Insight. No Sweat. Condensation on ductwork and boots in hothumid and mixed-humid climates. By Joseph W. Lstiburek, Ph.D., P.Eng.

Similar documents
Insight. Venting Vapor. By Joseph W. Lstiburek, Ph.D., P.Eng., Fellow ASHRAE

Insight. Cool Hand Luke Meets Attics. What we ve got here is failure to communicate By Joseph W. Lstiburek, Ph.D., P.Eng.

Insight Duct Dynasty 1

Insight. Just Right and Airtight. By Joseph W. Lstiburek, Ph.D., P.Eng., Fellow ASHRAE

Why Are Attics Insulated With Open-Cell Spray Foam So Damp? Martin Holladay Editor, Green Building Advisor

Just Right & Airtight

Insight. How Do Buildings Stack Up? By Joseph W. Lstiburek, Ph.D., P.Eng., Fellow ASHRAE

2006 Building Science Press All rights of reproduction in any form reserved.

Unvented Roof Assemblies for All Climates by Chris Schumacher

Attic ventilation options can be confusing to roofing contractors

Overview of Presentation. Airflow Control: Why. Air Barriers and Energy

Measurement of Attic Temperatures and Cooling Energy Use in Vented and Sealed Attics in Las Vegas, Nevada

Insulating Unvented Attics With Spray Foam

Unvented Roof Summary Article

EASILY CLEAN YOUR HOUSE WITH AN ORGANIZED CLEANING CADDY + CLEANING TIPS!

WHAT S UNDER YOUR ROOF?

Effect of Moisture on Building Systems!

Moisture-Safe Unvented Wood Roof Systems

Gambrel or Mansard Roofs and Ice damming

Insight. We Need to do it Different This Time. By Joseph W. Lstiburek, Ph.D., P.Eng., Fellow ASHRAE

Ventilation. ASHRAE 62.2 COMPLIANCE How do we get there? Bruce Hagen ND Dept. of Commerce.

Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow. Building Science. Adventures In Building Science. presented by

More Than a Mansion!

The Art of Building Science

DAVID PHILLIPS Life s too short for bad presentations

There are a few tips to follow, and I will definitely go into more detail on them. But, first the TIPS!

TenPlus GUIDES. 10+ Tips For A Magnificent Bathroom Remodel. RemodelCapeCod.com

Basic Building Science insights for Spray Foam, HVAC and Moisture

2006 Building Science Press All rights of reproduction in any form reserved.

Permanent Marker you need a felt tip permanent marker to write on the Mylar bags and the buckets.

Global Design Competition. Global Design Competition

English as a Second Language Podcast ESL Podcast 168 The Home Improvement Store

and Extension Ag & Natural Resources Agent. In recent weeks I ve been periodically talking

Here is my experience and a few things I learned about my metallic epoxy floor install purchased from

Weather: Why do we have weather? Does it serve a purpose?

Basic Hydroponics System

HEART-CENTRED HOME A homeowner is guided by her feelings when designing her new home

Discover Why The Air Inside Your Home Is Killing You Even If You Use Filters Or Purifiers

Why Interior DESIGNERS CHARGE FOR CONSULTATIONS, PRELIMINARY DESIGNS AND sometimes even PRICING. You want $2000 for what?

about your house Attic Venting, Attic Moisture, and Ice Dams Figure 1 Typical attic floor insulations

Combining Old and New Systems in Existing Buildings and Other Retrofit Tales. By Paul Jewett CFAA Technician Number 11

USING INFRARED TECHNOLOGY TO DEFINE ENERGY SAVINGS OPPORTUNITIES. James L. Park Energy Conservation Specialist I-Star Energy Solutions

ECO-CARING FOR FABRICS

BBC LEARNING ENGLISH 6 Minute English Gardening

Decks (Home Depot ) PDF

furnishing happiness Karen Bow picks all the right pieces to make this house a custom fit

BEST PRACTICE FOR THE LOCATION OF THE AIR AND THERMAL BOUNDARIES IN SMALL COMMERCIAL BUILDINGS

Ice Dams: Formations and Fixes

Water in Buildings: Chemical-Free Clean Up & Resotration for Builders & Facility Managers Case Study #2 Duration: 4-6 hours

Radon YOU: What you need to know to protect you and your family

Air Distribution Systems in Conditioned Spaces i.e. Ducts in Unvented Attics

How to Make Your Home Energy And Cost Efficient

Learning English podcasts from the Hellenic American Union. Level: Intermediate Lesson: 13 Title: Balcony Gardening

Airflow Control: Why. Air Barriers & Vapour Barriers. Air Barriers. Airflow Control. Remember. Dr John Straube University of Waterloo

SC430 Front Door Speaker Replacement

WORLD TRADE CENTER TASK FORCE INTERVIEW ASSISTANT CHIEF JOSEPH CALLAN

WHY IS BUILDING SCIENCE IMPORTANT?

The House is a System: Building Science: A New Way

TESTIMONIAL PROPERTY OF ORISON MARKETING NOT FOR DISTRIBUTION

Size of central air conditioner for 1200 square feet

Ventilation in Humid Climates: Data from Field Experiments

Minnesota facility brings a new level of energy efficiency and comfort to assisted living residents

Hi Gary, More solar projectswww.builditsolar.com

Reduce the cost of. doing business.

YOU: What you need to know to protect you and your family

Carpet Recycling Survey Results. May 17, 2011

2011 Dumpster Dive totals

PHASE II Analytical Assessment of Field Data for Sealed Attics in Florida Climate Zones 1 and 2 Predicting Moisture Buildup in Roof Sheathing

Home Cooling Fact Sheet. Stay Cool, Comfortable, and Cut Costs.

PROTECTING FIRE SPRINKLER SYSTEM PIPES FROM FREEZING IN CHAPTER FACILITIES

Understanding Ventilation in Hot Humid Climates by Joseph Lstiburek

What Is Liquid Subcooling?

Redneck Air Conditioner

Learning Places Summer 2016 SITE REPORT #1 Grand Central Terminal: A Look Inside NYC History

What is office landscape? Open Space Planning is Rapidly Gaining New Markets

Q.: I liked our single stream recycling. It was easier and more convenient. This is a step backwards. Why?

TOP DOCTORS PHYSICIANS IN 47 SPECIALTIES THE CITY'S HOTTEST SALONS: OUR READERS' CHOICE WINNERS. A SPOTLIGHT ON SOME OF MUSIC CITY S BEST MDs

By Chris Eckert, President, Sologic A version of this article appeared in the September 2010 issue of Pumps & Systems magazine.

Greater Houston Edition. themetropolitanbuilder.com. Republic Custom Builders: Best of Two Worlds. Republic Custom Builders Houston, Texas

1 von :03

U.S. Environmental Protection Agency, Radon Division Washington, DC

SKS FIELD STRIPPING 101,CORROSIVE AMMO CLEANING,LUBRICATION

Overview. Case Study 2008 Building America Prototype ICI Showcase House. Daytona Beach, Florida. Project Team: ICI Homes, Building Science Corporation

FirstEnergy Program Overview

beautiful & dutiful Written by Gary Thompson Photographer Ed Gohlich Field editor Andrea Caughey

Monty Anderson Construction Group Home Address: 3251 Great Oaks Boulevard Kissimmee, FL Certified: Score: 164

Beaver Creek Nursery NEWSLETTER

PLANNING MAKES PERFECT

HARVESTING RAINWATER IS SPECIALIZED, LUCRATIVE

Home Performance Science

DECORATING + RENOVATION. Oceanfront Oasis. Organic Shapes Take Hold on the California Coast TEXT BY JEFFREY SIMPSON PHOTOGRAPHY BY MARY E.

Joe Konopacki 10/26/2016. Attic & Crawlspace Ventilation. What results from poor ventilation? Attic & Crawlspace Ventilation. Overview Why ventilate?

Located in a heavily wooded area adjacent to the banks of Lake Phalen in Minneapolis, Minnesota, The Shores of Lake Phalen senior living community

Container Gardens. for Performance and Profit. Jenny Hardgrave Simply Flowers, Inc.

Topic 2. ME 414/514 HVAC Systems Overview Topic 2. Equipment. Outline

Duct Leakage, Sealing & Testing

SLAB ON GRADE CONSTRUCTION Meeting the MN Energy Code ( air tightness) for 2017 Energy Design Conference. By Mike D. Wilson Dakota Supply Group

Home Forums Passat of the Month Marketplace About Us. User CP FAQ Members List Calendar New Posts Search Quick Links Log Out

~ from homemaker Tacy Rutherford ~ The HomeMaker s Mentor All Rights Reserved 2010 Lesson design & extra tidbits by Martha Greene

Lowveldspaces 68 LOWVELD LIVING ISSUE 43

Transcription:

Insight Condensation on ductwork and boots in hothumid and mixed-humid climates ceilings. But most of the places where people want to live don t have basements. An edited version of this Insight first appeared in the ASHRAE Journal. By Joseph W. Lstiburek, Ph.D., P.Eng., Fellow ASHRAE We continue to insist on putting ductwork in attics. It is a dumb idea from an energy perspective a couple of HERS penalty points at a minimum - and we continue to see condensation on the ductwork in the summers. We have tried almost everything to get the ductwork inside. We have tried dropped ceilings (Photograph 1 and Photograph 2). We have moved the inside to the roof deck (Photograph 3). We have tried burying the ducts (Photograph 4). Almost nothing has worked. Well, not really. Dropped ceilings have worked. Moving the inside up to the roof deck aka conditioned attics has worked. And burying the ducts has worked. The weasel words to note is the definition of worked. What do we mean by worked. If you mean the physics and performance you would be correct. If you mean cost and convenience and ease you might not be correct. It is not easy to go to dropped ceilings. It is expensive 1 and it is difficult to make the ceiling plane airtight above the dropped ceilings. And it looks like #@% 2. When you have basements you don t need dropped 1 How expensive and how difficult? Back in the day when I thought this approach had a chance we did a bunch of houses in Houston and Dallas and Las Vegas with different big time big name top ten production builders who actually were committed to trying to make it work and found the incremental costs were very similar across the geographic locations and across the production builders between $2,000 and $2,500 per house. This is a huge number. Note that one of the performance targets was airtightness across the ceiling plane as well the enclosure had to be less than 3 ach@50pa. It was way easier to spend $300 to $500 to seal the ductwork with mastic and airseal the building enclosure to get to the 3 ach@50pa. Pretty much everyone at the time was willing to take the 3 to 4 point HERS hit on leaving the ductwork outside because of the cost of locating ductwork in dropped ceilings was so high. 2 Fill in inappropriate expletive. Interior designers and architects beat me up on this all the time. Your dropped ceiling is ruining my beautiful clean lines. Photograph 1: Dropped Ceiling Framing - It is not easy to go to dropped ceilings. It is expensive* and it is difficult to make the ceiling plane airtight above the dropped ceilings. Photograph 2: Dropped Ceiling Look Not everyone likes the look of dropped ceilings. It is not easy to move the inside to the roof deck 3. Actually, it is easy. But it is expensive and that makes it not easy. Let me explain. Spray polyurethane foam makes it easy from a technology, performance and installation perspective. But it is more expensive than going to dropped ceilings. 4 How about insulating above the roof 3 In Texas we call conditioned attics Texas basements 4 About double the cost of going to dropped ceilings. But having said that, spray polyurethane foam provides such a huge performance benefit that it is one of my go to approaches when we have complicated roof geometries aka architects on drugs doing beautiful custom homes in difficult climates like Florida or in ski resorts in Colorado. It is literally not possible to get a high degree of airtightness with any other technology in such situations. And, when we get to retrofitting existing buildings, there really is no other practical option. April 2016 Building Science Corporation 1

deck with rigid insulation? See expensive and add the words not easy and might look like #@%. We were here some time ago (see BSI-063: Over-roofing Don t Do Stupid Things). time ago (see BSI-074: Duct Dynasty). At the time no one quite knew what R-value the ducts needed to be when you buried them. I cleverly avoided the issue back then. When we did it for real I would take a guess and then double the guess. Hey, when your butt is on the line you don t take chances. Well, now we know thanks to some real nice work by the same folks who I thought were crazy the first time I heard about the approach 6. Photograph 3: Conditioned Attic - It is not easy to move the inside to the roof deck. Actually, it is easy. But it is expensive and that makes it not easy. Let me explain. Spray polyurethane foam makes it easy from a technology, performance and installation perspective. But it is more expensive than going to dropped ceilings. Figure 1: Buried Ductwork Concept Ductwork located under attic thermal insulation in traditional vented attic. Through a bunch of laboratory work (Photograph 5 and Photograph 6) and test houses (Photograph 7, Photograph 8 and Photograph 9) and field experience I am convinced we know what works and what does not work. Photograph 4: Burying the Ductwork High-density spray polyurethane foam used to create an R-13 buried duct. The spray polyurethane foam creates a low perm coating to control vapor flow to cold duct surfaces. How about burying the ducts? We are going to spend some time here (Figure 1). I am really coming around to this approach 5. We took a run at this also quite some 5 The folks and CARB and at Home Innovation Research Labs (the new name for the NAHB Research Center) got on to this a lot earlier than me. I thought at first it was a dumb idea. The ducts would sweat even more. They The magic R-values are R-13 and R-8. In hot-humid and mixed-humid climates International Energy Conservation Code (IECC) Climate Zones 1A, 2A, 3A and 4A (Figure 2) if you insulate your ducts to R-13 you can bury them in insulation and not worry about condensation or sweating ducts. Everywhere else if you insulate your ducts to R-8 you can bury them in insulation and not worry about condensation or sweating ducts. This is huge, folks. Huge. persisted and figured it out. Well done. Check out the following link for the research. http://apps1.eere.energy.gov/buildings/publications/pdfs/building_america/c ompact-buried- ducts-hot-humid.pdf 6 CARB and Home Performance Works see previous footnote. April 2016 Building Science Corporation 2

Photograph 5: Buried Duct Laboratory Test Ductboard ductwork test box placed in an environmental chamber in order to determine the condensation performance limits of buried ductwork. Photograph 8: Test House Instrumented Ductwork - Ductwork surface condition instrumentation. Photograph 6: Buried Duct Laboratory Test Continued Loose fill insulation burying the ductboard ductwork test box. Photograph 9: Test House Attic Loose fill insulation burying instrumented ductwork. Photograph 7: Test House One of several standard production houses located in various climate zones used to test buried ductwork configurations. There has to be some kind of catch? Yes. There always is. The ducts have to be airtight really airtight. How airtight? I say less than 5 percent of the rate flow as tested by pressurization to 25 Pascals. And the ductwork insulation has to be less than 1 perm or enclosed in a layer or surface that is less than 1 perm. You need to April 2016 Building Science Corporation 3

keep the vapor in attics from getting to the cold duct surfaces. Where does all this come from? Field experience. High-density spray polyurethane foam works when we spray it over R-6 and R-8 ducts in hot humid and mixed humid climates at a little more than 1-inch thick. But low-density foam does not work. And don t forget about the boots and penetrations. Same requirements as for ducts. has to be tight and the we need to wrap the ductwork with a low perm layer. Oh, and don t forget about the boots and penetrations. Now to get really weird or interesting or wonky or sleazy I love this kind of stuff Let s say, you have sweating ductwork and boots and you are in Fort Lauderdale or Atlanta? Seal up your soffit vents and turn your ridge vent into a vapor diffusion port (Figure 5, Figure 6 and Figure 7). Huh? We were kinda here with Figure 2: International Energy Conservation Code (IECC) Climate Zones - The magic R-values are R-13 and R-8. If you insulate your ducts to R-13 in hot-humid and mixed-humid climates (Climate Zones 1A, 2A, 3A and 4A) you can bury them in insulation and not worry about condensation or sweating ducts. Everywhere else if you insulate your ducts to R-8 you can bury them in insulation and not worry about condensation or sweating ducts. This is huge folks. Huge. So why is this huge? Well, you get to put the ducts inside without having to put the ducts inside. If the code calls for R-38 insulation and you have R-38 insulation over the top of the inner lining of the ductwork your ductwork is now inside. Same goes if the code calls for R-49 insulation and you have R-49 insulation over the top of the inner lining of your ductwork your ductwork is effectively inside. Check out Figure 3 and Figure 4. Say your ductwork is R-8 and if you bury it in insulation with R-30 above the top of the ductwork the arithmetic is pretty obvious. Note that before you all go and declare victory recall the two catches above the ductwork BSI-088: Venting Vapor. In a classic vented attic, moisture is brought into the attic during the summer via air change. Outside air enters at soffit locations and exits up high at ridge vents or upper vent openings. This outside air is the source for the condensation on your attic ductwork. The attic venting is responsible for the sweating ducts. So why vent the attic at all? Oh, boy. We are not going to go all the way there but we will say that a really good reason to vent the attic is to keep the roof from rotting during the winter when the source for attic moisture is the house itself. So how do we keep the roof from rotting during the winter if we do not vent it? April 2016 Building Science Corporation 4

Ah, here is the trick, we remove the moisture from the attic via vapor diffusion rather than air change. Pretty neat eh? I know I mentioned this way back when but this approach of sealing soffit vents and turning upper vents into vapor diffusion ports also prevents the roof from getting wet during hurricanes (there is no roof vent that does not leak rainwater during a hurricane) and it prevents burning embers from entering a vented attic in wildfire regions. All good things. No sweat, eh? 7 7 If you say something is no sweat, you mean that it will not be difficult or cause problems, Cambridge University Press. Figure 3: R-8 Buried Duct (above left) - Say your ductwork is R-8 and if you bury it in insulation with R-30 above the top of the ductwork the arithmetic is pretty obvious. This is equivalent to an R-38 attic with the ductwork located inside. Recall the two catches the ductwork has to be tight and we need to wrap the ductwork with a low perm layer. Oh, and don t forget about the boots and penetrations. Figure 4: R-13 Buried Duct (above right) If your ductwork is R-13 and you bury it in insulation with R- 25 above the top of the ductwork this is equivalent to an R-49 attic with the ductwork located inside. Figure 5: Vented vs Unvented Attic With Vapor Diffusion Port In the classic vented attic air change removes water vapor from the attic. In an unvented attic with a vapor diffusion port water vapor is removed via vapor diffusion rather than air change. Figure 6: Vapor Diffusion Port for Shingles (above left). Any off-the-shelf ridge vent works. The only change is vent opening is covered with a vapor open but airtight layer such as a housewrap with a perm rating higher than 20 perms. Figure 7: Vapor Diffusion Port for Tiles (above right). Works with tiles as well. April 2016 Building Science Corporation 5