AMMONIA DETECTION BY LASER THE NEXT GENERATION OF AMMONIA DETECTION

Similar documents
Preventing False Alarms in Ammonia Gas Detection Systems

Presentation to. IOSH Food and Drink Group. Danny McDougall Richard Perkin

JAMES MOODY IM FLASH LIFE SAFETY AHJ

Senscient s team has more than 150 years collective experience in gas. detection.

Fixed Ammonia Gas Detection. Why it's needed and what it can do for you.

ASHRAE Safety Standards. Mechanical Rooms and Gas Detection in Commercial Applications

Alphasense Application Note AAN 106 HUMIDITY EXTREMES: DRYING OUT AND WATER ABSORPTION

Gas detector tubes are most effective as a reference device for conducting spot checks, which gives an idea of present gas at that moment in time.

IMR IX176 Portable Gas Detector User Manual

Model GD Instruction Manual. Combustible Gas Leak Detector. reedinstruments. www. com

VOCs in soil remediation

Gas Detection in Process Industry The Practical Approach

DGS - Danfoss Gas Sensor Check / Calibration Procedure

Process Control PIP PCEA001 Fixed Gas Detection Guidelines

VASTHI ENGINEERS. Vasthi Multi Gas Monitor/Analyzer. Sheet No. 1 of 4. Vasthi Multi Gas monitor/analyzer with alarm and Graphical Display.

5 Operating Modes GX Smallest 6 gas sample draw PID library of over 600 VOC s 2 Interchangable smart sensor slots

5 Operating Modes GX Smallest 6 gas sample draw PID library of over 600 VOC s 2 Interchangable smart sensor slots

GASGUARD NH 3. Ammonia Sensor OPERATING & INSTALLATION MANUAL

Gas detecting sensor Types GDA, GDC, GDHC, GDHF, GDH

INSTRUCTION MANUAL GAS LEAK DETECTOR CD200

Visual Leak Detectors for Hydrogen Equipment. Presented by

Oxygen Deficiency Monitor and Oxygen Analyzers. Oxygen Sensors for 0-25% and ppm

RK Multi Point Detector Operator s Manual

up to 1.2 m or 3.9 ft. deep). So if you drop the Honeywell BW Ultra in a vat or take it into a dust-prone environment,

FIRE & SAFETY SPRING 2016 EDITION

Many different instruments Many different operating principles including: May sample many different gases & vapour From relatively simple to complex

Ammonia Refrigeration: What should you keep in mind?

Selecting Gas Detectors for Confined Space Entries

White Paper. Critical Considerations for Monitoring Low Levels of Hydrogen Sulfide. by Jacob Spector and Kirk Johnson

Operate the Mutli-Gas Monitor PID

NJSP HMRU. Module 5 B HM Operations 1

INSTRUCTION MANUAL CD Fax: (503)

White Paper. Building a Better Ammonia Sensor A new and improved approach to ammonia gas detection

incontrol Systems Inc. Flame and Gas Detection

GUIDELINES. Nov GAS DETECTION SYSTEMS FOR THE REFRIGERATION INDUSTRY - AN OVERVIEW

VASTHI ENGINEERS. Vasthi Explosive Meter Sheet No. 1 of 5. Vasthi Monitors for Combustible Gas.

Structural Fires: Selected Guidance from NYS Department of Health

Travis County Emergency Services District #1 Standard Operating Guidelines

HAZARDOUS MATERIALS (HAZMAT)

Manhattan Fire Protection District

FIRE SAFETY 2013 ANNUAL REPORT. Author: Senior Fire Safety Advisor Contact Details for further information: Frank Barrett

Carbon Monoxide (CO) Gas Detector March 15 GCO 300

ST-IAM Sensor Transmitter Integrated Area Monitor. Check / Calibration Procedure* 10 ASH (1)

Instruction Manual Model GX-82 Portable Three Gas Monitor

Guide to Explosion Protection and Plant Safety

Instruction Manual Model GX-86 Portable Four Gas Monitor

MGD Murco Gas Detector. Check / Calibration Procedure* 10 ASH (1)

E1000 Portable gas detector

Multi-Criteria Fire Alarm (Mcfa)

Macurco Gas Detection Products

Safe Operation Manual. Honeywell IQ Force Gas Detector

IMR EX610. Portable Gas Detector. Operation Manual

GasAlertMicroClip X3 Specifications

Setting the alarms in electrochemical sensor equipped toxic gas instruments

Monitoring Flammable Vapors and Gases in Industrial Processes

GASGUARD LEL 3 OPERATING & INSTALLATION MANUAL

GasAlertMicro 5. 1, 2, 3, 4, and 5 Gas Detectors. Quick Reference Guide

4-20mA CYBER Cyber Transmitter for flammable, toxic and IR gas detection Cyber Head Increased security in ATEX certified head

GS100M Gas Detection Controller

Alternative refrigerants or HFCs: an obvious choice? Safety first when choosing a refrigerant!

Gas detection for your safety

Your trusted partner in providing the best fixed Gas Detection Sales and Service in Western Canada

GENERAL STANDARD FOR GAS DETECTORS ORIGINAL EDITION MAY 1997

Refrigerant Leak Detection Solutions

Frequently Asked Questions

Application Bulletin. LNG / LPG Facilities FLAME AND GAS DETECTION FOR LNG FACILITIES

G450. Multi-gas Detector. Field Operation Manual Oak Valley Dr, Ste 20, Ann Arbor MI USA (800) (734)

Opening up the Gas Market (OGM) Project Oban - Laboratory and Field Testing Results

NATURAL GAS DETECTOR. Confined Space Monitor. Leak Investigation. Line Purge Testing. Bar Hole Sampling

RK-05 Carbon Monoxide Detector Operator s Manual

RK/ RK Combustible Gas Detector Operator s Manual

EAGLE 2. 6 Channel Capacity. Inlet fitting. Loud buzzer (95dB) IrDA communication port Low flow shutoff and alarm Alarm LED s with wide visibility

RK-02 Multi Point Detector Operator s Manual

Gas Detection. - Disposable - Serviceable. Single Gas Detectors

CH 4 C 2 H 2 C 3 H 8 CO 2 H 2 H 2 S HFC NH 3 NO 2 O 2 O 3 SO 2

Gas Detection Sensor type GDA, GDC, GDHC, GDHF, GDH REFRIGERATION AND AIR CONDITIONING. Technical leaflet

Intelligent Earliest Warning Aspirating Fire Detector

Models TX-KE and TX-KP Toxic Gas Transmitters

Quality. Water. Water Quality. Testing. Testing. Toxic Gas Detection. Toxic Gas. Detection. Air Quality. Monitoring. Monitoring. Monitoring.

LABORATORY SAFETY SERIES: Planning For Emergencies

Dräger X-am Dräger X-am 3000: Designed for the harshest industrial environments.

GASGUARD NH 3 2% Ammonia Sensor OPERATING & INSTALLATION MANUAL

Catalytic Bead DrägerSensors for Fixed Gas Detectors

Guidance for Stationary Refrigeration & Air-Conditioning

GG-NH3 AMMONIA GAS SENSOR. Installation and Operation Manual

INSTRUCTION MANUAL MODEL GX-82A

UreaKnowHow Leak Detection System

Portable Gas Detection Practice

Gas Detector Sensor Technology

Sirius MultiGas Detector

RK/ RK Oxygen Detector Operator s Manual

Operator s Manual. 1, 2, 3, and 4-Gas Detector

Recalibrate the way you look at gas detection

The safe choice. Now real safety is possible and easy. The evolution of safety. Fire resistant LSOH cables. Ecology Line. Traditional standard cables

Multi-Criteria Fire Alarm

Sensors for Cell Phones

Carbon Monoxide Alarm Response Guide. High Country Training Center Training On Demand

P R O D U C T S P E C I F I C A T I O N MSA Ultima X Series Sensor/Transmitter Specification

MODEL: SP12C7. (Portable 4 gas detector) Operating Manual

BETTER URBAN PLANNING

Transcription:

AMMONIA DETECTION BY LASER THE NEXT GENERATION OF AMMONIA DETECTION

Ammonia was amongst the world s first chemical refrigerants. Due to it s low cost, efficient cooling qualities and environmentally friendly credentials it remains one of the most popular, particularly for industrial and heavy commercial applications including cold stores, commercial fishing boats and meat processing plants. Ammonia, however is also harmful, even at low levels of exposure. According to the UK s Health Protection Agency s (HPA) Compendium of Chemical Hazards (PDF, 260 Kb) Minor exposures may result in a burning sensation of the eyes and throat and more substantial exposure may cause coughing or breathing difficulties. Very high exposure can be fatal and long term injuries to a high number of exposed personnel are not uncommon. NIOSH Pocket Guide to Chemical Hazards. lists the following exposure limits. TWA (Time Weighted Average): 25ppm STEL (Short Term Exposure Limit): 35ppm IDLH (Immediate Danger to Life & Health): 300 ppm LEL (Lower Explosive Limit): 15% A review of media reported incidents by the European Fluorocarbon Technical Committee (EFCTC) showed that ammonia leaks cause 140 injuries and 14 deaths a year. Due to the large volumes stored on premises and its vaporous nature, ammonia leaks are also frequently in the headlines often causing evacuation of the local area. These attention grabbing events adversely impact a company s reputation and its standing in the community. In response to these health and safety risks, regulators are tightening compliance regimes. In addition to rigorous health and safety laws making company directors more accountable for the safety of their staff, standards are being introduced in many geographies specifically for the management of ammonia. This means that company leadership needs to be forward thinking to prevent exposure to litigation. photonicinnovations.com 1

CURRENT SOLUTIONS TO AMMONIA DETECTION AND CHALLENGES ASSOCIATED WITH THESE SOLUTIONS Current ammonia detection methods fall into 3 broad categories. CHEMICAL SENSORS Chemical gas detectors work by allowing gases to diffuse through a porous membrane to an electrode where it is either chemically oxidized or reduced. The amount of current produced is determined by how much of the gas is oxidized at the electrode, indicating the concentration of the gas. It s primary advantage is its low upfront cost of between $1,000 and $3,000 per sensor. It s also easy to install. However, there are several challenges posed by this detection method, which include: 1. Frequent false alarms Cross reactivity to other gases of similar chemical structure makes chemical sensors prone to false alarms. A false alarm can lead to loss in production time (at least 60-80 mins while site evacuation occurs, 2. Requirement for regular maintenance Plant rooms usually contain a low level of background ammonia at sub alarm thresholds. This background exposure is continually reacting with chemical sensors, depleting the sensor itself. This results in recalibration on a regular basis. It s not unusual for sensor maintenance to be required quarterly or in less demanding environments bi-annually. This 3. Dead sensors Most operators switch off their ammonia sensors during periodic high concentrations of ammonia e.g. oil flush in an engine room (which can cause concentrations up to ~200 ppm). Whilst switching the alarm off prevents a false alarm it doesn t protect the sensor from degrading in the presence of the high levels of ammonia. If a sensor is exposed to enough ammonia, or similar volatile gas, the sensor will be rendered dead. Replacing sensors is costly and will eat into capital expenditure. the alarm is investigated and the all clear is given) which can lead to financial losses (e.g. a typical meat processor produces around 200 kgs/minute) plus overtime payment to cover the targeted deadline. maintenance does however result in an ongoing cost which can be as high as $1,000 per sensor per year. It can also be a logistical burden to the operation. The calibration process sometimes requires the sensors to be taken to an off-site facility which renders the site vulnerable to volatile gas leaks. Chemical sensors behave like a battery. They have a definitive usage limit measured in ppm/hours. For example, if an ammonia cell is rated for 10,000 ppm/hours that means it can be exposed to 5,000 hours of 2ppm ammonia or 1000 hours of 10ppm. Exposure to a significant amount of ammonia can render all the devices on the site dead requiring capital expenditure to replace. photonicinnovations.com 2

SOLID STATE (CATALYTIC ) Solid state, or catalytic gas detectors are typically constructed from a treated wire filament which becomes oxidised upon exposure to a volatile gas. A reference cell is used to indicate the change in resistance generated by the heat which is proportional to the concentration of combustible gas. The advantage that solid state detectors offer are low price with easy installation. They also however share similar challenges to the electrochemical sensors i.e. frequent false alarms, maintenance costs, regular calibration, sensor replacement, lag in response times etc. OLFACTORY SENSOR (HUMAN NOSE) Because ammonia has a recognisable odour it has, in the past, been easy for plant operators to lean on their staff to detect the smell of ammonia. The advantage this offers is it s up front cost efficiency, zero dollars. There are however several distinct problems with this option. 1. Olfactory Variety Most agree that ammonia has a powerful scent, but not everyone agrees on how much ammonia is present by the time we can smell it. The Odour Threshold for ammonia has been documented in different studies as low as 0.04 ppm and as high as 57 ppm. For example: The US Coast Guard Manual says the Odour Threshold for ammonia is 46.8 ppm The American Association of Railroads says most people can smell ammonia between 0.04 to 20 ppm. 2. Olfactory Fatigue Olfactory fatigue is a common occurrence with many volatile chemicals including ammonia if workers are constantly exposed to low ambient levels of ammonia their ability to detect a larger more significant quantity may be compromised. photonicinnovations.com 3

HOW DOES PHOTONIC INNOVATIONS LTD S PATENTED LASER TECHNOLOGY SOLVE THESE PROBLEMS? FREQUENT FALSE ALARMS VS HIGH FIDELITY LASER Photonic Innovations Ltd (PIL) laser sensors are programmed to lock onto a unique absorption feature of the target gas, in this case ammonia. This renders an extremely high detection fidelity. This technology allows it to avoid the false alarms common in chemical sensors that occur due to cross gas reactivity and sensor depletion. REQUIREMENT FOR REGULAR MAINTENANCE VS SENSORS THAT DON T DEPLETE PIL s laser sensors are not depleted upon exposure to ammonia and other toxic gases. This means that frequent maintenance/calibration is no longer a requirement. With no filaments or chemical components, there is no need to calibrate the device and no need to replace sensors. PIL s laser sensors are not depleted upon exposure to ammonia and other toxic gases. This means that frequent maintenance/calibration is no longer a requirement. DEAD SENSORS VS ULTRA RELIABLE SENSORS PIL s laser sensors monitor ammonia concentration in the engine rooms at all times without degrading due to prior exposure. This means response time is consistently high. When tested against a market leading ammonia detector (fixed module) as seen in figure 1 below, PIL s FLD 4000 (blue curve) responded an order of magnitude faster than the market leading ammonia detector (green curve); an important aspect when a massive gas leak or an explosion could be seconds away. continued on page 5 photonicinnovations.com 4

PIL correlated the FLD 4000 s ammonia detection capability against a hand held ammonia detector at one of their client s sites (see figure 2 below). Every engine room periodically flushes its pipes and valves with ammonia which results in an artificial ammonia leak (mostly >100 ppm). Old engine rooms often have a constant background of ammonia as a process byproduct (< 10 ppm). Both of these ammonia concentrations can result in gradual death of the electrochemical sensors. The graph shows PIL FLD 4000 s ability to register every rise and fall in ammonia concentration. The hand held detector s old sensor recorded the peaks in ammonia but failed to register every background event. [NH 3 ] (ppm) 50 40 30 20 10 pi* Electro-chemical Detector 0 0 10 20 30 40 50 Minutes from Start Figure 1: PIL FLD 4000 vs Market leader response test 140 120 PI* Detector Electro-chemical Detector PIL laser based detector offer a significantly faster response time and a greater sensitivity to the volume of the targeted gas. Ammonia Concentration (ppm) 100 80 60 40 20 0 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 Time Figure 2: PIL FLD 4000 vs Market leader s hand held detector photonicinnovations.com 5

Photonic Innovations Ltd (PIL) laser sensors are programmed to lock onto a unique absorption feature of the target gas, in this case ammonia. This renders an extremely high detection fidelity. LASER TECHNOLOGY: A GENERATION AHEAD. The current crop of ammonia detectors offer a low up front investment and a significantly less compromised mechanism for gas detection than the human nose. Compared to laser based gas detection, they bear a high maintenance burden and, due to their depletive qualities, demonstrate slower response time and a degree of unreliability between calibration cycles. The result of this can be false alarms which has a knock on effect on productivity. The slow response time may also compromise how effective avertive action may be in response to an emergency. Figure 3: PIL OPLD 4000 records a routine background concentration of ~5-10 ppm at a client s site PIL s laser based detector offers a significantly faster response time and a greater sensitivity to the volume of the targeted gas. Safety of workers is improved and the integrity of business is preserved. For sales-related inquiries or further information, please contact: Daniel Healy daniel@photonicinnovations.com +64-225 214 261 +64 3 479 9973 photonicinnovations.com 6