Jan. 13, ,489,652. DISTILLATION COMBINED WITH POWER GENERATION 3. Sheets-Sheet. Filed April 18, Af777/46/C/ :42, TT /

Similar documents
????% dt???5. 3,351,120. Nov. 7, 1967 R. W. GOELDNER ET AL MULTIPLE EFFECT, MULTI-STAGE FLASH AND FILM EWAPORATOR NVENTORS RICHARD W.

219,432,433,436,528,529, 99,483 is ABSTRACT 56) References Cited

(12) Patent Application Publication (10) Pub. No.: US 2008/ A1

United States Patent (19) Jackson

(12) Patent Application Publication (10) Pub. No.: US 2011/ A1

(12) Patent Application Publication (10) Pub. No.: US 2014/ A1

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1. Weng et al. (43) Pub. Date: Jun. 23, 2005

Dec. 11, 1951 T. DAUGHERTY 2,578,129

(12) United States Patent (10) Patent No.: US 6,647,932 B1

(12) Patent Application Publication (10) Pub. No.: US 2014/ A1

United States Patent (19) Blain

Oct. 11, M. E. PENNINGTON 1,882,030 CONDITIONING SYSTEM FOR COLD STORAGE ROOMS

(12) Patent Application Publication (10) Pub. No.: US 2012/ A1

Dec. 15, ,318. Filed July 26, Sheets-Sheet l REFRIGERATING SYSTEM N. H. GAY

IIIHHHHHHHHHHHHH. United States Patent (19) CSi. 11 Patent Number: 5,318,230 (45) Date of Patent: Jun. 7, Ferguson et al.

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1

BY Nov. 3, 1970 R. J. ALVAREZ 3,537,132. As Attornyev. Filed Sept. 3, Sheets-Sheet 1

by 4 & Oct. 10, 1972 E. R. WEAVER 3,697,383 FEEDWATER HEATER AND STRAINER ARRANGEMENT FOR EARLE R. WEAVER,

United States Patent (19) Dean

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1

(12) United States Patent

WALTER MANN. Jan. 7, 1969 G, SCHAEFER ETA 3,420,750 F. G. FREDRICH WRTH DISTILLING PHTHALIC ANHYDRIDE. Anhydride. Filed May 19, 1967 Sheet / of 2

United States Patent (19) Seidel et al.

(12) United States Patent (10) Patent No.: US 6,176,097 B1. Kim (45) Date of Patent: Jan. 23, 2001

Nov. 8, 1966 N, GANIARIs 3,283,522

2,804,427. Aug. 27, 1957 J. F. SURANO METHOD AND APPARATUS FOR DEODORIZING OILS AND FATS. Filed Oct. 27, Sheets-Sheet INVENTOR. ????

United States Patent (19)

United States Patent (19) Moore, Jr. et al.

(12) United States Patent

(12) Patent Application Publication (10) Pub. No.: US 2015/ A1

United States Patent Frans

(12) Patent Application Publication (10) Pub. No.: US 2004/ A1

US A United States Patent (19) 11 Patent Number: 6,092,490 Bairley et al. (45) Date of Patent: Jul. 25, 2000

(12) Patent Application Publication (10) Pub. No.: US 2013/ A1

(12) United States Patent (10) Patent No.: US 7,190,120 B1

April 8, 1952 F. W. EDWARDs 2,592,400 HEATER. INVENTOR. Z2-a/aa227A 2.27te2/-23, leadopt ul. "feuwaa Stavvula. a?7215/yat-s.

(12) United States Patent (10) Patent No.: US 7,049,615 B1 / /?

(12) United States Patent (10) Patent No.: US 8,371,246 B1

(12) United States Patent

United States Patent (19) Anwunah et al.

United States Patent (19) Lott

E=Eal. United States Patent (19) Grooms NN N N E. 11) Patent Number: 4,821, Date of Patent: Apr. 11, 1989

(21) Appl. No.: 418, Filed: Apr. 7, 1995 (51 Int. CI.'... F28D Ascolillo

(12) United States Patent (10) Patent No.: US 7,708,183 B2

(12) United States Patent (10) Patent No.: US 6,443,434 B1

US A United States Patent (19) 11 Patent Number: 6,067,007 Gioia (45) Date of Patent: May 23, 2000

Tikhonov et al. (45) Date of Patent: Mar. 13, (54) REFRIGERATOR WITH SELECTIVE (56) References Cited ARFLOWPASSAGES BETWEEN THE

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1

(12) United States Patent (10) Patent No.: US 6,639,797 B2

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1

(12) United States Patent

(12) United States Patent (10) Patent No.: US 6,552,309 B1

(2) Patent Application Publication (10) Pub. No.: US 2009/ A1

United States Patent Modine et al.

(12) Patent Application Publication (10) Pub. No.: US 2010/ A1

(12) United States Patent

(12) Patent Application Publication (10) Pub. No.: US 2004/ A1

A&ara/ caaz222222/72. Feb. 1, 1966 H, J, KIMMERLE 3,232,846 SOLAR-WACUUM SEA WATER DISTILLATION APPARATUS. Azz/e/772/r

Nov. 3, 1959 CLEANER INOPERATIVE IF NO BAG IS IN PLACE. JoAw 7 AFfeeA9EAS PNEUMATIC MECHANISM FOR RENDERIN. Filed Dec. 26, 1956 HIS ATTORNEY

USOO A United States Patent (19) 11 Patent Number: 5,993,656 Cordani (45) Date of Patent: Nov.30, 1999

(12) United States Patent

... O. HT is. suggy. life " "G" 724a, Azaza (W.A. s: D-E-DE-2. Fig March 20, 1973 W. FORG ET AL 3,721,099 NVENTORS 14 X X


United States Patent (19) Sato

United States Patent (19) Henle

TEPZZ Z564 A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: B64D 13/06 ( ) B64D 13/08 (2006.

ACD /. United States Patent (19) Standiford (1) 3,968,002. (45) July 6, 1976 (54) FEED HEATING METHOD FOR MULTIPLE

A1(t1) (12) Patent Application Publication (10) Pub. No.: US 2011/ A1. (19) United States. Jiang et al. (43) Pub. Date: Sep.

(12) Patent Application Publication (10) Pub. No.: US 2015/ A1

(12) United States Patent

United States Patent (19) Truhan

United States Patent (19) 11 3,956,072 Huse (45) May 11, 1976

3,004,901. Oct. 17, 1961 W. NERGE E A APPARATUS FOR FRACTIONAL DISTILLATION. 3 Sheets-Sheet. Filed Oct. 4, %)

United States Patent 19

United States Patent (19) Bratt

52 U.S. Cl /95; 362/20, 362/276; of the light Switch or for receiving the electrical plug

(12) Patent Application Publication (10) Pub. No.: US 2012/ A1

United States Patent (15) 3,638,447 Abe (45) Feb. 1, 1972

United States Patent (19) Cook

(12) Patent Application Publication (10) Pub. No.: US 2009/ A1. LEE (43) Pub. Date: Oct. 29, 2009

United States Patent (19)

(12) Patent Application Publication (10) Pub. No.: US 2015/ A1

WILLIAM. A. HoUSTON AND DILLMAN CHARLEs HOUSTON, or Los ANGELEs, CATTEOBNIA.???NTAIN PEN. Application filed November 29, Serial No

NOTICE. The above identified patent application is available for licensing. Requests for information should be addressed to:

ORGANISATION AFRICAINE DE LA PROPRIETE INTELLECTUELLE N Titre :Liquefied natural gas plant with ethylene independent heavies recovery system.

2,723,225. Nov. 8, (OM/OAWS//ye7 27WA K. M. ELLIOTT. /A/h/ SA/47/A SAPAW 7 SA/A/AF SHALE RETORTING METHOD AND APPARATUS. a s- WA7AA SHALF (7//

(12) (10) Patent No.: US 7, B2 Army, Jr. et al. (45) Date of Patent: Mar. 13, 2007

(12) United States Patent (10) Patent No.: US 6,524,394 B2

United States Patent (19)

(12) Patent Application Publication (10) Pub. No.: US 2017/ A1

United States Patent (19) Helfrich, Jr. et al.

into "ill (12) Patent Application Publication (10) Pub. No.: US 2008/ A1 (19) United States 12d Roberts (43) Pub. Date: Feb.

United States Patent (19)

(12) United States Patent (10) Patent No.: US 8,887,747 B2

steam entrains ambient air, pulling it through an air opening

-50. Liquid outlet 1-1. Liquid outlet 2-1. Liquid outlet b. Liquid outlet 4-1. N-Liquid inlet 4. N-Liquid inlet 2.

N 14. United States Patent (19) 15, W. (11) 4,303, Dec. 1, 1981 T COMPRESSOR 5. The present invention relates to a process for providing

-i. United States Patent (11) 3,633,37. 6/1931 Davenport... 62/474X. (72 Inventor Lester K. Quick

(12) United States Patent

(12) United States Patent (10) Patent No.: US 8, B2

Transcription:

Jan. 13, 1970 Filed April 18, 1966 W. R. W.L.AMSON DESALINATION PROCESS BY MULTI-EFFECT, MULTI - STAGE FLASH DISTILLATION COMBINED WITH POWER GENERATION 3. Sheets-Sheet 232 7 Af777/46/C/ :42, TT672757-/

Jan. 13, 1970 W. R. WiLLIAMSON DESALINATION PROCESS BY MULTI-EFFECT, MULTI-STAGE FLASH DISTILLATION COMBINED WITH POWER GENERATION Filed April 18, l966 3. Sheets-Sheet 2 zzzz (7/V?275 _/27/77?? _7224272/ INVENTOR, VV?ZZzzzzz 62 //?ZZzzzzzzozzv

947 Jan. 13, 1970 W. R. WILLIAMSON DESALINATION PROCESS BY MULTI-EFFECT, MULTI-STAGE FLASH DISTILLATION COMBINED WITH POWER GENERATION Filed April 18, 1966 3. Sheets-Sheet 3 zzzz 2/375/V7(7/VOO 377.24.27% غ ^U) BY INVENTOR.

United States Patent Office Patented Jan. 13, 1970 DESALINATION PROCESS BY MULTI-EFFECT, MULT-STAGE FLASH DSTLLATION COM BINED WITH POWER GENERATION William Rodger Williamson, Waterford, Conn., assignor to American Machine & Foundry Company, a corpo ration of New Jersey Filed Apr. 18, 1966, Ser. No. 543,205 nt, Cl. B01d 3/06 U.S. Cl. 203-11 1 Claim ABSTRACT OF THE DISCLOSURE This invention covers a combined desalination and power generating method and apparatus in which heat energy from power generating means is employed in the desalination or distilling plant of a type which includes a multi-stage flash evaporator. Vapors produced in the higher stages of the evaporator are condensed to provide a fresh water distillate product; vapors produced in the lower pressure stage or stages of the evaporator are fed as steam through a low pressure turbine to drive the power means. Vapors exhausted from the low pressure turbine are condensed and comingled with the distillate product from the evaporator as part of the fresh water product. ASqLLLLLSLLLLqqMqMSLSMMAAS This invention relates to combined distillation and power generating operations, and more particularly, it concerns a novel method and apparatus for combining sea water desalination and power generating operations. Prior. to this invention, combined desalination-power generating plants have involved using high grade energy produced by a nuclear reactor, for example, to produce steam for operating a high pressure turbine generator, the exhaust from the turbine being passed to the brine heater of a distilling plant. Where economically feasible nuclear fueled heat generators have been employed, low turbine exhaust temperatures have resulted so that the amount of heat exchange surface required in the distill ing plant of such installations is objectionable, again from a cost standpoint. Although high temperature nu clear fueled heat generators are available, which would satisfy the requirements of both the power generating and distillation operations, the high capital investment costs of such high temperature heat generators has been a major deterrent to their use. In accordance with the present invention, heat energy available from a low cost nuclear fueled heat generator is employed first in a desalination or distilling plant of the type including a multi-stage flash evaporator operat ing at temperatures of approximately 225 F. to 290 F. where high heat transfer rates and favorable pressure gradients are available. Vapors produced in the higher stages of the evaporator are condensed to provide a fresh water distillate product whereas vapors produced in the lower pressure stage or stages of the evaporator are fed as steam through a low pressure turbine to drive a power generator. Vapors exhausted from the low pressure steam turbine are condensed and co-mingled with the distillate product from the evaporator as the fresh water product. In large installations which justify the cost of a high tem perature nuclear fueled heat generator, the low pressure turbine supplied by steam from the flash evaporator may be coupled with a high pressure turbine supplied with steam produced directly by the heat generator, the high pressure turbine exhausting to the distillation plant for operation within the temperature range aforementioned. Among the objects of the present invention are: the provision of a combined desalination-power generating method and apparatus by which the high initial costs in cident to combined desalination-power plants heretofore O 5 20 25 30 35 40 50 55 60 65 70 2 available are significantly reduced; the provision of a method and apparatus of the type referred to in which the amount of heat transfer surface necessary for desali nization is reduced, thereby enabling a combined plant which requires less space than plants heretofore avail able; the provision of a combined plant of the type re ferred to which lends itself to future expansion; and, the provision of a combined desalination-power generat ing method and apparatus by which feed treatment costs are reduced. Other objects and further scope of applicability of the present invention will become apparent from the detailed description to follow taken in conjunction with the ac companying drawings, wherein like reference numerals designate like parts and in which: FIG. 1 is a schematic view depicting one form of the present invention; FIG. 2 is a schematic view illustrating a modified form of the present invention; and FIG. 3 is a schematic view depicting still a further modification of this invention. In the embodiment illustrated in FIG. 1 of the draw ings, a source of heat energy, such as a nuclear reactor 10 having a circulating pump 12 and heat exchange tubes 14, Supplies heat through a conduit 16 to heat exchange coils 18 in a brine or feed solution heater 20. The solu tion to be distilled is fed from the heater 20 through a line 22 to a multi-stage flash evaporator generally des ignated by the reference numeral 24. The multi-stage flash evaporator 24 may take a va riety of structural forms, one such form being illustrated and described in U.S. Patent No. 3,186,924. It will suf fice for purposes of the present description to note that the flash evaporator includes a plurality of flash cham bers 26a-l which operate at successively lower pressures and temperatures proceeding from a high pressure stage 26a to a low pressure stage 26l. As the heated brine is introduced successively into the flash chambers 26, a portion thereof flashes into vapor and the vapors passed to a heat recovery condenser 28 through lines 29. The condensed vapors are removed by a pump 30 through a line 32. A relatively large heat reject flash chamber or reboiler 34 is connected to the low pressure flash cham ber 26l by a line 36 to receive brine from the flash cham ber 26l. Vapors produced in the heat reject flash cham ber 34 are passed as low pressure steam to a turbine 38 coupled to a generator 40 to produce electric power. The exhaust from the turbine 38 is directed by way of a line 42 to a condenser 44 in which the exhaust vapors are condensed. The condensate from the condenser is drawn through a line 46 by a pump 48 and discharged to a line 50. The distillate pump 30 discharges to a line 52 which is coupled to the line 50 to discharge a combined distil late product as illustrated. To provide the necessary coolant for the condenser 44, raw sea water, pumped through an intake line 54, is fed through the condenser and a major portion thereof dis charged to waste through a line 56. A portion of the sea water in the line 56 is tapped through a line 58 and fed by a pump 60 through lines 62, 64, 66 and 68 into a brine cooler 70 and a distillate cooler 72, respectively. Preheated raw sea water is discharged from the coolers 70 and 72 by a line 74 having an acid injector 76 there in. From the line 74, the preheated feed is introduced into a deaerator 7S. Entrained carbon dioxide and air are released from the feed in the deaerator 78 by a water eductor 80 through a line 82 and discharged through a line 84 along with a portion of the raw untreated sea water pumped to the line 62 by the pump 60. The treated sea water feed is pumped from the deaerator 78 by a pump 86 and fed by a line 88 to the condenser 28 of the flash evaporator 24. In accordance with well estab

3 lished principles of flash evaporator operation, the treated sea water feed is passed through the condenser 28 in coun ter-flow relation to the fow of heated brine through the flash chambers 26 and introduced to the heater 20 through a line 90. A portion of the brine remaining in the heat reject flash chamber 34 is withdrawn as blow-down through a line 92 and recycled by a pump. 94 through a line 96 where it is mixed with the fresh, treated sea water feed in the line 88 prior to its being introduced into the heat exchange tubes of the condenser 28. The remaining portion of the brine is withdrawn from the heat reject flash chamber 34 by a pump 98 and discharged through the brine cooler 70 to Waste. In the operation of the embodiment illustrated in FIG. 1 of the drawings, raw sea water at ambient temperature, after having passed through the turbine condenser 44, the brine cooler 70 and the distillate cooler 72, reaches a temperature in the line 74 of approximately 190 F. At this temperature, acid may be injected by the injector 76 to remove stoichiometrically HCO3 ions to prevent scaling in the high temperature flash evaporator 24. Also, at this temperature, the low cost water power eductor 80 operates effectively to remove corrosive CO2 and air from the deaerator 78. After treatment in the deaerator 78, the feed may be heated further, prior to passage into the line 96, by passage in heat exchange rotation with waste heat from the heat generator 10, or bleed steam from the turbine 38, so that its temperature approaches the temperature of the recycle brine in the line 96, usually about 225 F. The extent to which the mixture of treated feed and brine passing to the flash evaporator 24 through the line 22 will be heated by the heater 20, in accordance with this invention, will depend on the amount of heat needed to achieve a vapor temperature in the heat reject flash chamber of approximately 225 F. Thus, the number of stages 26 and the temperature drop between stages, together with the capacity of the heater 20, will govern. With low cost nuclear fueled reactors designed to operate at a maximum of 300 F., it is contemplated that the flash plant will be designed so that where the feed in the line 22 is heated to a range of between approximately 260 F. to 290 F., steam at 225 F. will be developed in the heat reject flash chamber 34. Also, it will be ap preciated that the pressure in the chamber 34 will ex ceed atmospheric pressure and that the flash chamber 26l operates at a higher pressure than the chamber 34. Thus, as brine from the heater 20 passes serially from the cham ber 26a to the chamber 34, a portion thereof flashes into vapor in each chamber due to the pressure-temperature gradient existing between these chambers. In the embodiment of FIG. 2 of the drawings, the principles of the present invention are applied to a multiple effect, multi-stage flash evaporation plant having a first effect 100 and a second effect 102. As in the em bodiment of FIG. 1, each of the effects 100 and 102 in clude a plurality of pressure stages 104a f and 106a-f, respectively. As shown, treated feed in the line 88 is passed through condenser tubes 108 in the higher stages 106a-d of the second effect then to the condenser tubes 110 in the first effect 100 and through the heater 20. The O 30 35 40 5 60 4 106d of the second effect 102 to be partially reheated and then heated further in heat exchange tubes 122 in the last two pressure stages 104e and 104f of the first effect 100. The heated recycle brine from the second effect is passed from the heat exchange tubes 120 through a line 123 and mixed with the brine blow-down from the first effect 100. As above mentioned, the treated set water feed is intro duced to the second effect 102 at the pressure stage 106d, thus leaving the lowest pressure stage 106f, as weli as the next lowest pressure stage 106e, of the second effect without cooling passages so that the vapors produced in these low pressure stages may be passed as steam through lines 124 and 126 to the low pressure turbine 38. The precise number of low pressure stages in the second effect 102 left to function as reboilers or heat reject flash cham bers to provide steam to the turbine will depend on the requirements of the turbine. The embodiment illustrated in FIG. 3 of the drawings is similar in all respects to the embodiment of FIG. 2 of the drawings with the exception that in this instance, the Source of heat energy 10 is significantly increased so that Steam generated therein may be passed first through a high pressure turbine 128 which exhausts to the brine heater 20. The arrangement illustrated in FIG. 3 is in tended for large installations where increased power re quirements must be met. Hence, the high pressure turbine 128 may be coupled by means designated by the dashed line 130 to the low pressure turbine 38 to drive the gen erator: 140. It will be appreciated that the operation of the systems illustrated in FIGS. 2 and 3 is similar to that of the em bodiment of FIG. 1. Certain advantages obtain from the systems of these latter embodiments principally because of the evaporator stages being arranged in two or more effects. For example, the amount of heat transfer sur face required in multiple effect, multi-stage evaporators of the type incorporated in the embodiments of FIGS. 2 and 3 is less for a given thermal economy than it is in a single effect flash evaporator. The amount of acid and size of deaerator needed for feed treatment in such multiple effect systems are reduced. Further, additional operating temperature range is available in multiple effect evaporators, thereby providing a larger temperature dif ferential between the stages thereof. A more complete description of multiple effect, multi-stage flash evaporators and other advantages of such installations may be found in Copending application Ser. No. 440,486, filed Mar. 17, 1965, and now U.S. Patent No. 3,399,118. It will be appreciated from the description given above, that the present invention provides a combined distilla tion-power generating installation by which the foregoing objectives are fulfilled. Although preferred embodiments. their operation, and their use have been disclosed, varia tions of these embodiments are contemplated. For ex ample, the low pressure steam produced in the heat reject flash chamber or reboiler can also be used to energize an absorbtion type air conditioning system or for heating, laundry use or for feed heating the condensate in a very large power system. The steam could also be coupled to a low pressure distilling plant and the low pressure turbine-generator used for peaking power which heated feed in the line 22 is passed through the flash would provide great flexibility in handling off-peak power. chambers represented by the dashed line 112 of the first Since further variations in the form of the present in effect proceeding from the highest pressure stage 104a to 65 vention described herein will become apparent to those the lowest pressure stage 104f of this effect. A portion skilled in the art, it is to be distinctly understood that of the concentrated brine is recycled from the stage 104f the foregoing. description is illustrative of preferred em by a pump 114 and mixed with the treated feed in the bodiments only, not limiting, and that the true spirit and condenser of a higher stage 104d in the embodiment Scope of the present invention is to be determined by shown. The remaining brine concentrate in the stage 104f reference to the accompanying claim. is removed as blow-down through a line 116 and fed to The invention claimed is: the highest pressure stage 106a of the second effect 102. 1. The method of simultaneously desalinating sea Brine recycled from the low pressure stage 106f of the Water into generating power comprising the steps of: second effect by a pump 118 is introduced into the con heating a feed solution to temperatures on the order of denser tubes 120 in the higher pressure stages 106a- 75 290 F.; passing the heated feed solution to the high pres

5 sure stage of a multiple effect, multi-stage flash evaporator having at least first and second effects; flash evaporating said feed solution in successive stages of said evaporator to produce a vapor fraction and a brine fraction in each stage; recycling a major portion of the brine fraction from the lowest pressure stage of said first effect and mixing it with sea water to form said feed solution; introducing the remaining portion of said brine fraction from the lowest pressure stage of said first effect to the highest pressure stage of said second effect; withdrawing a major portion of the brine fraction from the lowest pressure stage of said second effect and mixing it with said remaining brine from the lowest pressure stage of said first effect; discharging the remaining brine fraction from the low pressure stage of said second effect to waste; removing the vapor fraction from at least the lowest pressure stage of said second effect as steam at pressures exceeding atmospheric pressure; passing said steam to a low pressure turbine to generate power; and condensing the vapor fraction in the remaining stages of said first and second effects to produce a distillate product by heat exchange between said vapor fraction and said treated Sea water, said recycle brine, and said feed solution. O 5 20 2,636,129 2,759,882 2,893,926 3,032,482 3,076,096 3,119,752 3,140,986 3,320,137 2,566,732 3,388,045 3,391,062 3,399,118 3,412,558 6 References Cited UNITED STATES PATENTS 4/1953 8/1956 7/1959 5/1962 1/1963 1/1964 7/1964 5/1967 9/1951 6/1968 7/1968 8/1968 11/1968 Agnew ------------ 202-234 Worthen et al. ------- 203-11 Worthen et al. ------- 203-11 Shoemaker --------- 203-100 Bachmann 290-1 Checkovich 202-173 Hubbard ----------- 202-173 Jebens et al. -------- 202-173 Krieg ----- 60-67 Goeldner et al. 202-173 Tidball ------------- 202-173 Williamson --------- 202-173 Starmer 202-163 WILBUR L. BASCOMB, JR., Primary Examiner lu.s. Cl. X.R. 60-67; 202-173, 176, 180; 203-7, 73,78, 88