Container Nursery Produc1on Fer1liza1on

Similar documents
Greenhouse Plant Nutrition

Monitoring Nutrition for Crops

Soil Test Report. HOME GARDEN VEGETABLE GARDEN Analysis Results

Developing and Implementing a Fertilizer Program. Marc van Iersel. mixed with substrate components before planting

Getting the Most Plant Response for Your Fertilizer $

Understanding Your Virginia Soil Test Report

POUR THRU TESTING OF CONTAINER MEDIA

Soil. Acidic soils... 1/19/2014

Know Your Soil Getting the Dirt on Your Dirt FWAA. Dr. Steve Petrie Director of Agronomic Services

Horticulture Information Leaflet 401 Revised 6/01 -- Author Reviewed 6/01

Lesco Fertilizer Evaluation

Assessing and Amending Your Garden Soil Craig Cogger, Soil Scientist Emeritus Washington State University Puyallup

Soil test recommendations

PASTURE AND HAY FIELDS: SOIL FUNDAMENTALS. Sanders County April 8, Clain Jones

Title: Lecture 16 Soil Water and Nutrients Speaker: Teresa Koenig Created by: Teresa Koenig, Kim Kidwell. online.wsu.edu

Fertilizers and nutrient management for hops. Diane Brown, Michigan State University Extension

Unit D: ph of Soil. Lesson : Identifying the ph Changes in Soil

Fertilizers. TheBasics. Whats in a Fertilizer? Why use Fertilizer? Nitrogen (N) Nitrogen (N) Its on the Label! Other sources of Nitrogen

CHECKLIST NUTRIENT MANAGEMENT

Soils and Fertilizers. Leo Espinoza Soils Specialist

Anorganic Fertilizer. Lenny Sri Nopriani, SP.MP

Nutrient Management of Irrigated Alfalfa and Timothy

How your rose bush makes food

Sunlight. Chlorophyll

Turfgrass Fertility. Soil Test Reports. Why Soil Sample? Interpretation & Understanding

Product Guide. Turf and Landscape

Apply approx 50-65g per square metre. Available in pack sizes: 1kg, 2kg and 5kg. Apply 100g per square metre, each spring. Water in well.

Crop Management Practices. By Simon Bedasie

The Dirt on Soil Science

Class 3: Soil Sampling and Testing. Chris Thoreau

What s in Your Media? Analysis of media components for micronutrient content

SUCCESS WITH ORGANIC SUBSTRATES. by Neil Mattson and Stephanie Beeks Cornell University

Nutrient Management And Nutrient Cycling Raymond C. Ward, President Ward Laboratories, Inc Kearney, NE

SOIL SAMPLING AND ANALYSIS

SimpleWater, Inc. Soil, Water, Air Laboratory Sciences 1860 Leroy Ave, Berkeley, CA 94720

Learning Objectives. C. Owen Plank

Nutrient Management for Tree Fruit. Mary Concklin Visiting Extension Educator Fruit Production and IPM University of Connecticut

How to Read a Soil Test Report: Step by Step

Soil is the Key (Chapter 3)

With the advancement of perennial production,

Understanding the Balance

Soil Management Site Selection, Soil Fertility. Warren Roberts George Kuepper

Soil Health Testing and Management

Controlled Release Container Nursery Fertilizer Evaluations. Dr. James T. Midcap

A PowerPoint has been provided

Irrigation and Fertilization. Mary M. Peet North Carolina State University

ANIMAL, PLANT & SOIL SCIENCE D3-2 SOIL CHEMISTRY

GEOL 408/508 INTRODUCTORY SOILS

Soluble Fertilisers 30.0% 29.0% - 1.0%

Fertilizing Trees and Shrubs

Table 4. Nutrient uptake and removal by sunflower in Manitoba studies. Nutrient Uptake Removal Uptake Removal

Pruning Grapes. Establishment pruning Pruning mature vines Goal: to fill the trellis system as quickly as possible.

Using Fertilizers: Feeding plants. Lydia Clayton UAF Cooperative Extension Service Kenai Peninsula District

Soils and Fertilizers Chapter 2. Sherry Kern Virginia Beach Master Gardener Tree Steward

Soil. The Foundation of the Garden

Nutrient Considerations for Olives

FERTILISING PARKS, LAWNS AND HOME GARDENS

ALL THE DETAILS TABLE OF CONTENTS. Nutrients. Forms of Fertilizer. Nitrogen Phosphorus Potassium Other Important Nutrients Micronutrients

Inherent Factors Affecting Soil ph. Soil ph Management

Inherent Factors Affecting Soil ph. Soil ph Management

Nutritional Monitoring Series Lettuce

Vine Nutrition. A g e n d a 4/10/2017. Soil How to sample Sample submission sheet Lab analysis & results Interpretation

How to Fertilize Smart

General Training. A Healthy Foundation for Plant Growth. Physical. 700 different soils in Wisconsin. Chemical. Biological

Soil: We Can t Grow without it!

Soils and plant nutrients

B. Land capability subclass - DELETED Determine Land Capability Subclass according to the following rules. Mark all subclasses that apply.

G A Gardener's Guide for Soil and Nutrient Management in Growing Vegetables

Soils: Components and basic chemistry

Soil Test Report. Sample ID Client Information Susan Varlamoff. Results Mehlich I Extractant UGA Lime Buffer Capacity Method*

Soil & Fertilizer. Pam Brown, Extension Agent Emeritus, Gardening Coach

Soil Fertility Note 14 Topsoil

Soils of Palau. Diversity and Fertility. Palau Livestock Management Workshop March 23-25, Jonathan Deenik, PhD University of Hawaii

#3: Fertilize Appropriately

Improving Your Grass With Calcium Sulfate

Effects of Fall Fertilization on Frost Hardiness of Azaleas

CMG GardenNotes #222 Soil ph

Peony Care newsletter: March

CHACTINOIRON50 50 LB HORTICULTURAL

Effect of Max-In Technology on Roundup Power Max Performance on Sugarbeet and Weeds at Mitchell, Nebraska during the 2009 Growing Season.

Evaluating rootzone stresses and the role of the root system on rose crop productivity and fertilizer-water use efficiency:

If your soil has a high salinity content, the plants

Fertilizer Management for Turf and Ornamentals

THE INVESTIGATION BEGINS!

Developing Fertilizer Programs for Fruit Crops Utilizing Soil and Tissue Analysis Soil analysis

KINSEY AGRICULTURAL SERVICES, INC

ATTACHMENT A BIORETENTION SOIL SPECIFICATION

Fertility Considerations for Sod Production 1

Farmers need to develop an understanding

RESIDUAL LIME IN COMMERCIAL MEDIA DURING CROP PRODUCTION

Fundamentals of Vine Management (vine training, trellis, planting, early vine training, nutrition, canopy management & crop management)

KEEPING PLANTS HEALTHY

Lysimachia: Lower Leaf Purplish-Black Spotting

Pellets / Granules / Fines

Fuchsia: Lower Leaf Purpling

Matching Trees to Planting Sites

Terminology & Soil Science. Andy Spetch

Making Sense of Soil Tests

SOILS. Sam Angima. OSU Extension Agent Lincoln County, Oregon

Tobacco Fertilization. Andy Bailey

Transcription:

Container Nursery Produc1on Fer1liza1on Amy Fulcher University of Tennessee Assistant Professor Sustainable Ornamental Plant Produc1on and Landscape Management Some content adapted from that originally prepared and presented by Donna Fare, Mark Halcomb and Amy Fulcher at the Container Dogwood Produc1on Workshop, November 18, 2010 in McMinnville, TN.

Whole Systems Approach Temperature Light Wind Water Humidity Substrate Container Size and Shape Years in Produc1on Fer1lizer Plant Size (leaf area)

Container Nursery Produc1on Fer1liza1on ph, alkalinity, EC guidelines Monitoring nutri1on Controlled release fer1lizers Types of fer1lizer applica1ons Rates at potng and bumping up Changing ph

Container Plant Nutri1on Op1mal ph 5.0 6.0 (pour thru) Lower than ideal soil ph range Why?

Container Plant Nutri1on Op1mal ph 5.0 6.0 Lower than soils ok because excess Al not a problem ph - A figure expressing the acidity or alkalinity of a solu1on on a logarithmic scale from 0 to 14 (where 7 is neutral and greater than 7 is more basic and less than 7 is more acidic). 10x difference

Nutrient Availability Macro elements Complete fer1lizer Minor elements Bilderback, 2001

Container Plant Nutri1on Op1mal alkalinity range (water supply) <61 ppm no problem 61-214 ppm degree of problem increasing >214 ppm severe alkalinity level Alkalinity the amount of carbonate and bicarbonate anion in solu1on. Carbonate and bicarbonate anions contribute to alkalinity due to their basic nature, hence their ability to neutralize acid. Buffers against ph change

Container Plant Nutri1on Op1mal EC 0.2 to 0.5 mmhos CRF only 0.5-1.0 (+) mmhos CRF + solu1on or solu1on only Soluble salts - the total dissolved salts in the root substrate (substrate solu1on) at any given 1me Measured by electrical conduc1vity (EC). More fer1lizer - > more salty - > higher EC Whipker and Cavins. 2000. Electrical Conduc1vity (EC): Units and Conversions. NCSU. FLOREX 002.

Measuring Container Nutri1on Pour thru Mark discussing Saturated paste extract* Add dis1lled water to substrate un1l glistens 2:1 dilu1on 2 dis1lled water:1 substrate *not liquid feed- so s1rring not desirable Consistent technique Acceptable range varies with technique

Whipker and Cavins. 2000. Electrical Conduc1vity (EC): Units and Conversions. NCSU. FLOREX 002.

Whipker and Cavins. 2000. Electrical Conduc1vity (EC): Units and Conversions. Whipker NCSU. and FLOREX Cavins. 002. 2000. Electrical Conduc1vity (EC): Units and Conversions. NCSU. FLOREX 002.

Types of Controlled Release Fer1lizers Osmocote - Longevity 70F Granule is covered with an organic, semi- permeable coa1ng of biodegradable resin made of vegetable oils. Water penetrates through the coa1ng and dissolves the nutrients. Start- up takes 1 to 2 weeks, depending on the longevity. Only the temperature is important in the release. Image Credit: hip://everris.us.com/plant- nutri1on/coated- fer1lizers/paierned- nutrient- release- fer1lizers

Image Credit: hip://www.google.com/imgres?imgurl=hip://www.mortonproducts.com/images/nutricote.jpg&imgrefurl=hip://www.mortonproducts.com/ page.cfm/1557&h=325&w=361&sz=43&tbnid=zonpn8p- Hu_iM:&tbnh=94&tbnw=104&prev=/search%3Fq%3Dnutricote%26tbm%3Disch%26tbo %3Du&zoom=1&q=nutricote&usg= opgjudz3wip_kv0a9mpylvbz0k=&docid=itt7ekxdwwav8m&hl=en&sa=x&ei=kztyuisvjige8qsx9ohocg&ved=0ccgq9 QEwAQ&dur=652 Types of Controlled Release Fer1lizers Nutricote Resin (Polyolefin) coa1ng Longevity controlled by the composi1on of the resin and the quan1ty of a special "chemical release agent" added to the resin Molecular passageways in the coated resin in a maze- like structure. Water in the soil enters the granule through the passageways and dissolves the nutrients.

Types of Controlled Release Fer1lizers Polyon polyurethane coa1ng Reac1ve Layers Coa1ng Temperature dependent release Longevity gauged at ~80F hip://polyonthinkgreen.com/howitworks.html

CRFs Longevity indicates the period of 1me over which a granule con1nues to release nutrients 5-6 months 8-9 months Coa1ngs can be damaged Sand in substrate + mixing = damage Mixing with front end loaders can scrape and damage

Types of Applica1ons Topdress Dibble Incorporate Graphic Credit: Dr. James Altland, USDA

Top Dress Can do any1me in produc1on Less likely to burn roots Less likely to leach out before nutrients are absorbed by the roots Alam et al. 2009. Evalua1ng Fer1liza1on and Water Prac1ces to Minimize NO3- N Leachate from Container- grown Forsythia. HortScience. 44(7):1833 1837. Graphic Credit: Dr. James Altland, USDA

Top Dress Osmocote with Fusion Technology No spill prill Photo Credit: hip://everris.us.com

Incorporate What if incorporate and then substrate isn t used for a long 1me? Coa1ng can be damaged by mixing Puts fer1lizer where the roots are Can t fall out if pot 1ps over Altland, J. Fer1lizer Placement affect weed control and plant growth. hip://oregonstate.edu/dept/nursery- weeds/research/dibbling/ dibbling_feritlizer.html Graphic Credit: Dr. James Altland, USDA

Altland, J. Fer1lizer Placement affect weed control and plant growth. hip://oregonstate.edu/dept/nursery- weeds/research/dibbling/ dibbling_feritlizer.html Graphic Credit: Dr. James Altland, USDA Dibble Can t fall out Fer1lizer is where the roots are Poten1al to burn roots

Dibble With no herbicide Topdressing and incorpora1ng resulted in about 60% weed control. Dibbling fer1lizers resulted in over 95% weed control. Altland, J. Fer1lizer Placement affect weed control and plant growth. hip://oregonstate.edu/dept/nursery- weeds/research/dibbling/ dibbling_feritlizer.html Graphic Credit: Dr. James Altland, USDA

Dibble Dibbling fer1lizers resulted in superior weed control and shoot growth, but slightly reduced root growth. Incorpora1ng fer1lizers resulted in moderate weed control, poor shoot growth, but excellent root growth. Topdressing fer1lizers resulted in poor weed control, excellent shoot growth, and slightly reduced root growth. Altland, J. Fer1lizer Placement affect weed control and plant growth. hip://oregonstate.edu/dept/nursery- weeds/ research/dibbling/dibbling_feritlizer.html

Applica1on Technique Leads to: Temperature and moisture differences Substrate surface exposed to radia1on, dries out compared to within substrate

Container Plant Nutri1on Fer1lizer analysis 3-1- 2 ra1o Fer1lizer rate 3 grams actual nitrogen/gallon container size Does the fer1lizer last the season? Longevity 8-9 or 12-14 month CRF at potng What if selling in 2 months?

EC Levels for Osmocote Plus and Polyon Top- applied Treatments Yes, the fer1lizer lasts the season. Lower fer1lizer release in May reflects decrease in temperature. 2.5 2.5 2 2 1.5 Polyon High Top June Polyon High Top No June Polyon Medium Top June Polyon Medium Top No June 1.5 Osmocote Top June Osmocote High Top No June Osmocote Med Top June Osmocote Medium Top No June 1 1 0.5 0.5 0 0 March April May June July August September October November March April May June July August September October November Fulcher, A., W. Dunwell, D. Wolfe, and R. McNiel. 2004. Effect of Fer1lizer Brand, Rate, Applica1on Technique, and June Reapplica1on on Growth of Amelanchier x Autumn Brilliance in Above Ground Container Produc1on. Proc. Southern Nursery Associa1on Research Conference. 49:111-113.

Container Plant Nutri1on Fer1lity/Nutri1on Winter potng & placed in overwintering Can get release due to warm temperatures Important to keep substrate moist otherwise fer1lizer salt will burn root 1ps

Container Plant Nutri1on Fer1lity/Nutri1on How to address micronutrients for a 2 year produc1on cycle? hip://everris.us.com/sites/default/files/micromax_micronutrients.pdf

Container Nutri1on Fer1lity/Nutri1on Micromax 6.0 % Calcium (Ca) 3.0 % Water Soluble Magnesium (Mg) 12.0 % Combined Sulfur (S) 0.10 % Boron (B) 1.0 % Water Soluble Copper (Cu) 17.0 % Iron (Fe) - - 13.60% Water Soluble Iron 2.5 % Water Soluble Manganese (Mn) 0.05 % Molybdenum (Mo) 1.0 % Water Soluble Zinc (Zn) hip://everris.us.com/sites/default/files/micromax_micronutrients.pdf

Bumping up - Container size 7- gallon 15 gallon Backfill 15 - gallon

Bumping up - Container size Displacing Adding 3 gal 15 gal = 20 % 80 % 7 gal 15 gal = 44 % 56 % 10 gal 15 gal = 70 % 30 % 15 gal 25 gal = 58 % 42 % 3 gal = 674 cu in. 7 gal = 1342 cu in. 10 gal = 2373 cu in. 15 gal = 3396 cu in. 25 gal = 5811 cu in.

Container Nutri1on - ph Lime or dolomi1c lime None to liile recommended in substrate However, woody plant crop cycle can outlast the lime in substrate at plan1ng Repeated fer1liza1on can lower ph IBDU Isobutylidene- diurea, S- coated urea, urea and ammoniacal nitrogen Test irriga1on water annually Jan/Feb and Jul/Aug are 2 best 1mes

Container Nutri1on - ph Blueberries, azaleas, hydrangeas Top dress sulfur in container produc1on carefully!! Small, incremental changes be pa1ent!

Hydrangea ph & Nutri1on Aluminum sulfate Al is necessary to produce the blue pigment S lowers ph so Al is available P 1es up Al making it unavailable Leads to pink flowers

Resources BMP Guide for Producing Container- grown Plants. Southern Nursery Associa1on. Marieia, GA. Argo and Fisher. Understanding ph management for container- grown crops. Meister publishing.

Ques1ons?