Assessing condensation problems in hydrophobic mineral fiber

Similar documents
HYGROTHERMAL PERFORMANCE BENEFITS OF THE CELLULOSE FIBRE THERMAL INSULATION STRUCTURES

Delivering the Comfort and Performance Your Customers Demand

Moisture and Buildings. Moisture Damage

NISTIR Mathematical Analysis of Practices to Control Moisture in the Roof Cavities of Manufactured Houses

Heat and Mass Transfer in Fibrous Materials. Theory and Applications. A.K. Haghi S. Thomas L.A. Pothan ATLANTIC PUBLISHERS & DISTRIBUTORS (P) LTD

Modelling impact of collections on indoor climate and energy consumption in libraries and archives

LOW ENERGY CLIMATE CONTROL FOR MUSEUM STORES

Hygro and Hygrothermal Transducers (Capacitive) for Air Conditioning Applications

EVAPORATION NEEDS ENERGY

Moisture and Buildings. Moisture Damage

THE EFFECTS OF LEAKAGES IN ROOFS WITH VENTILATED AIR LAYERS - A CFD APPROACH. Zbynek Svoboda

STS Directory Accreditation number: STS 0021

Passive building in Hot and Humid Climates

GAW - WCCAP recommendation for aerosol drying

Takashi AOKI Shinichi OKAMOTO Osamu INA Akio SUGIURA

Numerical study of heat pipe application in heat recovery systems

Retention of Water by Soil

Hygrometry. The art or science of humidity observation

OF BUILDING MATERIALS FACULTY OF ENGINEERING (LTH), LUND UNIVERSITY, SWEDEN

Movement of soil water- Infiltration, percolation, permeability Drainage -

White paper Compressed air drying

INFLUENCE OF SOLAR RADIATION AND VENTILATION CONDITIONS ON HEAT BALANCE AND THERMAL COMFORT CONDITIONS IN LIVING-ROOMS

Accepted Manuscript. peer , version 1-18 Jan 2011

Experimental study of space cooling using ceiling panels equipped with capillary mats

Effective Water Vapour Permeability of Wet Wool Fabric and Blended Fabrics

HOT or COLD. Condensation Happens. Chill Out! Boost Productivity. Keeping Up to Standard AS SEEN IN. August 2004

Bert Phillips, P.Eng., MBA

Portable Alpha/Beta Continuous Online Air Monitor (CAM)

APPROACH TO THE PREDICTION OF THERMOPHYSIOLOGICAL COMFORT

Analysis of freeze protection methods for recuperators used in energy recovery from exhaust air

Soil Health & Assessment

WATER VAPOR IN THE FUNCTIONAL GAP OF WINDOW. MILAN PALKO, SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA, Faculty of Civil Engineering,

Moisture buffering effects of interior linings made from wood or wood based products

Scientific Principals and Analytical Model. Charcoal Cooler. Lisa Crofoot MECH 425, Queens University

14 Drying. I Basic relations and definitions. Oldřich Holeček, Martin Kohout

Jülich Solar Power Tower System Behavior During Downtime

PROCESSING OF VEGETABLES IN A SOLAR DRYER IN ARID AREAS

Membrane Dryers KMM Series

Durability of the Reaction to Fire Performance for FRT Wood Products in Different End Use Applications A Ten Years Report

Shuzo Murakami, Shinsuke Kato, and Taeyeon Kim Institute of Industrial Science, University of Tokyo Tokyo, Japan

Understanding the Pores of a Soilless Substrate

American International Journal of Research in Science, Technology, Engineering & Mathematics

Membrane Dryers KMM Series

Capillary Action Subsurface Irrigation

Green Infrastructure Sub-irrigated Raised Beds - Green Roof

Healthy Buildings 2017 Europe July 2-5, 2017, Lublin, Poland. Mold Infestation in Buildings of Warm Humid Climate Case Studies

How to protect glazed pictures from climatic insult

Membrane Dryer. Air inflow rate KMM Series to m 3 /min

Physical Mechanism of Convection. Conduction and convection are similar in that both mechanisms require the presence of a material medium.

Greening the Built Environment. EXTENSIVE, INTENSIVE. Roof Garden. General Specifications

Moisture in the Atmosphere. GEOG/ENST 2331 Lecture 9 Ahrens: Chapter 4

Heated Gas Sampling Probe PSG Basic

Heat Transfer in Evacuated Tubular Solar Collectors

MODULAR COMPRESSED AIR PURIFICATION. ULTRAFILTER FRL.

PREDICTING GASEOUS AIR CLEANER PERFORMANCE IN THE FIELD

FIRE TESTING OF LOW SLOPE ROOF ASSEMBLIES AN INTERNATIONAL REVIEW

Virtual Household Refrigerators at Steady-State and Transient Conditions. Numerical Model and Experimental Validation.

Performances of infrared emitters applied to the porous thin materials drying

THERMAL PERFORMANCE ASSESSMENT OF GREENHOUSE SOLAR DRYER UNDER PASSIVE MODE

Specification Document. Heat-resisting Type Water Leakage Sensor FR-AD

Numerical Analysis of Leakage through Geomembrane Lining Systems for Dams

Orientalmotor Thermal Management

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Fieldclimate User Manual

HYDROLOGICAL PERFORMANCE OF THE GREEN ROOF AT SYRACUSECOE

Meteorology 432. Hygrometry Spring 2013

Evaluation of the Development of Capillary Barriers at the Interface between Fine-grained Soils and Nonwoven Geotextiles

Greening the Built Environment. EXTENSIVE, INTENSIVE. Roof Garden. General Specifications

Albert R. Jarrett. Annual and Individual-Storm Green Roof Stormwater Response Models

Urbanscape Landscaping Solutions

PRINCIPLES OF HEATING, VENTILATION AND AIR CONDITIONING with Worked Examples

Principles of Cold Insulation

HICOSYS FOR PROCESS CONTROL OF SPRAY DRYERS

Classification based on shape:

Characterization of a hygro-regulated Wall Base Ventilation System for Treatment of Rising Damp in Historical Buildings

Water in the Atmosphere

Desiccant Cooling with Solar Energy

Introduction to humidistats

Test Report: ICL/CR15/11/087

PHYSICS OF FOIL HEAT GAIN/LOSS IN BUILDINGS

TCW 2000 Ice liner refrigerator and freezer PIJ

The complete energy-saving range.

International Forum on Energy, Environment Science and Materials (IFEESM 2015)

EXPERIMENTAL AND CFD STUDIES ON SURFACE CONDENSATION

Thermal Energy. Conduction, Convection, and Radiation. Before You Read. Read to Learn. Conduction. section 2

Hot Reservoir Stainless-Methanol Variable Conductance Heat Pipes for Constant Evaporator Temperature in Varying Ambient Conditions

YUJING LI, Ph.D. DIV. OF BUILDING MATERIALS FACULTY OF ENGINEERING (LTH), LUND UNIVERSITY, SWEDEN MARCH 25 TH 2014, GÖTEBORG

A Study of Drying Uniformity in a New Design of Tray Dryer

Loop Heat Pipe Wick Fabrication via Additive Manufacturing

Study on Drying Shrinkage Strain and Moisture Transfer in Concrete with Finish Coating Materials

Moisture-Safe Unvented Wood Roof Systems

Experimental Study of Alternatives to Sand in Zeer Pot Refrigeration Technique

A new test procedure to measure the soil-water characteristic curves using a small-scale centrifuge

Effect of Inclination Angle on Temperature Characteristics of Water in- Glass Evacuated Tubes

27/11/2015. How does a greenhouse work: humidity. Energiezuinig ontvochtigen. Climate control, humidity

Working with Leca LWA and Water.

developed, and parametric studies are conducted with the model. Based on the parameter study results, a dehumidification performance diagram is propos

Alternative Buoyancy Concepts: First Numerical and Experimental Results from a Hot Steam Balloon (HeiDAS)

Smoldering Propagation Characteristics of Flexible Polyurethane Foam under Different Air Flow Rates

ENERGY EFFICIENCY BRIEF REPORT

Transcription:

WUFI How to Assessing condensation problems in hydrophobic mineral fiber Issued: 2017-07

Contents 1. Basics 2. Proceeding in WUFI 3. Example 4. Collection of critical values 2

Basics Glaser method The international standard EN ISO 13788 as well as for example the German standard DIN 4108-3 provide assessment methods ( Glaser ) for the condensation risk in building assemblies. A building assembly passes, if 1. there occurs no dew water at all, or 2. the amount of dew water during the condensation period remains below the threshold values and the construction is drying out during the summer period The methods use some simplifications, like: Constant boundary conditions for temperature and rel. humidity (summer, winter or monthly averages - without rain water or radiation) No moisture dependencies of the material parameters (e.g. the thermal conductivity) No built-in moisture within the component Moisture buffering effects are neglected 3

Basics Hygrothermal Simulation The hygrothermal simulation tool WUFI on the other hand takes the moisture storage capacity (sorption isotherm) of the building materials into account. However, dew water is not really a correct term, when it comes to sorptive materials. In materials with moisture storage, liquid condensate hardly appears in the virtual condensation pane. The moisture content increases continuously with increasing RH. The moisture storage function characterizes the correlation between the water content in the building material and the relative humidity of the ambient air. Within the hygroscopic range up to approx. 95 % RH, the water molecules are bound to the inner surface of the porous material. In the moisture range between 95 % and 100 % RH, the pores are increasingly saturated and the liquid water within the open volume of the pores is retained by capillary forces. When the free saturation level of the material is approached or exceeded, weakly bound liquid water may run off. 4

Basics Water retention in fiber insulations For fiber based insulation materials, e.g. mineral wool, there is no clear distinction between free saturation and super saturation. In insulation materials with a very fine fiber mesh, water contents, exceeding the free saturation, may be retained by not by capillary forces but by the flow resistance of the fiber mesh. A simple test method to determine the limit of free saturation in that case is not yet available. Therefore, as a simplification, the water absorption according to EN 12087 can be used in these cases as free saturation value. Here, the material is stored under water for 28 days and then set on an inclined surface for 10 ± 0.5 min to let the free water run off and the remaining amount of water is weighed. The water content, determined by that method, lays in-between the classical free saturation and the maximum saturation. However, it seems to be an reasonable approach, as the test represents the amount of water which remains in the material while resisting gravity. 5

Basics - Moisture storage function (mineral wool) If a material in den WUFI -database has measured values for the moisture storage function (sorption isotherm) as well as for the free water saturation, they are tabulated and the plot of the moisture storage function is dark green. If the moisture storage function is light green, the so called internal moisture storage function is used. This function is applied even for non sportive materials and isn t based on specific measured values, but on the porosity of the material (see WUFI online help). Internal moisture storage function (light green) -> no measured free saturation Measured moisture storage function (dark green) -> measured free saturation 6

Basics - Collection of critical values for the amount of condensate DIN EN ISO 13788: 2012 (steady state calculation) Maximum amount of condensate in order to prevent a run off of liquid water from watertight surfaces. DIN 4108-3: 2014 (steady state calculation) Maximum amount of condensate per surface (general) Maximum amount of condensate in order to prevent a run off of liquid water from watertight surfaces. BSI 5250: 2011 (Britisch Standard) Fine mist, no dropping of liquid water Drop formation and draining on vertical surfaces < 200 g/m² < 1000 g/m² < 500 g/m² < 30 g/m² < 30 50 g/m Drop formation and draining on inclined surfaces Prevention of the formation of big drops on horizontal surfaces which can drainage 51 250 g/m² 70 g/m² inclination of 45 150 g/m² inclination of 23 250 g/m² 7

Basics - Collection of critical values for the amount of condensate Dissertation Arnold Janssens; Reliable control of interstitial condensation in lightweight roof systems; 1998 Maximum amount of condensate in order to prevent drainage of liquid water < 100 g/m² Inclination > 20 8

Recommended Evaluation of Condensation Water in WUFI Two different evaluation criteria for materials with and without measured moisture storage function and water absorption according to EN 12087 2. Material data with internal moisture storage function (no measured water absorption ) 1. Material with moisture storage function including measured water absorption as final value. No specific limit value available. For evaluation, the maximum dew water amount from one of the different standards can be used. The internal moisture storage function artificially increases the moisture content level especially at lower RH values. Therefore we recommend to define the whole water content in the exterior part of the insulation material as dew water and compare this amount with the threshold. Evaluation of the water content of the exterior 1 cm thick sub layer of the mineral fiber insulation related to the surface area (kg/m²). The measured water absorption (kg/m³) can be used as limit value! However, the lab test lasts only a few minutes, while condensation can occur in winter over several weeks. For safety reasons, this high water content should only be accepted directly at the critical condensation pane. Evaluation of the water content in the exterior 1 mm thick sub layer of the mineral fiber insulation (kg/m³). 9

How to proceed in WUFI In case of hydrophobic fiber insulation materials, the free saturation is measured alike the water absorption in accordance to the EN 12087 10

How to proceed in WUFI Evaluation of the amount of condensate in mineral wool: 1. Identification of the condensation pane in WUFI motion (relative Humidity reaches 100 %) 2. Separation of a: A) 1 cm thick layer in the dew point level if the internal moisture storage function is used. Suggestion for evaluation: Limit of 200 g/m² according to EN 13788 (further values in the tables under Basics) B) 1 mm thick layer if the material has a measured moisture storage function 3. Calculation and evaluation of the water content within this layer and comparison with the critical values from the standards. 11

Example Flat roof 12

Example Flat roof Boundary condition: Location: Holzkirchen Orientation: North Inclination: 5 Short wave absorptivity α: 0,8 (dark) Long wave emissivity ε: 0,9 Roofing membrane: s d = 300 m (surface s d -value) Rain absorption: no / (switched off) Indoor climate according to EN 15026 with high moisture load Initial condition: Start of the evaluation: 20 C and 80 % r.f. 1st of October 13

Convective moisture source flat roof The German wood protection standard DIN 68800-2 requires the consideration of an additional moisture source due to air infiltration and proposes two possibilities to consider: 1. A transient model for the air infiltration for hygrothermal simulations (like IBP infiltration model which is directly implemented in WUFI ) 2. A fixed amount of additional condensation for the steady state Glaser evaluations steady state Additional drying potential required 100 or 250 g/m²a per Winter transient Calculation of the hourly condensation by a transient model (like Zirkelbach et.al., 2009) Zirkelbach, et.al.; 2009: Modelling the effect of air leakage in hygrothermal envelope simulation 14

Convective moisture source flat roof For the transient hygrothermal simulation the infiltration model is used for this example. The boundary conditions are: For the following example Heated & connected indoor air space height: 5 m Air tightness level: B (q50 = 3 m³/m²h) Source area: outer 5 mm of the insulation 15

Example Flat roof RH 100% rel. Humidity reaches 100% rise of the water content 17

Example A unknown water absorption level separate a 1 cm thick layer at the condensation pane Internal moisture storage function 18

Example A unknown water absorption level Maximum water content (dynamic equilibrium) = 42 kg/m³ 42 0,01 0,420 420 ³ ² 420 g/m² > 200 g/m² Amount exceeds the limit run off cannot be excluded! 19

Example B measured water absorption level 20

Example B measured water absorption level separate a 1 mm thick layer Measured water absorption level =255 kg/m³ 21

Example B measured water absorption level Maximum water content = 380 kg/m³ 380 ³ ³ Higher than free saturation resp. the amount which can be retained by the fibers ( water absorption ) Threshold exceeded! 22

Example B measured water absorption level Change of vapour retarder 23

Example B measured water absorption level Maximum water content = 253 kg/m³ 253 ³ ³ No exceeding of the water absorption OK no dew water runoff! 24

WUFI How to Assessing condensation problems in hydrophobic mineral fiber