The Mitigation of UHI Intensity through an Improved Land-Use Plan in the Urban Central Area: Application to Osaka City, Japan

Similar documents
SQUAMISH 2010 AND BEYOND COMMUNITY VISION

City Planning based on Green Space Development in Major Asian Cities

Landscape planning for a safe city

CHAPTER 7: Transportation, Mobility and Circulation

Safe, Secure and Enjoyable KOSHIGAYA LAKE-TOWN. Location of the Project

THE INNOVATION OF GREEN ROOF TO DADICATE THE BUILDING ENVIRONMENT IN HONG KONG

ANALYSIS ON EFFECTS OF SEOUL METROPOLITAN SUBWAY STATION BY USING GIS AND RS

OYA PROJECT OF SYNCHRONIZED CAVE COMPLEX: UNDERGROUND REVITALIZATION PLAN UTILIZING ABANDONED MINES

Blue-Green Network and Urban Infrastructure Development

1 5 t h I N T E R N A T I O N A L P L A N N I N G H I S T O R Y S O C I E T Y C O N F E R E N C E

OBSERVING THE EXPANSION OF THE BUILT-UP AREAS OF REGIONAL CAPTAIL CITIES IN YANGTZE RIVER DELTA BY SATELLITE IMAGES

Appendix E: Illustrative Green Infrastructure Examples

Building Coverage Ratio at the Eastern Corridor of Jalan Ir. H. Djuanda Bandung

Handout Material. Invitation to Developers for Second Zone, Umekita Area

ACHEIVING COMFORT IN SUBTROPICAL CLIMATES: BUILDING A MICROCLIMATE IN THE GUANGZHOU SCIENCE MUSEUM

Green Cities: An A-to-Z Guide

20 July 2015 A REVIEW OF STUDIES ON THE RELATIONSHIP BETWEEN URBAN MORPHOLOGY AND URBAN CLIMATE TOWARDS BETTER URBAN PLANNING AND DESIGN

The transportation system in a community is an

PLANNING SUPER CITIES ON COMMUNITY BASIS

Development of Induction Heating Device for Corner of Bloom in Continuous Casting machine

A Study on Space Reorganization / Use Strategy for Municipal Renovation - An Example of Yaesu Area at Eastern Side of Tokyo Station

Lesson from Japanese TOD System

CITY CLERK. Parkland Acquisition Strategic Directions Report (All Wards)

Whole City [Gunsan, Korea/ Population: 280,000]

Field trip report. Field trip transport planning, , 2 ECTS, 2017S

Agincourt Mall Planning Framework Review Public Open House #2 Consultation Summary

Integration of Transport and Land-use Planning in Japan: Relevant Findings from Europe

TRANSPORTATION ELEMENT GOALS, OBJECTIVES, AND POLICIES

INTRODUCTION TO TOWN PLANNING

Environmental Activity Nodes

Case Studies of Master Planning for Sustainable Urban Underground Space Utilization

Green Roofs and Stormwater Management Virginia Stovin

1. The EIA System in Japan

The features of our Project

An Evaluation of Land Use Control in Hokkaido, Japan Kayoko Yamamoto

Goals AND Guiding principles

Meetings International

RIGA LATVIA. KEY FEATURES OF THE CITY Demographic Facts. Urban Figures. Heritage. EXISTING GOVERNANCE MECHANISMS Development and Management Plans

8.0 Design and Form of Development 43/

Connecting Nine Buildings in Central Jakarta Together with the MRT. Mulyadi Janto, Director, PT Farpoint Prima

L I V I N G U P OSU MARKET NAGOYA - JAPAN LUCA MARIA FRANCESCO FABRIS NINA FUNAHASHI FACOLTA` DI ARCHITTETURA E` SOCIETA` LAUREA MAGISTRALE 2010/2011

CFD Analysis of Fire Characteristics on Subway Junction Station

Green Infrastructure. by Karen Engel, NYS DEC. NYS Department of Environmental Conservation

HYBRID GAS HEAT PUMP WATER HEATER WITH THERMAL EFFICIENCY 120% 23rd World Gas Conference, Amsterdam Main Author. Atsuya Tajima Japan

COUNTERACTIONS FOR URBAN HEAT ISLAND IN REGIONAL AUTONOMIES: ACTIVITIES IN COUNCILS OF MOE, JAPAN

Manchester. Vision for Manchester

TOD Project Practices in Japan

Measurement and Estimation of Evapotranspiration from Urban Green Spaces in New York City

A CONCEPTUAL PROPOSAL BY THE UMDLOTI FORUM Representing the Umdloti Ratepayers and Residents Association and the emdloti UIP

Sustainable Urban Open Green Spaces: Opportunities and Challenges

12600 S Existing Conditions

2014/0590 Reg Date 26/06/2014 Chobham

Kawasaki centrifugal chiller using water as a refrigerant. Sep 26 th 2017 Kawasaki Heavy Industries, Ltd. Machinery Division Hayato Sakamoto

4 Sustainability and Growth Management

Danvers High Street I-1 District Study

Town Center (part of the Comprehensive Plan)

Making Transit Oriented Development Work For Boonton, NJ

Energy Efficient Strategies for Urban Transportation Planning

Dogpatch/22nd Street Greening

ASSESSING PEOPLE PERCEPTION OF SPACIOUS QUALITY INDICATORS IN OPEN SPACES.

FORMER CANADIAN FORCES BASE (CFB) ROCKCLIFFE SECONDARY PLAN. Official Plan Amendment XX to the Official Plan for the City of Ottawa

GAMMAGE SQUARE - RECOMMENDATIONS

Orientalmotor Thermal Management

Greater Langley: NEW BUILDINGS

KEYWORDS: air temperatures, urban climate map, building Density, vegetation

Title: South Britannia Community Centre Tobi Fenton

GIS-Based Urban Elements Study and Its Rooftop Greenery Potential in NUS Campus

ECOLOGICAL ASSESSMENT OF THE URBAN LANDSCAPES OF MOGILEV CITY. PARTICULARITIES OF THEIR FORMING AND ANTHROPOGENIC TRANSFORMATION. Viachaslau Filimonau

Architecture, Tianjin University Lecturer of Landscape Architecture, School of Architecture, Tianjin University

KHARTOUM GARDEN CITY. Dietmar Kamphans

Evaluation on Residential Energy Efficiency Programs Using the City-Scale End-Use Simulation Model

Circular L8/08 2 September Water Services Investment and Rural Water Programmes Protection of Natural Heritage and National Monuments

17.11 Establishment of Land Use Districts

Page 1 of 19 URBAN DESIGN FRAMEWORK FOR BOLTON STREET WATERFORD

Air Ventilation Assessment (AVA) System for High Density Planning and Design

Bio Gro Green Roof, Wall & Facade Substrates

Downtown Dubuque...it s a great time.

Enhancing Ecosystems and Biodiversity. Paul Nolan, Green Infrastructure: Planning for the Liverpool City Region

March 21, 2018 ALCA Meeting. March 21, 2018

Case Study of Integrated Housing and Railway Development (Kohoku New Town and Yokohama City Metro Development)

PORT UNION VILLAGE COMMUNITY SECONDARY PLAN

Best Practices Appendix: Waterfront Communities

CHONGMING ISLAND SHANGHAI CENTRAL CITY

Working Group Meeting

WATERFRONT PLACE CENTRAL MIXED USE REDEVELOPMENT PROJECT

Environment at crossroads: smart approaches for a sustainable future, Bucharest, November 12-15, 2015

STUDY OF URBAN SMART GROWTH APPROACH BASED ON THE PRINCIPLES AND GUIDELINES FOR NEW PLANNING

SECTION ONE North East Industrial Zone Design Guide Palmerston North City Council June 2004

Chairman and Members of the Planning and Development Committee. Thomas S. Mokrzycki, Commissioner of Planning and Building

Final Master Plan and Development Control Regulations

Keyport. Vision for Keyport

Site ref: AS06 Site Name or Address: Murreys Court, Agates Lane

PhD Candidate, Université Paris-Est (France) and Institut d Urbanisme de l ALBA - Univerité de Balamand (Lebanon) 2

GUIDELINES FOR ECOLOGICAL PERFORMANCE

Hong Kong New Town Sustainability Analysis from the Perspective of Low-Carbon Eco-City Taking Tseung Kwan O New Town as an Example

Chapter 2: OUTLINE PLANNING APPLICATION PROPOSALS. A New Garden Neighbourhood Matford Barton 17

Welcome! to Keller Town Hall

Integrated Urban Development. April Reflections from the NZPI Study Tour of Portland, Seattle and Vancouver

Strategic Environmental Assessment Screening Report. Dublin Port Masterplan Review 2017

Evolution of Japan s National Development Plan

Transcription:

Academic Article Journal of Heat Island Institute International Vol.7-2 (2012) The Mitigation of UHI Intensity through an Improved Land-Use Plan in the Urban Central Area: Application to Osaka City, Japan Masakazu Moriyama* 1 Takahiro Tanaka* 2 * 1 Kobe University, Kobe, Japan * 2 Hiroshima University, Hiroshima, Japan Corresponding author email: moriyama@kobe-u.ac.jp ABSTRACT Osaka City is the central city of the Osaka region. The authors and other researchers have promoted urban climate research projects in Osaka with the local government. Based on the results of such studies undertaken using observations and simulations, we outline ways to mitigate urban heat island (UHI) effects and solve other related environmental problems. Specifically, we propose the Compact Eco-City model for Osaka City. At present, Osaka City has less than 10% green space; this model would increase that to 30% green space. The model also includes a green-space arrangement that improves ventilation. The outline for a Compact Eco-City is described in this paper. Introduction Table 1 illustrates the concept of countermeasures to the urban heat island (UHI). The actions proposed as UHI countermeasures are as follows: 1. Change the land cover/surface properties 2. Reduce anthropogenic heat 3. Make use of the wind caused by local wind circulation; sea breeze In essence, the UHI phenomenon refers to the air-temperature boundary layer over a city. It is important to consider the scale of the horizontal space over a city when designing countermeasures for UHIs. Generally, UHI intensity depends on city size. As shown in Figure 1, the following four methods can reduce the intensity of the boundary layer over the city: Table 1. Concept of countermeasures to UHIs (1) measures viewpoint based on scale Urban Temp. Boundary Layer Regional scale 1:25000 Environmental Design of Outside Space District scale 1:2500 Change of Land Cover (Especially, Green) Green Area, Roof Garden, Cool Roof (High Reflection), Keeping Water Pave., etc. Introduce Large Green Area, Green Belt for Dividing Visual and Thermal Design for Health, Comfort Prevention of Thermal Storage by Road Surface Reduction of Anthropogenic Heat (Buildings, Cars) Energy Saving Transportation District Heating and Cooling System Using Natural Energy Heat Release Method from Buildings (latent heat) and Cars, and its Location and Place Wind Flow - Good Ventilation (Urban Form) Reduction of UBL by Local Wind such as Sea Breeze, Cold Air Drainage Air Exchange between Upper Air and Earth Surface Ventilation and Air Exchange by Form of Town, Arrangement of Buildings, Water Front, Open Spaces, Direction of Streets.. - 65 -

1. Reduction of UHI intensity by means of creating green spaces, cool roofs, and cool pavements 2. Division of the UHI boundary layer by means of green belts or water surfaces (e.g., rivers, lakes) 3. Elimination of the UHI phenomenon through a combination of high-rise buildings and the natural earth surface at ground level 4. Reduction of the UHI phenomenon by means of the wind caused by the local wind circulation system On the urban scale, the countermeasure plan should be derived in accordance with the urban structural elements. The purpose of this study is to propose a compact eco-city plan in Osaka, which can be achieved integrally through an improved land-use plan and the resolution of current major urban problems. Present Condition and Necessity for Change in Osaka City The population of Osaka city is 2.65 million and the city area is 222.3 km 2. The population density is very high. As shown in Figures 1 and 2, the Osaka area is among the hottest areas of Japan. Local governments are striving to mitigate UHI effects. For example, Osaka s prefecture government produced the Osaka Prefecture Heat Island Measures Promotion Plan (2004); Figure 1. Concept of countermeasures to UHIs (2) Figure 2. Location of Osaka City in Japan - 66 -

Figure 3. Comparison of summer heat severity in Japan s large cities(analysis period: 2000 2004, 5-year average) Nettaiya Degree Day is the severity index for minimum temperature. It is the integrated value of the difference between the minimum and reference temperatures. Manatsubi Degree Hour is the severity index of maximum temperature. It is the integrated value of the difference between the hourly temperature and the reference temperature. the Thermal Environment Map (2006); and the Heat Island Measures Guideline (2007), which was based on Thermal Environment Map. New Principles for Land-Use Planning The new land-use planning principles aim to resolve the current urban problems in Japanese cities. These principles have three important goals for Osaka City: 1. Reproduce/increase green space and restore waterfront spaces within the central city area for climate control and amenity. This is important not only for UHI countermeasures, but also for the physical and mental health of the population. 2. Develop public transportation systems. Osaka City already has a good subway system. New transportation systems (e.g., light-rail trains) and greater space and comfort for pedestrians are needed. 3. Prepare the urban infrastructure (e.g., energy, water, and waste management) to better conserve resources and to protect the environment from pollution. This is one reason cities have to be compact. Consequently, high-density areas are built. Coordination and joint usage of some services is recommended to decrease environmental loads. Figure 4. Climate analysis map of Osaka City - 67 -

Climate Analysis Map for Planning As described above, in the Osaka region, the urban climate is an important issue for urban design and planning from the perspectives of UHI mitigation and air-pollution reduction. Therefore, we conducted a climate analysis map for planning (Figure 2). This map represents the existing climate condition of the discussed area (Tanaka and Moriyama 2004). Based on this map, we propose a plan for Osaka s central area. Figure 5 shows the Kaze-no-Michi ventilation lane in Osaka s central area, caused by the typical sea-breeze flow. However, the roads are not in good condition to help with the air quality and the thermal environment. Figure 6 shows an example of surface temperatures on Nagahori Street. The north lane of the street has a very high surface temperature because the road is wide and has no street trees. There are no shade spaces. Figure 5. Proposal for a Kaze-no-Michi (ventilation lane) in Osaka s central area Figure 6. Surface temperature of Nagahori Street (provided by Pasco) - 68 -

Figure 7. Principles for Osaka s grid model Image of a New Land-Use Plan for Compact Eco-City The roads in Osaka s central area consist of 86 m grids. The subway lines are located at approximately 1 km intervals, as shown in Figure 7. Therefore, the stations for changing trains (junctions) are located regularly. The principles for a new land-use plan in Osaka s central area are as follows. 1. Create an urban core (high-rise areas) around the existing subway stations 2. Divide all focus areas into three types, based on land use (1) High-rise area for offices, commercial buildings, and public buildings (2) Low-rise area for houses, residences, and life activitites (3) Green areas (10%, 30%) for recreation, ecosystem conservation 3. Install green belts between subway stations; green zones should be constructed in the blocks between stations Image of Three Zones Core zone: The core zone consists of a high-rise area for offices, commercial buildings, and public buildings. It is located about 250 m to 300 m near a subway station. For the viewpoint of wind flow, high-rise buildings in the central area would be more desirable than the type of courtyard design that is popular in Europe. Residential zone: The residential zone is a low-rise area for residential houses. The residential houses are located around the core zone and have plentiful greenery. Green zone: The blocks located between the subway stations are the green zone. Historical buildings should be conserved, especially in the green zone. In some cases, these can be converted to restaurants, museums, and other similar structures. - 69 -

Figure 8. Osaka grid model (green area: 10% case) Figure 9. Osaka grid model (green area: 30% case) Figure 10. Image of core zones (example of Osaka Business Park) - 70 -

Conclusion Based on the current problems in Japanese cities, the proposed plan is threefold: 1. Increase green space and restore waterfront spaces within the central city area for amenity and climate control. Design green spaces for 30% of the city area. 2. Prepare the infrastructure (e.g., water, energy, and waste management) to better conserve resources and to prevent environmental pollution, partly through coordination of mechanical services and promotion of joint usage to decrease environmental loads. 3. Develop a good public transportation system using the existing subway system and build a new transportation system that features greater comfort and more space for pedestrians. Detailed quantitative evaluations of UHI mitigation and other related issues are needed. Countermeasures at the district level are important for urban areas. The method of achieving these measures is also important. One possible method is the land-readjustment program for creating green blocks. A redevelopment plan should be used for this program. These issues will be addressed through future research. Acknowledgments This research was partially supported by the Kobe University 21st Century COE program Design Strategy towards Safety and Symbiosis of Urban Space. Reference Tanaka, T. and Moriyama, M., 2004, Application of GIS to make 'Urban Environmental Climate Map' for Urban Planning, Proc. 5th Conference on Urban Environment (CD-ROM). (Received Feb 9, 2012, Accepted Oct 10, 2012) - 71 -