Chad's Hinge Tilt Collector Bank

Similar documents
Hi Gary, More solar projectswww.builditsolar.com

TR Solar A $1000 Solar Hot Water System in Northern Canada

Hot Water Solar in Maine Steve Smith 2012

SOLAR HOT WATER HEATERS

General System Layout Sketch

General System Layout Sketch

Storing excess daytime solar energy to heat greenhouse at night!

Solar Water Heaters. Bastián Acevedo Bustos. Electronic Engineering Student, Tarapacá University. Environmental Studies Student, York University

Redneck Air Conditioner

BMW E36 Thermostat Removal And Coolant Flush

Hempcrete building and Solar thermal reincarnation

A Self-Pumped. Solar Hot Water System. Story & photos by Andy Kerr. Comment Discuss

Solar Domestic Hot Water, with a Site-Built Drain-back Tank

INSTALLATION MANUAL GEO-BOOST GROUND LOOP HEAT EXCHANGER

INNOVATIONS IN SOLAR WATER HEATING

General System Layout Sketch

Geothermal Energy Nutrient Reservoir & Trench cooling System

Water Heater. Promising endless. Installing an On-Demand

SOLAR AIR HEATER 11/01/2015 INTRODUCTION

INSTALLATION MANUAL GEO-BOOST GROUND LOOP HEAT EXCHANGER

A: The last radiators might not be able to heat the rooms they serve on the coldest days of the year. Your system would be out of balance.

... Green Building Details

Hot water storage systems

solar thermic systems

Arctica Solar 1500 Series Heater Installation Manual

Solar Water Heating. Design a solar water heating collector while learning heat science and building career skills.

Milkweed Seed Separator

PackardInfo.com. HOW TO: Rebuild a Trico Mag Nu Matic Vacuum Washer Pump. Introduction

Electric Space Heater

Fixing my Fisher and Paykel Fridge Active Smart Fridge/Freezer Model E440T

Modified Trickle Down Solar Heating

Solar Hot Water. PV + Heat Pump or Thermal. Which is better?

Creating a Passive Solar Water Heating System

SOLAR TUBE COLLECTORS

solar thermic system Solar thermic systems are devices that allow you to capture and store solar energy for later use in various utilization.

Riverdale NetZero Project Summary of Costs and Expected Performance

Solar Heat. Expanding & Improving an Owner-Installed System

When considering the purchase of a walk-in you most likely will be looking for the following things.

Solar Hot Water Heating Systems

CFX-27 GALLON PORTABLE EXTRACTOR. Owner s Manual CFX 1/22/2010

Greenhouse Basics By Cordell Vail 26 Mar 2007

What Size Electric Tankless Water Heater Do I

INSTRUMENTATION AND EVALUATION OF COMMERCIAL AND HOMEMADE PASSIVE SOLAR PANELS

ATCO How a Cooling Unit Works

Before using your machine, you must familiarize yourself with all of its components.

Fume Free Casting Box

Design and Build a. Solar House. Introduction. Design a model house that uses as little energy as possible to keep it warm.

Energy Conservation. Meet Mr.A and Mr.B. They have both received their electricity bill. One of them is happy and one of them is not.

ACR Solar International Corp Gibbons Dr. Suite H Carmichael, CA (916) "Islander" Installation Manual

hot-water-by-sunshine Documentation

Rob s Solar Domestic Hot Water Project With Space Heating and Cooling

Meeting the One-Cup Challenge

OVSOL Solar System Manual. Solar hot water system installation guide for evacuated tube systems.

Pallet Hop Dryer. Introduction

Solar water heating system

Theory of Operation: How Parts Cleaning Works

"Best Practices in Modern Hydronic Heating - THE DETAILS

Shay - Painting & Assembling The Boiler

WINE AND BAR SERIES. Sink Installation Kit. For assistance, call ; for UK ; at

2. It should be capable of supplying requisite amount of water for fire fighting. 3. It should be cheap with the least capital construction cost

INSTALLATION INSTRUCTIONS UNDERCOUNTER DISHWASHERS

Build your own SOLAR FURNACE

Tankless Water Heater Seminar DISCLAIMER

1 Exam Prep Solar Water and Pool Heating Manual (UCF) Questions and Answers (Plumbing Contractor)

The electrical wattage needed by the circulator is:

Permanent Marker you need a felt tip permanent marker to write on the Mylar bags and the buckets.

BRINE CIRCULATED ICE THERMAL STORAGE SYSTEM DESIGN - CASE ILLUSTRATION - Partial Ice Storage for Air Conditioning Application

Eccotemp L5 and L10 Comprehensive Troubleshooting Guide

FLOW-THROUGH FURNACE HUMIDIFIER

Section F Clarifier Part A

USING INFRARED TECHNOLOGY TO DEFINE ENERGY SAVINGS OPPORTUNITIES. James L. Park Energy Conservation Specialist I-Star Energy Solutions

Big Board Rework. Joerg Nolte Ersa GmbH Wertheim, Germany

U.S. Department of Energy - Energy Efficiency and Renewable Energy

SOLARHOT. SuperVox. Description / Applications System Overview. Installation/ Owner s Manual

52:107 Sustainable Systems. Dan Weber Christina Devine Lindsay Diercks Alan Horst

Technical Document Condensing hot water boilers

about your house Choosing a Dehumidifier

The purpose of this scientific research was to build a solar Hogan and discover which section of the Hogan and which solar panel design will generate

Installation Instructions for. CattleMaster Series Fountains

Primitive water distillation construction notes and lessons learned (13 Jan 05)

Green Engineering. E-Design 100 Section 020. Group 5: The Lemons Submitted to Professor Smita Bharti (missing picture)

Exercise 2-4. Heat Exchangers (Optional Exercise) EXERCISE OBJECTIVE DISCUSSION OUTLINE. Description of a brazed plate heat exchanger DISCUSSION

GETTING THE MOST OUT OF HYDRONIC HEATING SYSTEMS

using Solar energy efficient efficiency rate

Winter Energy Saving Tips

Here are three photos of the room as it stands today:

CodeNotes. Solar Water Heating Systems Based on the 2018 International Solar Energy Provisions (ISEP ) Introduction OFFICIAL

Heat Transfer in Evacuated Tubular Solar Collectors

Ventilation. ASHRAE 62.2 COMPLIANCE How do we get there? Bruce Hagen ND Dept. of Commerce.

OPERATION MANUAL OPERATION MANUAL FREE WATER-COOLED HEAT EXCHANGER

Solar Information. Solar Radiant Heating. Innovating Today s Solar Technology for the Future of Tomorrow

JOHN DEERE GATOR HPX/XUV 2 PASSENGER HEATER INSTALLATION INSTRUCTIONS (p/n: 9PH20S30)

SOLAR WATER DISTILLATION BY USING WATER IN THE INNER GLASS EVACUATED TUBES

Hot Water Distribution System Losses in a Net-Zero Home

A non-toxic zero-emf radiant floor heating system

WELCH INDUSTRIES - PAGE 1 OF 5

Hoop House / Greenhouse Kit Instructions Sample Version

Thermalstar Technologies

ART TEC Solar Differential Temperature Controller DTC-1 Manual

Energy Resources and Technology Prof. S. Banerjee Department of Electrical Engineering Indian Institute of Technology - Kharagpur

Transcription:

Page 1 of 8 The Renewable Energy site for Do-It-Yourselfers Search Home Getting Started Projects References Half Program Experimental Site Map Chad's Hinge Tilt Collector Bank This page covers a set 6 of the copper pipe/aluminum fin collectors built by Chad for space heating. The collector design includes a unique hinged mount on the top of the collectors that allow the collector tilt to be adjusted by season. In addition, Chad shows an alternative way to build the collector frame. Thanks very much to Chad for providing this material! Chad's bank of six 4 ft by 8ft collectors Building the Collector Gary s copper aluminum collector design was used as a baseline. It was modified as follows: 1. The frame was made with the frame members cut to eliminate the square absorber mounting strips. Square strips were used under the glazing as per Gary s design. 2. I did not put the 3 aluminum strips under the copper tubes. My testing showed the aluminum transferred heat to the copper very well without them. They would help get the heat to the copper from the outside of the aluminum panels, as the aluminum path is quite long. As copper has dropped to 50% of what I paid for the first panel, the final 3 panels I assemble will use 9 vertical copper tubes with 5.5 wide absorber strips. 3. I double glazed the collectors. I calculated the R value from the aluminum to the front of the glazing to be 2.3. The second layer increases this by 1.6, a significant improvement. The payback is positive when the air to water delta is above 40-60 degrees, with it making a bigger improvement at lower power output levels.

Page 2 of 8 Frame Pictures of the collector frame components -- Click on pictures for full size - Top 2X6 From left -- side rail, bottom, and top The frame members can be cut easily and quickly if you have a table saw. Save the waste from the 2x4 s for the side glazing strips and top and bottom hold down strips. Pre-drill the conduit holes, at 1/3 and 2/3 way, at the top edge ( the 1.5 wide part). Drill ¾ way through the wood. The holes are not detailed in the drawings. To assemble the frame, I put the absorbers aluminum down and spaced them up 1 ½ inches. The 4 pieces were placed around the absorber so that the absorber was resting on the notch. The conduit was placed in the holes at this time. Next, the corners were drilled and screwed. After the frame was secure, the absorber was screwed to the frame at 5-7 spots for each frame member. Next, insulation was cut / drilled to fit and secured with expanding foam. Click on pictures for full size Absorber panel viewed from back side and placed inside the 2X4 frame. Backside of absorber panel. Supply and return lines penetrate the absorber panel. Clamping up the absorber and frame before screwing absorber to frame.

Page 3 of 8 The collector frame with the copper pipe grid and absorber fins ready for painting. Glazing The two sheets of polycarbonate that form the inner layer of glazing layer were not siliconed together as I didn t see much benefit in doing so. It was placed on the absorber after putting a silicone bead on the conduit. To separate the two layers, I cut ½ pieces of ¼ vinyl tube. I placed these about 4 from the top and bottom and every 10 across. They were secured to the inner glazing by a dab of silicone. I placed a piece every 12 inches on the sides, one rib from the edge. I then scattered them on the rest of the surface. In reality, I put down more separators than needed. The outside layer tends to bow out due to expansion and separate from the inside. They were secured in the same manner as Gary s. When drilling, ensure wood particles do not make in between the 2 layers. Vinyl tubes that separate the two layers of glazing. The tubing runs parallel to the glazing ribs. Drawings -- click on picture to view dimensioned drawings for the collector... (pdf files) The Collector Assembly 2X4 Side Rails 2X6 Top Rail 2X4 Bottom Rail Plywood Back Back Insulation Variable Tilt Hinge Mount The ridged siding used on my shop and the general design of a pole barn complicated mounting the collectors. There are 3 horizontal 2x8 pieces under the steel siding. There are also vertical 6 x 8 posts every 10. I preferred to be able to change the collector angle as needed. I ended up with the mounting detailed here. I used stainless lag bolts to secure door hinges to the collectors. Corrosion resistant fasteners are supposed to be used with the new treated lumber. I mounted the hinges to the collectors, positioning each to avoid the ridges in the steel. The attached 2x4s serve two purposes: to space the collector off the side and to reach the shed 2x8. Click on pictures for full size

Page 4 of 8 Water Lines: For the hinge mount collector, I ran the copper lines out the top and bottom. To ensure the top line will not interfere with the wall at maximum tilt, I used a 45 degree fitting at the top of the collector to provide more than enough tilt. The variable hinge mount requires flexible water lines. Multiple options were considered: CSST (corrugated stainless steel tubing) natural gas tubing: The tubing is reasonably priced. The fittings are $5 each. At 4 fittings per panel and the mating hardware, this got expensive quickly. The corrugated tubing will also decrease fluid flow. CSST is not supposed to be used for flexible gas installations. I suspect it will work harden after many flexes. Hydraulic Hose: I did not know if this would prevent oxygen from entering or not. It is probably more expensive than CSST, should take the temperatures and definitely the pressure from the system. PEX: This is the cheap and easy to install. The downside is possible thermal expansion, overheating, and sun exposure. The PEX is presently covered with pipe insulation to insulate and keep the sun away. The panel to panel PEX may be replaced with copper pipe to increase flow and decrease expansion movement. Antifreeze The system is a closed system with semi drain back capability, that is most of the coolant will drain back to the house (200 away). Some of the lines will probably retain coolant. I will have 2 tanks: one in the basement to collect solution and one in the shop ceiling to hold the gas (argon / CO2) than fills the collectors during drainback. I plan to use a small air compressor to charge the basement tank sufficiently to fill the lines when heat is available and a air solenoid valve to discharge it. I used a 45% solution of Noble Company s NoBurst HD with 55% distilled water. This is a very concentrated propylene glycol fluid. It ran $140 / 5 gal bucket to my door. This will provide for fluid flow capability to below 15 F. Note, this is thicker than motor oil, so pre-mix it before putting it in the system. After the system was detergent cleaned, rinsed, and emptied, I used an a/c vacuum pump to evacuate the air. I then connected a hose to the system and let it suck water and coolant into it. A small pump was used to pump the final bit into the system to pressurize it. The pictures show the details of the hinged collector mount along the top of the collectors that allow the collector tilt to be adjusted by season. Applying SolKote Selective Absorber Finish Chad painted the absorber with a selective coating called Solkote. The advantage of this material is that it is a selective finish, meaning that it absorbers visible light very well, but also has a low emissivity in the infrared so that it does not radiate (lose) heat as much as a conventional paint. It is also a good, high temperature finish that will hold up to the high temperatures inside the collector. SolKote's low emissivity depends on it being applied by a sprayer in a very thin coat. Absorber ready for Solkote After Solkote has been sprayed

Page 5 of 8 Cleaning prior to painting with Solkote This was the first time really using a paint sprayer for anything that mattered. The paint is very thin, it is xylene based, which seems to be a little less volatile than lacquer thinner. It seems like they took powder carbon and mixed with the solvents... probably not that simple. SolKote wanted it applied to bare aluminum as this helps the emissivity, (not practical) and they were concerned about if it would react with the paint. I tested the reaction by soaking a rag in xylene and sealing to the al for a few days. It mildly softened the paint and one could then scrape it easily, but once dry there was no damage. I used an cheap automotive HVLP gravity feed gun from Harbor Freight at < 40 PSI. I did it in my 30 x 50 ft workshop in early January. Turned off the oil furnace for a few days then shot them. I did use a chemical respirator but with good ventilation don't think it would be necessary. We will see by end of next week on this theory. I basically sprayed the stuff to cover the white AL. It was quite easy I used 0.019 white roofing coils. There were some runs, but it is good enough. It was mostly done in 1 pass. I did not measure the thickness. Don't have equipment to do at home, maybe machinists at work could... I shot 6 of the 4x8 panels. That took 1/4 to 1/3 of the gallon. There was no visible fog and minimal overspray. Fumes were not overpowering. All 6 took < 50 minutes with 1/2 of that probably refilling the gun and making space. I adjusted the gun to give a even coat over 4-7 inches and held it at less than 1 ft. I closed up shop and came back a day later. There was little if any smell left. The shop is quite tight and well insulated so I was surprised. The paint was 69 + 22 shipping for a gallon. Note that the SolKote may not be selective when sprayed over a painted surface, so bear this in mind if you want to have a selective coating on the absorber --best to use it over bare aluminum. Heat Exchanger for Domestic Hot Water Chad did a copper heat exchanger using 2 parallel runs of 3/4 inch copper pipe hooked up in parallel. click on pictures for full size Chad did a test run with this heat exchanger --click the thumbnail below for a full size plot.

Page 6 of 8 Test Steps 1) The water heater inlet was connected to the shop water supply. 2) the tank was filled with 135 degree water from a nat gas instant water heater. 3) The heater was turned off, the heater outlet was connected to the tank heat exchanger inlet. 4) The water was turned on at 0.04 hours to 2.4 gpm. 5) At 0.11 hours the water was turned on full, 4 GPM. 6) At 0.16 hours the water was set to 2.4 GPM 7) At 0.21hours the water was set to 0.875 GPM 8) At 0.21hours the water was set to 0.875 GPM 9) At 0.39hours the water was set to 1.2 GPM 10) At 0.39hours the water was measured at 1.325 GPM 11) At 1.25 hours the water was set to 2.4 GPM 12) At 1.45 hours the instant heater was turned on at 140 deg 13) At 1.55 hours the test was stopped. Note: The top sensor was above the copper for at least 1/3 of the test and therefore not reading the water at the top of the heat exchanger The water had a significant amount of stratification!! Flow was +/- depending on well pressure. datalogged with an Omega multi channel commercial logger All using type K thermocouples Flow measured with a marked bucket and watch The tank water compartment is inches 22.75w 23.75l 45.75h neglecting liner loss and including insulation. 107 gallon gross Filled to 43 inches. Heat exchanger is 2 parallel rectangular loops of 3/4" copper, about 15 x 17 18 loops total ( 9 per) spaced 0.375" System Diagram Refer the PDF plumbing diagram for the system layout. This may change somewhat as the house side is completed. This is drawn using electrical schematic software. Plumbing Diagram... (pdf) Time to complete See the Excel sheet for a detailed time log. I averaged about 9 hours per panel. I wasted a bit of time early remembering how use a table saw and figuring out than a second fence was very useful for running multiple boards through with the same cuts. Detailed time long... (Excel Spreadsheet) I attempted to make like parts for all panels with only one setup process per part. This saved considerable setup time. I used power tools as much as possible. Air caulk gun Circular Saw for cutting all OSB in one pass. Electric stapler Grinding wheel to debur 5.8 copper pieces Lift for keeping panels at an appropriate height while working

Page 7 of 8 Power saw for cutting copper Drill mounted copper debur / deoxidize brushes Other Notes: Home Depot could not get the SunTuf or so they claimed. Lowes happily ordered a similar product for $21 per sheet. I found the 0.019 thick aluminum in a 2 x 50 coil. I cut this into 7.5 x 2 strips using a shear. This took about 20 minutes per roll, or about 8 minutes per panel. This time is not in the log. Additions to the System Since May 2009 A Tankless water heater has replaced a tank heater. This will peak the solar tank output. Unfortunately, it is 25 from the rest of the system due to exhaust complications. Additional insulation is needed on the copper pipes to reduce heat loss. 2 tanks were designed and built based off Gary s design. The hot water tank is 102 gallons, the dimensions are 29x30x48. The house storage tank is 292 gallons, the dimensions are 3.5 x 8 x28 tall. The hot water tank was a compromise of fitting into an area between the furnace and a sump pump. I would not suggest the height to width ratio of the hot water tank for 3 reasons: 1) Waste of liner material. This tank used nearly the same amount of material as the big tank. 2) Difficulty in installing liner. The liner was formed around a box then inserting this into the tank. Otherwise the liner would not seat well. 3) Excess surface area leads to increased losses. The house tank doubles as a dryer stand. The washer is also on the tank, but this rests on a steel frame than is bolted to the wall and has it s own feet. The waster / dryer are front loaders. The added height elevates them to what is ideal for moving clothes between the two and removal from the dryer. The house tank is heated by circulation glycol through about 120 of ½ copper pipe. The hot water tank is heated by circulating its water through a flat plate heat exchanger in the glycol loop. A 190 trench was dug between the collectors and the house for the heat transfer tubes. It was put for the most part in the shortest distance between the two. PEX was run through the middle of 8 x 9.6 extruded styrene blocks. These were made from 2 sheet. During the week of 11/20/09, the solar system was installed. A controller was programmed to control the entire heat collection system along with enabling heat extraction alone or in parallel with the gas furnace. The basic control elements for the system were programmed. Others will be added as time permits and desired. Additional controller items desired: data logging to a SD card error/ problem detection summer / winter profiles pump modulation various statistics efficiency based upon output and calculated sun position. Two additional panels were installed the last week of 2009 for a total of 240 sq ft of active collector area. One added panel was the prototype panel with updates. The original vinyl glazing was dead after a year. The framing was made per Gary s design rather than the one I detailed. As I have concluded that conductivity across the aluminum is a limiting factor, I decided to experiment with this. I added secondary absorbers ( on top of original ones). The base aluminum panels were 3.75 wide prior to forming. These had the typical RTV bead down the center then were stapled on top of the original absorbers. It is noteworthy to mention that many of the 1 yr old stainless staples could be pulled from the OSB with a fingernail. This panel stagnated most of the summer though the vinyl deformed at the top and had a big air leak. The second added panel was fashioned after Tom s: plywood, insulation, then absorber. The rest of the panel is per my 6 panel construction methods. Performance: When sunny, the system starts collection at 9-9:30 AM and makes useful heat for the house until 3-3:30 PM. It sometimes makes some useful heat for the workshop after 3PM but this depends on how much heat the house needs during the day. The system does not measure heat added to the shop, this is done solely on collector temperature. The shop floor is assumed to be 50 degrees. The system seems to product 1/4 to ½ of sunny output for mildly overcast days. The log (just below) was from a 30 degree day. Measured heat collection is about 155kbtu. This is to the house and is net of any losses from the collectors to the house. Performance with below zero temperatures is at least 135kbtu / day. There have been very few sunny days since the switch was turned on.

Page 8 of 8 Temperature losses due to the trench seem to be mainly due to night time cooling. Quick measurements of trench in and out temperatures do not show measurable losses. Click on graph for full size Areas for improvement: The delta between tank temperatures and outgoing water is excessive. At 15 degrees, this is costing near 10 btu / sq ft hr. I intend to make the flat plate heat exchanger also service the house tank. I will make a tight coil of PEX or HDPE and drop this in the hot water tank. The pump will then circulate the water in through rather than directly from the tank. A second 10 watt pump will circulate water from the house tank directly through the heat exchanger. This will drastically reduce the glycol to collector temperature. Additional flow through the collectors would be beneficial. Presently, a rate of 2.6 GPM is calculated based upon delta T and tank temperature rise. A high head Grundfos UPS29-99 pump is used. The plumbing to the collectors contains many PEX to brass T s and such that probably have considerable flow restrictions. These will be investigated as to the likely pressure losses. They may be replaced with ¾ copper T s which would also remove 30 of travel but require flow balancing the collectors. A second pump would get the flow to about 4 GPM at a cost of 170 additional watts. Drain back While good intentioned, this seems more effort than it is worth. The system is designed to allow for closed loop drain back operation. The intent was to pneumatically pressurize the house expansion tank and depressurize the shop expansion tank. The drain back would add 5-10kbtu / day. This is quite low on the to do list. Time would be better spent adding insulation to the house. To Do: Complete and install remaining 1 + 2 x ½ collectors for the final 60 sq ft. Update controller program. Investigate performance enhancement. Chad April/May 2009, and updated January 2010 Chad will answer email questions here: Clendenc AT execpc DOT com (replace AT with @, and DOT with a period) Gary April 26, 2009, May 29, 2009 Contact/About Legal Disclaimer Copyright 2005-2011 by Gary Reysa