). Clonally rooted cuttings have no central tap root and grow from a crown of roots originating from a relatively short stem close to the surface of the soil. Trees grown by this method are very sensitive to abusive irrigation and are quick to dry out especially during the establishment phase of the tree often leading to the loss of the tree. Stressed plants have less resilience and disease resistance. Once clonal plants are weakened and are unable to refoliate, roots die quickly and tree death is predictable. A poorly established clonal rootstock of any cultivar has great difficulty wintering over the first year. When stressed by cold winds and exposed to heavy rains, loss of roots causes a rapid defoliation when mature leaves are shed in the early spring. One-year-old defoliated clonally rooted trees rarely recover, however, once past the establishment phase, clonal trees are more resilient to environmental stress. Seedling rooted trees, though variable by nature, are not as prone to death following defoliation, but seedling trees do not possess consistent, positive traits replicated by clonal rooting. Early commercial use of clonal root rot resistant trees were often planted in low, wet swales or in spots of poor soil quality where original trees had failed. When normal irrigations were applied to these areas along with existing, older trees, the less resilient clonals often died. Other factors such as constant influx of P. cinnamomi contributed to poor performance, but even without Phytophthora pressure clonal trees needed meticulous care to become established in compromised conditions. As years passed and new cultivars were tried, growers were further along the learning curve and applied new techniques with better success. Their success was often attributed to the newer cultivar and less so to better farming practices. It is now the norm to utilize integrated management practices (Coffey 1988) of remedial site preparation, cultivar selection, generous mulching, gypsum topdressing, fungicides and irrigation monitoring to assure replant success (Menge, 1991). Success rate of clonals planted in non-infested soils exceed that of trees on seedling rootstocks. 172

Variedades y patrones Duke 7 Duke 7 has a tendency to remain greener in cool winter soils when chlorosis is at its worst and begins to grow early in the spring before trees on other rootstocks. Hass on Duke 7 bears early in its life, bears large fruit and lots of it (Arpaia et al 1993). Duke 7 has only moderate root rot tolerance but its horticultural adaptation is broad and its salt tolerance is strong for a Mexican rootstock (Oster et al 1992). It still remains a preferred variety where P. cinnamomi is not an imminent threat. Toro Canyon Although Toro Canyon is a comparable producer to Topa Topa in soils not infested with P. cinnamomi, its moderate size provides for very efficient production for its canopy volume. Because it is significantly more resistant to root rot than Duke 7 and more tolerant to salts than Mexican seedlings, it has become the major commercial clonal selection. It demonstrates very good sodium exclusion and chloride tolerance for a Mexican rootstock (Mickelbart et al 2002). Toro Canyon s timing on the scene coincided with the introduction of integrated control of P. cinnamomi and overall better understanding of how to grow clonal rootstocks in difficult situations. Toro Canyon has significant resistance to P. citricola infection and canker. Borchard Borchard rootstock, a Mexican selection from southern California, is resistant to lime-induced iron chlorosis, a tendency in calcareous soils prevalent in coastal groves. Were it not for the lack of root rot resistance Borchard would be a major commercial variety having production 25% higher than Topa Topa (Arapia et al 1993). As it is, it remains a significant problem-solving rootstock in moderate to highly calcareous soils. Borchard is resistant to P. citrocola canker (El-Hamalawai et al 1991). Thomas Thomas was initially very impressive, being one of the best rootstocks for root rot tolerance. Its popularity and use has waned as its shortcomings became more apparent. Thomas is very susceptible to both P. citricola and Dothiorella gregaria canker, a problem with cultivars of Guatemalan race. This vigorous rootstock is highly sensitive to salinity and is a poor producer in many locations. It remains useful in severe root rot areas where salinity is not an issue. G755 Three selections of the G755 debuted in the 1980 s as the ultimate rootstocks and nearly swept aside predecessor rootstocks. These Persea schideiana x P. americana hybrids passed preliminary root rot screening in the field but later showed poor adaptability especially in calcareous soils. Fruit production trials ultimately ended their use when they showed poorly (Arpaia et al 1993). Some later limited reports of adequate production were too late to revive interest. The G755 s best contribution to the California avocado industry was a stark reminder that root rot resistance is only part of the path to greater productivity. 173

V Congreso Mundial del Aguacate WHAT LIES AHEAD The bar has been raised and the standard for commercial release is higher than in the past. Duke 6, G6, Barr Duke, D9 and others are worthwhile root rot tolerant rootstocks but do not possess the collection of positive traits that can attract interest to become commercially important. Grower s general satisfaction with current rootstocks preclude introduction of mediocre candidates. Rootstocks now in trial from promising outcrosses and isolated survivor trees must have superior production and traits of tolerance to many soil stress factors to be contenders for commercial use. West Indian Race West Indian rootstocks have, in the past, not performed satisfactorily due to poor root growth, late leaf development in the spring, generally pale color and lower production than trees on Mexican race rootstocks. Seedlings of Lula, a West Indian hybrid, have been used by nurserymen for their vigor and ease of production but have no other outstanding characteristics. Significant decline occurred from trees planted on West Indian seedling rootstocks in the 1970s (Ellstrand 1992). Now, a resurgence of research is currently being done with this salt tolerant group. Selections from Ben-Ya acov s rootstock work are being screened for root rot resistance, salt tolerance and productivity in California. Hopes are that some clonals may adapt to California s worsening water quality, but at this point West Indian clonal rootstocks are not utilized in California. Merensky 2 (Dusa) With only 4 years of trials in California the Merensky 2, or Dusa rootstock as it was called, has drawn a lot of attention. Not only has it fared well in widespread replant field trials throughout California, preliminary results with salinity screening show it may be a well rounded rootstock. What is driving anticipation are reports from South Africa that Hass is up to 30% more productive on Merensky 2 than on Duke 7 (Roe et al 1999). This year more than 7,000 trees were planted in California and demand is strong even in the face of limited experience under California conditions. Time will tell. REFERENCES ARPAIA ML, BENDER, GS, WITNEY GW 1993 Avocado clonal rootstock production trial. Calif. Avocado Soc. Yrbk. 77: 89-93Ben_Ya acov A, Michelson E.1995. Avocado rootstocks. Horticultural Reviews 17: 381_429 BENDER GS, ARPAIA ML, WITNEY GW 1991. Increasing production of avocados... the potential is there. California Grower, December: 28-29 BERGH BO 1967 Reasons for low yields of avocado. Calif. Avocado Soc. Yrbk. 51:161-172. BROKAW WH 1982 Clonal rootstocks: personal observations and a peek into the future. California Avocado Society Yearbook 66: 81-92 BROKAW WH 1982 Field experiences with clonal rootstocks. S. A. Avocado Growers' Assoc. Yrb. 10: 34-36. 174

Variedades y patrones COFFEY MD 1987 A took at current avocado rootstocks. California grower 11(4):15-17 ELLSTRAND NC, CLEGG JA, ARPAIA ML, WITNEY GW 1992, A Genetic Basis for Avocado Decline in The Rancho California Area of California. Proc. of. Second World. Avocado Congress 1992 p. 575 EL-HAMALAWI ZA, MENGE JA, GUILLEMET FB, 1991 Comparison of Resistance to Phytophthora citricola in Nineteen Avocado Rootstocks under Greenhouse Conditions. California Avocado Society 1991 Yearbook 78:121-12 MENGE JA, GUILEMET FB, CAMPBELL S, JOHNSON E, & POND E 1991 The performance of rootstocks tolerant to root rot caused by Phytophthora cinnamomi under field conditions in southern California. Proceedings of the Second World Avocado Congress, Vol. I. MENGE JA 1998 Screening and evaluation of new rootstocks with resistance to Phytophthora cinnamomi. Proceedings: California Avocado Symposium, Spring 1998: 41-43. MICKELBART MV, ARPAIA ML, 2002. Effects of salinity on growth, ion concentrations and water relations of 'Hass' avocado (Persea americana L.) trees propagated on three rootstocks. J. Am. Soc. Hort. Sci. OSTER JD, ARPAIA ML 1992 'Hass' Avocado Response to Salinity as Influenced by Clonal Rootstocks. Proc. of Second World Avocado Congress 1992 pp. 209-214. ROE DJ, MORUDU TM, KÖHNE JS 1999 Performance Of Commercially Grown Hass Avocado On Clonal Rootstocks At Westfalia Estate, South Africa. Revista Chapingo Serie Horticultura 5: 35-38 ZENTMYER GA 1980. Phytophthora cinnamomi and the disease it causes. Phytopathol. Monogr. 10. Am. Phytopathol. Soc., St. Paul, MN, USA. 175