July 2012 was a significant date for the HVAC and Refrigeration industry as it saw the introduction of the Carbon Tax and the HFC Levy.

Similar documents
Parilla Thermal Storage Project Case Study. May Page 1 of 11

DEMONSTRATION OF ADVANCED INTEGRATED HVAC&R SYSTEMS IN A LOBLAWS SUPERMARKET IN CANADA

A refrigeration system for supermarkets using natural refrigerant CO 2

COLD STORAGE WAREHOUSE, USING DIRECT EXPANSION AMMONIA REFRIGERANT Ray Clarke ISECO Consulting Services Pty Ltd

Commercial Refrigeration

ENERGY SAVINGS THROUGH LIQUID PRESSURE AMPLIFICATION IN A DAIRY PLANT REFRIGERATION SYSTEM. A. Hadawey, Y. T. Ge, S. A. Tassou

NATURAL REFRIGERANT SYSTEMS

SUBCRITICAL & TRANSCRITICAL SYSTEMS

Energy Performance of Low Charge NH3 Systems in Practice. Stefan S. Jensen

EVALUATION OF ALTERNATIVERS TO R404 THE MOST COMMON REFRIGERANT IN SWEDISH GROCERY STORES

ABSTRACT. 2 CanmetENERGY

Choose the winning team. Heat transfer technology for industrial cooling and air conditioning

Q. Which hydrocarbons can be used as a refrigerant? The following hydrocarbons can be used as a refrigerant in cooling & heating applications:

Comparison Ammonia / Secondary Refrigerant System against Direct Evaporation of HCFCs /HFCs

AN EXPERIMENTAL STUDY OF A REFRIGERATING PLANT WHEN REPLACING R22 WITH HFCs REFRIGERANTS

THE INSTITUTE OF REFRIGERATION

A Case Study on. Energy Management Control System for. Refrigeration Plant. Nestle Ice Cream Plant Mulgrave

Be sustainable while protecting your business

Energy Efficiency Considerations in Refrigeration Systems

Alternatives in the AC & Chiller Sectors. Sukumar Devotta and Lambert Kuijpers OORG Refrigeration

An Efficient Cold Store Facility

BASE LEVEL AUDIT REQUIREMENTS REFRIGERATION SYSTEMS 1. SITE DATA COLLECTION. Business Name. Site physical address (Street, Suburb, City)

Environmentally friendly refrigeration systems for industrial use

APPLICATION OF HYDROCARBON REFRIGERANTS IN LOW TEMPERATURE CASCADE SYSTEMS

commercial refrigeration products

DuPont Refrigerants. John McCormack Business Manager DuPont Chemicals and Fluoroproducts. R22 market and the ISCEON retrofit options

Alternative Refrigerants Part 1 Future and Current Options. Overview

HFCs or the Old Refrigerants - what is the best Choice?

FACT SHEET 9 Large Air-Conditioning (air-to-air)

Ammonia Refrigeration & Scenario in Industrial Refrigeration. By Ramesh Paranjpey ASHRAE Fellow Life member

Refrigerants & Cooling in renovation buildings

INDUSTRIAL REFRIGERATION. Position on refrigerant selection

R718 TURBO CHILLERS AND VACUUM ICE GENERATION TWO APPLICATIONS OF A NEW GENERATION OF HIGH SPEED, HIGH CAPACITY R718 CENTRIFUGAL COMPRESSORS

Air Cooled Packaged Systems AIRAH Back to Basics

HEAT PUMPS WITH HYDROCARBONS AS REFRIGERANTS FOR SMALL RESIDENTIAL BUILDINGS

Brazed Plate Heat Exchanger for CO Applications

Due to its low temperature glide about 1.5 approx. (75% less than R-407C and R-427A), it is suitable for a wide range of applications.

FACT SHEET 9 Large Air-Conditioning (air-to-air)

Modelling of an Integrated Supermarket Refrigeration and Heating System Using Natural Refrigerants

System Design, Commissioning, Operation

Refrigeration System Report March 2017

Sustainable Techniques in Refrigerated Space

CHAPTER 1 INTRODUCTION

FACT SHEET 6 Transport Refrigeration

RS-70 is suitable as a direct replacement for R-22 in low, medium and high temperatures in a great number of applications:

From the Field to the Supermarket

Campbell Soup Company Extends Use of CO2 Systems Into Their Operations

Ammonia. Background on ammonia as a refrigerant

AC SYSTEM CONFIGURATION- CENTRAL CHILLER PLANT

Current use of HFCs and HCFCs. Trends, alternatives and climate impact. YEREVAN, Armenia, May 18-19, International Institute of Refrigeration

Stakeholder Meeting Dublin, Ireland Update on the new F-Gas Rules Andrea Voigt, EPEE

Trends and Perspectives in Supermarket Refrigeration

Use of transcritical CO 2 in industrial applications

HVAC Water chiller selection and optimisation of operation

PREPARE FOR CHANGE LOW GWP ALTERNATIVES. November 17

2013 Guideline for Specifying the Thermal Performance of Cool Storage Equipment. AHRI Guideline T (I-P)

Air-Cooling Evaporators

VAPOUR RECOVERY DURING FUEL LOADING. Ben Adamson Principal Engineer Refrigeration Engineering Pty Ltd, NSW Australia

A Technical Introduction to Cool Thermal Energy Storage Commercial Applications

Thomas J Kelly. Fundamentals of Refrigeration. Sr. Engineering Instructor Carrier Corporation. August 20, Page number: 1.

Installation Operation Maintenance

Chillers and Refrigerants. Purpose of Today s Presentation. Agenda. GLHN Architects & Engineers, Inc. APPA Institute Session 322 EU

Environmentally friendly systems for convenience stores

Life-Cycle Energy Costs and Greenhouse Gas Emissions for Gas Turbine Power

Hall 7A. Chillventa Specialist Forums 2018 Chillventa Fachforen NürnbergMesse, Arbeitstitel, Datum 1

Adaptable in Adelaide

New PHE applications in construction & HVAC.

Leadership, Innovation, Advanced Technology Synergise Here!

2. CURRICULUM. Sl. No.

Low Charge ADX Ammonia. Presented by: Bruce Nelson, President, Colmac Coil Manufacturing Rick Watters, Vice President, AMS Mechanical Systems

Midwest Industrial Initiative Webinar: Industrial Refrigeration

Guidance for Stationary Refrigeration & Air-Conditioning

Making equipment decisions

Air-cooled Screw Chillers Model RTAF G Process

Refrigerant Type Heat Recovery Unit for Temperature & Humidity Control Room

2016 Synthetic Greenhouse Gas Levy Report

CO2 TRANSCRITICAL BOOSTER SYSTEMS

New F-Gas Regulation (2014): Guidance for Food and Drink Manufacturers. REI Guide 4a. The 2014 EU F-Gas Regulation

precision controlled industrial process chillers cooling capacity: ,255,668 BTU /hr ( tons) improved productivity & reduced costs

Postprint.

ThermoSaver TM Hot Gas Defrost System

Improving Cold Chain Competitiveness with Danfoss Energy Efficiency Solutions.

NEOSYS. AIR TO WATER LIQUID CHILLER kw. AIR TO WATER HEAT PUMP kw. lennoxemea.com

The Energy Mist System

THE INSTITUTE OF REFRIGERATION

MULTIPLE COMPRESSOR SYSTEMS COMPRESSOR PACKAGES ORIGINAL MANUFACTURED EQUIPMENT. Multiple Compressor Systems BA AUS

Technical Development Program

Packaged Ammonia Chillers with Variable Frequency Drives powerpac

Heat Recovery Dehumidification (HRD) system. Designed for municipal swimming pools

Natural refrigerant trends in EU, Japan & North America

Chiller Plant Design. Julian R. de Bullet President debullet Consulting

Green economy with natural refrigerants

Ecolibrium. All natural. A new style for supermarkets? THE OFFICIAL JOURNAL OF AIRAH AUGUST 2017 VOLUME 16.7 RRP $14.95

Chapter 2. Alternatives to HCFCs and their Characteristics

Exhibition Hall 1. Fachprogramm. Technical Programme

Commercial CO2 Refrigeration Systems. Guide for Subcritical and Transcritical CO2 Applications

Hydrocarbons as refrigerants

Natural Refrigerants.

Transcritical CO2 Bottle Cooler Development

investment in R&D, the commitment to - name.

Transcription:

Parilla Thermal Storage Project In 2013 Glaciem Cooling Technologies undertook the commercialisation of its Thermcold Thermal Storage system, the system which has been operating now for over two years and has been resounding success pushing the boundaries of ingenuity. Nominated Finalist in the AIRAH 2014 Best HVAC&R Retrofit/Upgrade award this project demonstrates Glaciem Cooling Technologies commitment to finding innovative natural solutions for our customers. Read more; July 2012 was a significant date for the HVAC and Refrigeration industry as it saw the introduction of the Carbon Tax and the HFC Levy. Hydrofluorocarbons (HFC s) are Synthetic Greenhouse Gases (SGG s) and are considered to be a contributing factor in global warming; the major aim of the levy was to reduce the dependence/usage of HFC s across all industry sectors by placing a tax based on the Global Warming Potential (GWP) of each HFC, within weeks of the implementation of the HFC Levy, HFC Refrigerant prices rose on average by 300%-500%. The introduction of the HFC Levy also coincided with the last four years of phase out of HCFC Refrigerant R22, under Australia s Montreal Protocol obligations, this phase out reduces the import quotas of R22 imported into Australia annually, this gradual phase down has seen the price of refrigerant R22 increasing by over 300%. During this time period electricity/energy cost have also increased significantly The above factors have had a significant impact on the light industrial/ heavy commercial refrigeration sector, refrigeration plant and equipment used in these sectors are typically in the order of 100-350kWr and use significant amounts of HFC refrigerant, with older equipment predominantly using R22 refrigerant. Designers and contracting companies operating in this sector are now faced with these two significant issues, when designing new plant and equipment or retrofitting existing plant, this manifests itself into some key planning parameters Refrigerant that offers longevity and reduces the exposure to the HFC Levy Energy Efficiency/operating cost Capital expenditure/payback The Parilla Potato project undertaken by Alltech Refrigeration in 2012/2013 is a unique example of how Glaciem Cooling Technologies Pty Ltd in collaboration with University SA Barbara Hardy Institute and Alltech Refrigeration working as a prime contractor has

overcome these challenges and offered the end user an innovative new system to replace the existing R22 refrigeration plant. The basis for the design is secondary refrigeration system utilising a critically charged ammonia chiller as the primary refrigerant and Dynalene HC30 as a secondary refrigerant. However this design also incorporates the use of Thermal Storage System using Phase Change Material (PCM) which is cooled by the primary ammonia plant overnight using off peak electricity, the Dynalene uses the thermal storage of the PCM to provide refrigeration during on peak operating hours. Although PCM in the form of ice banks/slurry has been used in air conditioning, the Parilla project PCM utilises a specialised low temperature PCM designed the Barbara Hardy Institute at the University of South Australia (see AIRAH Publication Equilibrium APRIL 2013 PUNCHING above its weight)to achieve secondary temperatures of below -6 C. As the following documentation will show this design massively reduces the Total Equivalent Warming Impact (TEWI), operating cost, when compared to other designs, it also uses only natural refrigerants. BACKGROUND Parilla Potatoes is a large refrigerated storage facility (Figure 1) located in South Australia; the facility consists of five individual rooms. Figure 1 Parilla Potatoes SA Facility Figures 2 below shows the old refrigeration parallel rack with 3 x DWM Copeland suction gas cooled semi hermetic compressors model D6DJ 400X operating on Refrigerant R22. The rack capacity is estimated at 190.5kW at 10 C Saturated Suction Temperature (SST), 47 C Saturated Condensing Temperature (SCT).

The estimated total heat of rejection (THR) of the rack is 271.2kW. Condensing is achieved by a Kirby KNRC 3990V air cooled condenser with an estimated capacity of 39.9 kw per K TD. Operating TD is 6.79K. Figure 2 R22 Parallel Rack The old refrigeration plant required replacing due to ongoing refrigerant leaks and equipment failure, Figure 3 shows leaks on the evaporator coils. Figure 3 Leaking Evaporator Coils As the price of R22 increased dramatically and the reliability of the existing decreased, Parilla Potatoes made the decision to replace the old refrigeration plant and equipment. Two design options were considered with an emphasis on power consumption, running cost environmental impact and exposure to the HFC Levy. OPTION.1 DX R134a Economised Screw Compressors Plant, with Glycol Secondary Plant

Air cooled Direct Expansion (DX) R134a is currently the industry standard refrigerant used in large commercial Medium Temperature (MT) applications of this type, mainly due to lower initial capital expenditure. However since the introduction of the HFC Levy in July 2012, the list price of R134a refrigerant has risen to approximately $182 per Kg. In order to reduce the R134a charge the cooling in the cool rooms is a achieved by circulating R1270 (Propylene Glycol 30%). This proposed system would consist of 2x BITZER HSK 7471-70 Economised Semi Hermetic Screw Compressors Capacity 196kW @ -10 C SST 49 C SCT OPTION.2 R717 Primary Dynalene Secondary + Phase Change Material (PCM) Plant This type of system is still in its infancy in the refrigeration industry but similar systems using ice slurries are being employed successfully in a variety of applications due to their low operating cost. The system consists of a central R717 plant. The central R717 plant only operates during the evening using off peak electricity, during this period Dynalene is cooled to a lower temperature; the Dynalene in turn freezes a (PCM). During the day the R717 plant is cycled off and the Dynalene is cooled by the phase change in the PCM. The proposed system consist of 2x BITZER OSNA 7461-K Open Drive Screw Compressors Capacity 200kW @ -18 C SST 35 C SCT The two options listed above were analysed In order to quantify which option would give the lowest power consumption, running cost environmental impact and exposure to the HFC Levy. The analysis was carried out in accordance with the Australian Institute of Refrigeration Air Conditioning and Heating (AIRAH) Methods of Calculating TEWI 2012 Best Practise Guidelines. Annual Power Consumption Figure 4 below shows a graphical representation of the power consumption data, it can be seen that Option 1 (R134a Economised Screws) will consume the most power. Option 2 (R717/Dynalene + PCM off peak) consumes 37% leas power even though it is operating at a lower Saturated Suction Temperature (SST). The R717 plant will only operate approximately 12 hours a day using off peak electricity to freeze a PCM, during on peak hours, refrigeration would be done by the thermal energy stored in the PCM, thus drastically reducing the power consumption.

kwh Figure4 Estimated, Annual Power Consumption Comparison Annual Power Consumption (kwh p.a) R134A ECONOMISED SCREWS AIR COOLED R717 PRIMARY DYNALENE & PCM SECONDARY(OFF PEAK) 800000 700000 770374 600000 482694 500000 400000 300000 200000 100000 0 1 Annual Running Cost Figure.5 below shows a graphical representation of the annual running cost data. An on/off peak electricity tariff of $0.23 and $0.11 respectively has been used based on information provided Parilla Potatoes. Option 1 (R134a Economised Screws) has the highest running cost. Option 2 (R717/Dynalene + PCM off peak) has a lower operating cost as it only operates using off peak electricity. The reduction in annual running cost between Option 2 (R717/Dynalene + PCM off peak) and Option 1(R134a Economised Screws) is 70%

Emissions (t CO2e) Figure.5 Estimated, Annual Running Cost Comparison ESTIMATED ANNUAL RUNNING COST R134A ECONOMISED SCREWS AIR COOLED R717 PRIMARY DYNALENE & PCM SECONDARY(OFF PEAK) $177,186 $180,000 $160,000 $140,000 $120,000 $100,000 $80,000 $60,000 $40,000 $20,000 $- $53,096 Figure.6 TEWI Comparison Total Equivalent Warming Impact (TEWI) R134A ECONOMISED SCREWS AIR COOLED R717 PRIMARY DYNALENE & PCM SECONDARY(OFF PEAK) 10,000 9,000 8,000 7,000 6,000 5,000 4,000 3,000 2,000 1,000 0 9,049 5,213 Indirect & Direct CO2 Emissions

Total Equivalent Warming Impact (TEWI) Figure.6 above shows a graphical representation of each the options TEWI, over the 15 year lifecycle for each refrigeration plant. Option 1 (R134a Economised Screws) has a higher TEWI than Option 1 Option 4 (R717/Dynalene + PCM off peak). The reduction in TEWI between Option2 (R717/Dynalene + PCM off peak) Option 1 (R134a Economised Screws) is 42% Based on the above analysis it was clear that Option 2 (R717/Dynalene + PCM off peak) was the best option as it showed significant reductions in power consumption running cost and environmental impact in comparison to the other option 1. The key factor in its performance is the ability to only operate the central R717 plant during the night only using off peak electricity. Option 1 also had the added disadvantage in using refrigerant R134a, as R134a is an HFC refrigerant and is therefore subject to the Australian Federal Government HFC Levy and has a current list price of around $182 per Kg. Figure 1 TEWI calculation predicts the total operational leakage over 15 years to be 561Kg, this would equate to an additional $102,102 in refrigerant cost at current prices over the plants life averaging out to around $6,806 per annum. The above analysis formed the basis on which the project was sold, although the initial capital investment for the PCM option was 51% more for Parilla Potatoes the payback period on based energy consumption was less than 3 years. System design The Parilla project installed by Alltech Refrigeration is the first refrigeration system of its kind in the in Southern hemisphere (if not the world), although thermal storage systems are not new, the various innovation s used on this project make it truly unique. the following pages highlight the main features R717 Chiller The ammonia chiller (Figure 7) used on this project was specified by JCH Refrigeration Consulting and built by BITZER Australia. The primary function of the R717 system is to cool the secondary refrigerant Dynalene HC30 which in turn provides thermal energy to the PCM. The Dynalene is cooled by the ammonia through a flooded Alfa Laval Plate Heat Exchanger (PHE); the system only requires enough ammonia to form a liquid seal in the accumulator vessel and to flood to PHE, with liquid. The minimum level in the accumulator is maintained using a pressure differential (PD) sensor (Figure 8), the PD sensor sensors the change in pressure as the liquid level the in the accumulator fluctuates and sends a 4-20ma signal to the PLC, the PLC then outputs a 4-20ma to a Danfoss ICF6 valve assembly (Figure 9) which injects liquid into the accumulator at the exact rate that is required.

Figure.7 200kWr BITZER R717 Chiller Alfa Laval Oil Cooler PHE Alfa Laval Condenser PHE Accumulator Vessel Oil Recovery Vessel Figure.8 PD Sensor Figure.9 ICF 6 Make up valve Figure.10 Closed loop Fluid Cooler Pressure Differential Sensor Danfoss ICF6 Valve Assembly In order to keep the ammonia charge of the package to a minimum Alfa Laval PHE are used for condensers and oil cooling (Figure 7), water is circulated through a close loop through a BAC fluid cooler (Figure 10) and pumped through both PHE s. This drastically decreases the amount of ammonia in the ammonia chiller, which has an operating charge of 50Kg of R717, this equates to a Kg/Kw ratio of 0.25Kg/kWr The chiller is installed in an air tight plant room complete with explosive proof extraction fan, motorised dampers, the plant room is air conditioned using a Dynalene evaporator piped to the main system. Secondary Refrigerant Dynalene HC30 Various secondary refrigerants were considered for this project, the one chosen was Dynalene HC30, Dynalene is a water-based heat transfer fluid engineered to deliver high performance throughout its temperature range. The main driving factor for choosing Dynalene over a glycol

based solution was Dynalene low viscosity, for example propylene glycol with a freezing temperature of -30 C would have a viscosity 157cSt compared to 4.5cSt of Dynalene HC30. This drastically reduces the amount pump power required to circulate the secondary refrigerant therefore reducing running and installation cost. The purpose of the Dynalene HC30 in this system is to freeze (charge) the PCM during the night using off peak electricity and then use the energy stored in the PCM during the day time. Figure 11 below shows the main parts of the secondary system. Figure.11 Secondary Refrigerant Tanks & Pumps Defrost Tank Cold Dynalene Tank Warm Dynalene Tank During the charging cycle Dynalene is pumped from the warm glycol tank through the flooded ammonia PHE where it is cooled down to -15 C and then through to the PCM tanks where it freezers the PCM tanks, from here it flow back to the cold Dynalene tank. During the discharge cycle the ammonia chiller is turned off and the Dynalene PHE on the chiller is bypassed with a 3 way valve (Figure 12), the Dynalene circulates through the PCM using the latent heat stored in the PCM for cooling the process Figure.12 3 Way Motorised Bypass Valves Figure 13 shows the Dynalene circulating and process pumps. Each room has its own Dynalene process pump, -6 C Dynalene is pumped to each of the room evaporators, from there it returns back to the warm Dynalene tank.

Figure.13 Dynalene Circulating Pumps Dynalene Circulating Pump Room 1 Pump Room 2 Pump Room3 Pump Room 4 Pump Room5 Pump Defrost Pumps Phase Change Material (PCM) One of the major factors that make the Parilla project unique is the PCM. The most commonly used PCM is ice which has excellent thermal storage characteristics, however secondary refrigerant temperatures of around 1 C to 2 C are only possible as the melting point of water is 0 C The PCM used at Parilla is a specialised product developed by the Barbara Hardy Institute at the University of South Australia and is able to give secondary refrigerant temperatures of around - 6 C to -8 C; this makes it ideal for food storage that requires room temperatures of around -1 C to 3 C. Figure 14 shows the PCM tanks installed at Parilla, there are four PCM tanks in total each with a capacity 720kWh, giving a total thermal storage capacity of 2,880kWh. The tanks were designed and manufactured by Glaciem Cooling Technologies; the tank body are constructed out of stainless and insulated with 50mm urethane, each tank has over 4.6Km of stainless steel coil inside. Figure.14 PCM Tanks

Storage Rooms There are five refrigerated rooms at Parilla each designed to the following Rooms 1-3 Size: Product: Each room 16m wide x 16m deep x 6.3m high. Potatoes / Onions Total product per room: 400,000 kg Product entering per day: 50,000 kg Entering temp: Ambient Temp (approx. 20 c) Pull down time per room: Approximately 3-6 weeks Room temperature Onions / Potatoes: 0.0 c / 3.5 c Room humidity Onions / spuds 70 % / 90 % Refrigeration capacity per room 51 Kw Rooms 4&5 Size: Product: Each room 23m wide x 18m deep x 9.25m high. Potatoes / Onions Total product per room: 600,000 kg Product entering per day: 100,000 kg Entering temp: Ambient Temp (approx. 20 c) Pull down time per room: Approximately 3-6 weeks Room temperature Onions / Potatoes: 0.0 c / 3.5 c Room humidity Onions / spuds 70 % / 90 % Refrigeration capacity per room 73 Kw The evaporators for each room were designed and manufactured by Quikcool Australia. One of the unique features of these evaporators is a separate close loop circuit that uses warm Dynalene for defrost. The Dynalene is heated by an Alfa Nova Brazed Plate Heat Exchanger (BPHE) fitted to the discharge of the Ammonia Chiller The warm glycol is stored in an insulated tank (Figure 14) and pumped to each evaporator as required. Not having any defrost heaters fitted to the evaporators drastically reduces the energy consumption of the evaporators and significantly increases the overall running cost of the system. Figure.18 Quikcool Evaporators Figure.19 Warm Dynalene BPHE

Electrical The refrigeration system as a whole is controlled by a Schneider PLC, the electrical installation and control panels were installed and built by Electric Solutions Pty Ltd. The system has over 250 I/O points installed and some very complex software routines that ensures the smooth interface of all the various refrigeration components. A SCADA monitoring package logs & records all data points and allows for full remote web based access there is also a Schneider energy monitoring system fitted, which measures the mains supply coming into the refrigeration plant. All compressors and pumps (except warm glycol) have VSD fitted thus further enhancing the overall efficiency of the plant, all VSD are also networked back to an Schneider energy monitoring system so individual motor energy usage is recorded. Figure.19 Electrical Panels