STABILIZATION OF SUBGRADE BY USING FLY ASH RELATED TO ROAD PAVEMENT THICKNESS DESIGN AT JALAN JAYA GAD1NG

Similar documents
MUHAMMAD HAFEEZ BIN HASHIM

An Introduction to Soil Stabilization for Pavements

Study of Soil Cement with Admixture Stabilization for Road Sub-Grade

Soil Stabilization by Using Fly Ash

Road Soil. Curtis F. Berthelot Ph.D., P.Eng. Department of Civil Engineering. Road Soil Introduction

MARQUETTE UNIVERSITY DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING LAB REPORT FORMAT

Soil Stabilization by using Plastic Waste

Influence of Different Materials to Improve the Stabilization of Black Cotton Soil

MECHANICAL STABILIZATION OF A DELTAIC CLAYEY SOIL USING CRUSHED WASTE PERIWINKLE SHELLS.

SOIL STABILISATION USING MARBLE DUST

Stabilization of Expansive Soil with Micro Silica, Lime and Fly Ash for Pavement

Department of Civil Engineering, Vel Tech High Tech Dr.Rangarajan Dr.Sakunthala Engineering College, Avadi, Chennai, Tamil Nadu, India.

A Study on Soil Stabilization of Clay Soil Using Flyash

COHESIONLESS SOIL PROPERTIES IMPROVEMENT USING BENTONITE

Introduction. A soil is an earth concrete. Composition of a soil

Soil Stabilization by Groundnut Pulp and Coconut Pulp

International Journal of Advance Engineering and Research Development. Soil Stabilization Using Terrazyme

Merrill Zwanka Geotechnical Materials Engineer SCDOT Research and Materials Lab February Definitions Sampling and Testing Classification

COMPARISON OF SHEAR STRENGTH PARAMETERS OF BLACK COTTON SOIL WITH EFFECT OF RELATIVE COMPACTION

CHAPTER 1: INTRODUCTION. Road transport is an only means of transport that offers itself to the whole community

Subgrade Preparation. Subgrade Preparation. Subgrade 3/27/2016. Tim Crosby: Grading Superintendent Chris DeJulio: Site Manager

A Study on Stabilization of Subgrade Soil Using Natural Fibers (Coir and Jute)

APPENDIX E COMPACTION CHARACTERISTICS AND EQUIPMENT

An Experimental Study of Soil Stabilization using Marble Dust

[Gupta* et al., 5(7): July, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116

Effect of Admixtures on Strength and Compressibility Characteristics of Different Types of Soils

SUBGRADE IMPROVEMENT OF CLAYEY SOIL WITH THE USE OF GEOTEXTILES

IMPROVEMENT THE ENGINEERING PROPERTIES OF EXPANSIVE SOIL BY USING BAGASSE ASH AND GROUND NUT SHELL ASH

An Experimental Study on Variation of Shear Strength for Layered Soils

Lecture-4. Soil Compaction. Dr. Attaullah Shah

STS Directory Accreditation number: STS 0329

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

STS Directory Accreditation number: STS 0030

Load-Carrying Capacity of Stone Column Encased with Geotextile. Anil Kumar Sahu 1 and Ishan Shankar 2

This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine

Swelling Treatment By Using Sand for Tamia Swelling Soil

Rinu Jose 1, N P Rajamane 2 IJSER

Ground Improvement of Problematic Soft Soils Using Shredded Waste Tyre

Improvement in CBR of Expansive Soil with Jute Fiber Reinforcement

Shear Characteristics of Fly Ash-Granular Soil Mixtures Subjected to Modified Compaction

VARIATION IN BEARING CAPACITY OF CONTAMINATED LATERITE SOIL. Dr R N Khare

Stress-Strain and Strength Behavior of Undrained Organic Soil in Kupondol, Kathmandu

CHAPTER 4 EXPERIMENTAL WORK 4.1 GENERAL

AASHTO M Subsurface Drainage

Stabilization of Clay Subgrade Soils for Pavements Using Ground Granulated Blast Furnace Slag

Subsoil conditions are examined using test borings, provided by soil engineer (geotechnical).

Department of Civil Engineering, OITM/GJU- Hisar (125001), Haryana, India.

Table III.A PHYSICAL PROPERTIES OF CLAYEY SOIL

Stabilization Analysis of Black Cotton Soil by using Groundnut Shell Ash

Paper ID: GE-007. Shear Strength Characteristics of Fiber Reinforced Clay Soil. M. R. Islam 1*, M.A. Hossen 2, M. A.Alam 2, and M. K.

STABILIZATION OF EXPANSIVE SOILS USING FLYASH

Compaction. Compaction purposes and processes. Compaction as a construction process

This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine

Stabilization of Pavement Subgrade Using Fly Ash and Lime

Classification of soils

SECTION PLANTING SOIL for SOIL CELLS. This specification defines material and performance requirements for soils which are to be used

SOIL ENGINEERING (EENV 4300)

Soil Stabilization using Road Building International (RBI) Grade 81

Improvement of Black Cotton Soil Properties Using E-waste

GEOTEXTILE REINFORCED TWO LAYER SOIL SYSTEM WITH KUTTANAD CLAY OVERLAIN BY LATERITE SOIL

Advanced Foundation Engineering. Introduction

Aggregates Table 1 No. Title Options

SOIL DATA: Avondale. in Allen, TX. This information was taken from NRCS web soil survey of Collin County, Texas.

Consolidation Stress Effect On Strength Of Lime Stabilized Soil

Advanced Foundation Engineering. Soil Exploration

DESIGN OF FLEXIBLE PAVEMENT BY USING CBR TEST FOR SOAKED AND UNSOAKED SOILS

SECTION STRUCTURAL SOIL

EAT 212 SOIL MECHANICS

Effect of Fertilizers on Soil Strength

ATTACHMENT A BIORETENTION SOIL SPECIFICATION

Black Cotton Soil Stabilization Using Eggshell Powder and Lime

EFFECT OF COMPACTION ON THE UNSATURATED SHEAR STRENGTH OF A COMPACTED TILL

SOIL STABILIZATION USING NATURAL FIBER COIR

Performance of Geosynthetics in the Filtration of High Water Content Waste Material

Introduction to Compaction

Soil Texture and Structure. Chris Thoreau February 24, 2012

A STUDY OF EXPANSIVE SOIL USING BETAMCHERLA SLAB POLISH WASTE

A LABORATORY STUDY ON USE OF BITUMEN EMULSION IN BLACK SOIL

Behaviour of Black Cotton Soil Reinforced with Sisal Fibre

Investigation on Engineering Properties of Soil-Mixtures Comprising of Expansive Soils and a Cohesive Non-Swelling Soil

317)

REFERENCE. Alhasan, M, 2008 Potentials of Rice Husk Ash for Soil Stabilization, Assumption University Journal of Technology

Effect of Sugarcane Industrial Solid Waste on B. C. Soil and Lateritic Soil

CBR Values of Soil Mixed with Fly Ash and Lime

UNIFIED FACILITIES GUIDE SPECIFICATIONS

TABLE OF CONTENTS CHAPTER TITLE PAGE DECLARATION DEDICATION ACKNOWLEDGEMENTS ABSTRACT ABSTRAK

Soil characteristics that influence nitrogen and water management

Influence of Flyash on expansive Soils

About Soil Compaction

Special Assignment for Wednesday: Watch video on soil texture analysis

Full Scale Model Test of Soil Reinforcement on Soft Soil Deposition with Inclined Timber Pile

PERFORMANCE OF GEOSYNTHETICS IN THE FILTRATION OF HIGH WATER CONTENT WASTE MATERIAL

Soil aggregates-significance-soil consistency-soil crusting

YCEF WEEKLY TECHNICAL INTERACTIVE SESSION

HORT 102: Soil Properties. Cultivated Plants: Lecture 15. [Teresa Koenig] Slide #: 1 Slide Title: Intro Information Slide

Gary Person, Foundation Engineer Geotechnical Engineering Section

IGC. 50 th. 50 th INDIAN GEOTECHNICAL CONFERENCE IMPROVEMENT IN LOAD BEARING CHARACTERISTICS OF RED MUD REINFORCED WITH SINGLE GEOGRID LAYER

Soil Mechanics Prof. B.V.S. Viswanadham Department of Civil Engineering Indian Institute of Technology, Bombay Lecture - 11 Compaction of Soils - 1

Soil Properties and Plant Survival

DIRT! APES Laboratory Activity

Transcription:

STABILIZATION OF SUBGRADE BY USING FLY ASH RELATED TO ROAD PAVEMENT THICKNESS DESIGN AT JALAN JAYA GAD1NG MOHD ASHRAF BIN MOHD 1USSIN A reported submitted in partial fulfillment of the requirements for the award of the degree of Bachelor of Clvii Engineering Faculty of Civil Engineering & Earth Resources Universiti Malaysia Pahang DECEMBER 2010

V ABSTRACT This project aims to study the effectiveness of adding fly ash by percentage to the subgrade with increasing the California Bearing Ratio (CBR) value. The fly ash will be added to the plain soil (subgrade) by using 4% and 8% fly ash and tested by following ASSHTO as guidance steps. California Bearing Ratio (CBR) is a commonly used directly as to assess the stiffness modulus and shear strength of subgrade in pavement design work. If the CBR value is increasing by adding the fly ash to the soil s it's shown its effectiveness in increasing soil strength and vice versa Overall, when California Bearing Ratio (CBR) value increases, the thickness of pavement design can be reduced and subsequently the road construction of the affected road section will be more economically.

A TABLE OF CONTENTS CHAPTER TITLE PAGE DECLARATION DEDICATION ACKNOWLEDGEMENTS ABSTRACT TABLE OF CONTENT LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS LIST OF APPENDICES iv v vi ix x xii xiii 1 INTRODUCTION 1.1 INTRODUCTION 1 1.2 Problem Statement 3 1.3 Objectives Of The Study 5 1.4 Scope Of Study 5

vii 2 LITERATURE REVIEW 2.1 Introduction 7 2.1.1 Soil properties 7 2.1.2 Additives 9 2.1.3 Fly Ash 9 2.1.4 Stabilization 11 2.1.5 Modification 11 2.1.6 Mechanical Stabilization 11 2.1.7 Additive Stabilization 12 2.2 Soil classification 12 2.3 Soil Engineering Properties 13 2.3.1 Atterberg Limits 13 2.3.2 Moisture Content 15 2.3.3 The Liquid Limit 16 2.3.4 The Plastic Limit 16 2.4 Soil Consistency 17 2.5 Soil Strength 18 3 RESEARCH METHODOLOGY 3.1 General 21 3.2 Flow Chart 22 3.3 Summary for Material & Equipment 23 3.4 Laboratory Test 24 3.4.1 Moisture Content 25 3.4.2 The Liquid Limit of Soil 26 3.4.1" The Plastic Limit of Soil 28 3.4.4 Particle Size Analysis 30 3.4.5 Standard Proctor Test 32 3.4.6 The California Bearing Ratio (CBR) 33

VIII 4 RESULT AND ANALYSIS 4.1 Introduction 35 4.2 Laboratory test results 36 44241 Moisture content 36 4.2.2 Particle size analysis 36 4.23. Atterberg limit 4.2.3.1 Liquid limit 41 4232 Plastic limit 42 4.2.3.3 Plastic Index 43 4.2,4 Standard proctor test 44 4.2.5 California bearing ratio (CBR) 47 4.3 Summary of Pavement Design 54 4.4 Costing of Thickness Design 56 5 CONCLUSION AND RECOMMENDATIONS 5.1 Conclusion 57 5.2 Recommendations 58 REFERENCES Appendices Ant Q-87.

ix LIST OF TABLES TABLE NO TITLE PAGE 3.1 Material and equipment for soil test 23 4.1 Sieve analysis data 37 4.2 classification of soil sample by AASHTO 39 4.3 Liquid Limit data 41 4.4 Plastic limit data 42 4.5 Penetration value of original sample 48 4.6 Value of CDR for original sample 48 4.7 Penetration value of 4% fly ash 50 4.8 Value of CDR for 4% fly ash 50 4.9 Penetration value of 8% fly ash 51 4.10 Value of CDR for 8% fly ash 52 4.11 Thickness layers each sample 55 4.12 Costing for 1km soil sample 56

x LIST OF FIGURES FIGURE NO TITLE PAGE 1A The damage of pavement 4 1.2 Site location 6 2.1 Usage of fly ash at the construction site 10 2.2 Atterberg Limit and soil volume relationship 14 2,3 The consistency state of soil 17 2.4 The soil core being stressed by compressive, tensile and 18 shearing 2.5 Graph for soil strength index 20 341 Flow chart of methodology 22 3.2 The sample that need be inserted in the oven 25 3.3 Sample that be penetrated by cone penetrometer. 27 3.4 The samples that have been rolled. 29 3.5 The vibrator sieve shaker 31 3.6 Mould for CBR test 34 4.1 Grain size distribution curve 38 4.2 The grain size distribution curve of fly ash 40 43 Penetration of cone vsi moisture content 43 4.4 Compaction curve of the soils (original sample) 45 4.5 Compaction curve of the soils (4% fly ash) 46 4.6: Compaction curve of the soils (8% fly ash) 46 4.7 Graph Lad VS Penetration for original sample 49

xi 4.8 Graph Load VS Penetration for 4% additive fly ash 51 4.9 Graph Load VS Penetration for 8% additive fly ash 53 4.10 Cross section of flexible pavement 54

xli LIST OF SYMBOLS AND ABBREVIATIONS AASHTO - APT - ASTM - CBR - CD - CU - CU' - American Association of State Highway and Transportation Officials Average daily traffic American Society for Testing and Materials California Bearing Ratio Consolidated drained Consolidated undrained Consolidated undrained with pore water pressure measurements ef equivalence factor ESAL - Total Equivalent Standard Axle Load JKR - Jabatan Kerja }ya LL - Liquid limit n - Design period (years) - Optimum moisture content Pc - Percentage of commercial vehicles P1 - Plastic index PL - Plastic limit r - Estimate the rate of annual traffic growth SSA - Specific surface area TA - UU - Equivalent thickness Unconsolidated undrained V - The total number of commercial vehicles V. - The initial yearly commercial vehicle traffic Yd.max - Maximum dry density

xli' LIST OF APPENDICES APPENDIX TITLE PAGE A Data for moisture content 63 BData for Moisture correction Factor 65 C Data for Compaction Test 66 D Data for California Bearing Ratio (CBR) test 68 E Data for Calculation thickness design 74

CHAPTER 1 INTRODUCTION 1.1 Background of Study Fly ash is a by-product of the pulverized coal combustion process usually associated with electric power generating plants. Fly ash is a fine grained dust and is primarily composed of silica, alumina and various oxides and alkalies. It is pozzolanic in nature and can react with hydrated lime to produces cementitious products. (Braja M.Das) A certain type of fly ash is obtained from the burning of coal preliminary from the western United States to as "Type C" fly ash. It contains a fairly large proportion of free lime that, with the addition of water, will react with other fly ash compounds to form cementatious products. This may eliminate the need to add manufactured lime. (Braja M.Das)

2 The soil stabilization is the alteration of soil properties to improve the engineering performance of soils. The properties most often altered are density, water content, plasticity and strength. Modification of soil properties is the temporary enhancement of sub grade stability to expedite construction. Fly ash can be an binder for stabilizing soils for highway bases. However, limited information exists on the reuse of high carbon off-spec fly ash in construction of highway pavements. This is particularly important when high carbon fly ash is non-cementitious and calcium-rich activators are required to generate pozzolanic reactions. Thus, there is a need to evaluate the strength and stiffness of base layers stabilized with high carbon fly ash. Fly ash can be used to stabilize bases or subgrades, to stabilize backfill to reduce lateral earth pressures and to stabilize embankments to improve slope stability. Fly ash has been used successfully in many projects to improve the strength characteristics of soils. Typical stabilized soil depths are 15 to 46 centimeters (6 to 18 inches). The primary reason fly ash is used in soil stabilization applications is to improve the compressive and shearing strength of soils. For fly ash stabilization, the selection of a mixture of soil, fly ash, and water usually depends on which one would provide the intended geotechnical properties on a short-term basis. The long-term performance of fly ash stabilized soils in the context of field environments after exposure to successive different weather cycles, such as wet dry or freeze thaw cycles is often ignored. The effect of weathering cycles on natural soils and soils stabilized with other cementitious materials, such as lime and/or cement, suggests that the weathering action might have a pronounced effect on the long-term performance of fly ash stabilized soils.

3 1.2 Problem Statement In Malaysia, road is an important form of communication that connects to a destination to other destination. In this study case, I referred at Jaya Gading road because the road condition was very bad and not satisfactory. Because of that, we can see many accidents occur at Jaya Gading road. Added the roads at Jaya Gading always have problems such as holes and damaged on the roads and cracking pavement. Poor maintenance of road such as potholes, water ponding debris on the road edges, drains are not properly maintained, poor construction, wrong design and poor road surface. Others, the consolidation of the soil also not good and have settlement at certain soil, That's all factors can cause drivers to make surprise manoeuvres and increase the risk of accident. The poor condition of road could probably cause by the unstable sub grade, The engineering properties of sub grade need to be taken into consideration as it influence the ability of sub grade to resist force from the upper layer. The bad condition of road at Jaya Gading was the result from poor construction of the road. In site investigation of road, the most important thing is in determination of the engineering properties of soil. In this case study, the contractor need to confirm the soil classification in order to used the parameter for design. Poor classification could be the problem of the bad condition of road. Commonly, the type of soil at Jaya Gading is soft soil. if the soil under the surface layer is not good, then the upper layer will be broken down. in any road in the world, especially at Malaysia (Jaya Gading), the sub grade layer is the critical part we must obtain their strength so that there are not have any problems to the users.

4 In order to avoid the surfacing course from damage easily, a good compaction for obtaining optimum moisture content (OMC) should be done. OMC of a soil would influence the percentage value of California Bearing Ratio (CBR). For this case study, it would come from a lower percentage value of CBR. In other words, we must make sure that the soil under the road especially the sub grade must be strong and available to use and if the soil is not flul fill of criteria of the JKR road, we must upgrade the soil with some method to make sure the soil is safe to be use as road base. F -.7... -. - * '.. -. ---. -- -.,...'.. I - t, 7., Figure 1.1: the damage of pavement

5 1.3 Objectives of Study The objectives of this study are; i. To identify the engineering properties of soil ii. To know the relationship between percentage fly ash and CBR value. iii. To determine the thickness and costing of the pavement. 1.4 Scope Of Study This study is done based on the specific scope in order to ensure the precision of the study area. Besides, it is also done in order to achieve the objective of the study. Therefore,, its limit has been specific to specific scopes which are: i. Site Location The location of the project site is limited for district of Jaya (lading roads Several sites which involved in soil embankment in Kuantan are being visited. ii. Scope of work In this project, sample are taken from the Jaya (lading site and tested at the laboratory in order to determine the engineering properties of the soil samples, laboratory testing such as particle size distribution, moisture content and atterberg limit will assessing the

characteristic of the soil samples. Others laboratory test such as compaction and CBR are important in determined the thickness of pavement. Figure 1.2: Site location

CHAPTER 2 LITERATURE REVIEW 2.1 INTRODUCTION 2.1.1 Soil Properties Naturally occurring materials that are used for the construction of all except the surface layers of pavements (concrete and asphalt) and that are subject to classification test (ASTM D 2487) to provide a general concept of their engineering characteristics. (Gordon R Sullivan 1994) People describe soil types in all kind of ways such as heavy, light, clay and loam, poor or good. Soil scientist describes soil type by how much sand, silt and clay are Present. This is called texture. It is possible to change the texture by adding different

8 things. Changing texture can help in providing the right condition needed for plant growth. Sand is the largest particle in the soil. When you rub it, it feels rough. This is because it has sharp edges. Sand doesn't hold many nutrients. Silts are soil particle whose size is between sand and clay. Silt feels smooth and powdery. When wet, it feels smooth but not sticky. Clay is the smallest of particles. Clay is smooth when dry and sticky when wet. Soils high in clay content are called heavy soils. Clay also holds a lot of nutrients but doesn't let air and water through it well. Particle size has a lot to do with soils drainage and nutrients holding capacity. To better understand how this big three soil, we can imagine that if a particle of sand were the size of basketball, then silt would be the size of a baseball, and clay would be the size of a golf ball. Line them up, and we can see how these particle compare in size. Construction of roadways over soft subgrade is one of the most common problems for highway construction in many parts of the world as well as in our country, Malaysia. The usual approach to soft subgrade stabilization is to remove the soft soil, and replace it with a stronger material of crushed rock. The high cost of replacement has caused highway agencies to evaluate alternative methods of highway construction on soft subgrade. One approach is to use fly ash to stabilize the soft sugared. The strength values of the soil fly ash mixtures were evaluated to characterize the performance of stabilized soil

WO as a road subbase. Unconfined compression strength and California bearing ratio (CBR) tests were performed to determine the strength properties of the soil fly ash mixtures and the optimum mixture contents for construction. 2.1.2 Additives Manufactured commercial products that, when added to the soil in the proper quantities, improve some engineering characteristic, and plasticity (Gordon R. Sullivian, 1994). Additives addressed in this manual are limited and only focus on the fly ash. 213 Fly Ash Fly ash is one of the most plentiful and versatile industrial by-products. It is generated in large quantities as a by-product of burning coal at electric power plants; Class C fly ash is usually recycled as an engineering material to take advantage of its pozzolanic characteristics. This type of fly ash provides the opportunity for applications where other activators would not be required. It offers more economical alternatives for a wide range of soil stabilization applications. The potential for using fly ash in soil stabilization has increased significantly in Malaysia due to increased availability and the introduction of new environmental regulations that encourage the use of fly ash in geotechnical

10 applications when it is environmentally safe. Results of various investigations showed that soil stabilization with Class C fly ash without any other activator is encouraging. The improved engineering properties of fly ash stabilized soil are also reported (Edil et al., 2000 1 2002; Senol et al 2003; Turner, 1997) Figure 2.1: usage of fly ash at the construction site Fly ash consists primarily of oxides of silicon, aluminum iron and calcium. Magnesium, potassium, sodium, titanium, and sulfur are also present to a lesser degree. When used as a mineral admixture in concrete, fly ash is classified as either Class C or Class F ash based on its chemical compositions Fineness of fly ash is most closely related to the operating condition of the coal crushers and the grind ability of the coal itself, A coarser gradation can result in a less reactive ash and could contain higher carbon contents. Limits on fineness are addressed by ASTM and state transportation department specifications, -

11 2.1.4 Stabilization Stabilization is the process of blending and mixing with a soil to improve certain properties of the soil. The process may include the blending of soil to achieve a desired gradation or the mixing of commercially available additives that may alter the gradation, texture or plasticity, or act as a binder for cementation of the soil. (Gordon R. Sullivan, 1994) 2.1.5 Modification Modification refers to the stabilization process that results in improvement in some properties of the soil but thus not by design result in a significant increase in soil and durability (William E Wildman, 1981) 21.6 Mechanical Stabilization Mechanical stabilization is accomplished by mixing or blending soil of two or more gradations to obtain a material meeting the required specification. The soil blending may take place at the construction site, a central plant, or a borrow area. The blended material is then spread and compacted to required densities by the conventional means. (Gordon R. Sullivan, 1994)

12 2.1.7 Additive Stabilization Additive stabilization is achieved by the addition of proper percentage of cement, lime, fly ash, bitumen, or combination of these materials to the soil. The selection of type and determination of the percentage of additive to be used is depending upon the soil classification and the degree of improvement in soil quality desired (Gordon R. Sullivan, 1994). Generally, smaller amounts of additives are required when it is simply desired to modify soil properties such as gradation, workability, and plasticity. When it is desired to improve the strength and durability significantly, larger quantities of additives are used. After the additive has been mixed with the soil, spreading and compaction are achieved by conventional means. 2.2 Soil Classification Soil classification is a way of systematically categorizing soils according to their probable engineering characteristics. The classification of a soil is based on its particle distribution and, if the soil isfine-grained, on its plasticity (LL an P1). The most widely used classification systems used in road engineering are the unified soil classification system, AASHTO classification and British Standard Classification. Soil classification should only be regarded as a means of obtaining a general idea of soil behavior and it should never be used as a substitute for detailed investigation of soil properties. (Richard Robinson & Bent Thagesen, 2004)

13 2.3 Soil Engineering Properties To have an understanding of soil action, an engineer must be familiar with certain basic soil properties. We are all familiar with the basic properties of other engineering materials, such as steel, wood, and concrete. A soil engineer must have familiar knowledge relative to soil (Paul H. Wright/Karen K. Dixon, 2004). 2.3.1 Atterberg Limits The "liquid limit" may be defined as the minimum moisture content at which the soil will flow under the application of a very small shear force. At this moisture content the soil is assumed to behave practically as a liquid. The "plasticity limit" may be defined in general term as the minimum moisture content at which the soil remains in a plastic condition. This lower limit of plasticity is rather arbitrarily defined, and the plastic limit may be further describe as the lowest moisture content at which the soil can be rolled into a thread of 1/8 in. (3.2mm) diameter without crumbling. (Paul h. Wright/Karen k. Dixon, 2004) The "plastic index" (P1) of a soil is defined as the numerical difference between the liquid and plastic limits. It thus indicates the range of moisture content over which the soil is in a plastic condition. Sandy soil and silts, particularly those of the rock-flour type, have characteristically low PIs, while clay soil shows high value of the plasticity index.

14 Generally speaking, soils that are highly plastic as indicated by a high value of the plasticity index are also highly. compressible. It is also evident that the plastic index is measure of cohesiveness, with a high value of the P1 indicating a high degree of cohesion; Soils that do not have a plastic limits such as cohesionless sands are reported as being non plastic (NP). (Paul h, wright & Karen k. Dixon 2004) volume I WaterContent Figure 2.2: Atterberg Limit and soil volume relationship