Shortcut Model for Predicting Refrigeration Cycle Performance

Similar documents
Low Temperature Separation Systems. Separation Process

A Novel Freeze Drying Process by Using Self-Heat Recuperation Technology

Implementation and testing of a model for the calculation of equilibrium between components of a refrigeration installation

Identification of the Most Effective Heat Exchanger for Waste Heat Recovery

Modelling of divided wall column

MODELLING AND OPTIMIZATION OF DIRECT EXPANSION AIR CONDITIONING SYSTEM FOR COMMERCIAL BUILDING ENERGY SAVING

The Effect of Condenserfluid Quality on the Performance of a Vapour Compression Refrigeration Cycle A Simulation Model Approach

A New Graphical Approach for Heat Exchanger Network Retrofit Considering Capital and Utility Costs

Evaluation of Sorbents at Elevated Temperatures for Downhole Application

Subscripts 1-4 States of the given system Comp Compressor Cond Condenser E Evaporator vol Volumetric G Gas L Liquid

CHAPTER 7 PERFORMANCE ANALYSIS OF VAPOUR COMPRESSION REFRIGERATION SYSTEM IN HYBRID REFRIGERATION SYSTEM

Analysis of Constant Pressure and Constant Area Mixing Ejector Expansion Refrigeration System using R-1270 as Refrigerant

Minimising Energy Use in Milk Powder Production using Process Integration Techniques

Optimization of Cooler Networks Considering Different Types of Cooling

Pressure Enthalpy Charts

International Journal of Research in Engineering and Innovation Vol-1, Issue-5 (2017), 68-72

An Experiment of Heat Exchanger Produces Hot Water Using Waste Heat Recovery from Air Conditioning

4th International Conference on Sensors, Measurement and Intelligent Materials (ICSMIM 2015)

1.1. SCOPE OF THE WORK:

WORK STUDY ON LOW TEMPERATURE (CASCADE) REFRIGERATION SYSTEM

POTENTIAL OF NON - AZEOTROPIC REFRIGERANT MIXTURE AS WORKING REFRIGERANT IN HOT WATER HEAT PUMPS. FJ Smit and JP Meyer

Economic Analysis Based on Energy and Water Consumptions between Air-Cooling and Water-Cooling

ME 410 MECHANICAL ENGINEERING SYSTEMS LABORATORY MASS & ENERGY BALANCES IN PSYCHROMETRIC PROCESSES EXPERIMENT 3

COMPARATIVE ANALYSIS OF SINGLE AND DOUBLE EFFECT LiBr-WATER ABSORPTION SYSTEM

Thermodynamics I. Refrigeration and Heat Pump Cycles

ADVANCES in NATURAL and APPLIED SCIENCES

Some Modeling Improvements for Unitary Air Conditioners and Heat Pumps at Off-Design Conditions

Role of Nano-technology for improving of thermal performances of vapour compression refrigeration system (VCRS): An Overview

Numerical Analysis of Heat Transfer in Radiant Section of Fired Heater with Realistic Imperfect Geometry of Tube Coil

Chapter 9. Refrigeration and Liquefaction

Experimental Study on Match for Indoor and Outdoor Heat Exchanger of Residential Airconditioner

3. (a) Explain the working of a rotary screw compressor. [10] (b) How the capacity control is achieved in refrigerant compressor?

Modelling of End-use Electricity Consumption and Saving Potential in Household Sector in Northern Thailand

Performance Comparison of Ejector Expansion Refrigeration Cycle with Throttled Expansion Cycle Using R-170 as Refrigerant

Experimental Research On Gas Injection High Temperature Heat Pump With An Economizer

Scientific Principals and Analytical Model. Charcoal Cooler. Lisa Crofoot MECH 425, Queens University

ENERGY SAVINGS THROUGH LIQUID PRESSURE AMPLIFICATION IN A DAIRY PLANT REFRIGERATION SYSTEM. A. Hadawey, Y. T. Ge, S. A. Tassou

ENERGY ANALYSIS OF HEAT PUMP WITH SUBCOOLER

A Theoretical investigation on HC Mixtures as Possible Alternatives to R134a in Vapor Compression Refrigeration

Design Procedure for a Liquid Dessicant and Evaporative Cooling Assisted 100% Outdoor Air System

Lesson 25 Analysis Of Complete Vapour Compression Refrigeration Systems

ME 410 MECHA ICAL E GI EERI G SYSTEMS LABORATORY

Performance investigation of Air-conditioning system using ejector as expansion device

Volume 2, Issue 4 (2014) ISSN International Journal of Advance Research and Innovation

System Modeling of Gas Engine Driven Heat Pump

Refrigerator and Heat Pump Objectives

EVALUATION OF REFRIGERANT R290 AS A REPLACEMENT TO R22

Experimental Investigate on the Performance of High Temperature Heat Pump Using Scroll Compressor

Design of Divided Condensers for Desiccant Wheel-Assisted Separate Sensible and Latent Cooling AC Systems

Performance Enhancement of Refrigeration Cycle by Employing a Heat Exchanger

Innovative Hybrid Heat Pump for Dryer Process Integration

NUMERICAL SIMULATION OF VAPOUR COMPRESSION REFRIGERATION SYSTEM USING REFRIGERANT R152A, R404A AND R600A

NUMERICAL SIMULATION OF VAPOUR COMPRESSION REFRIGERATION SYSTEM USING REFRIGERANT R152A, R404A AND R600A

"COP Enhancement Of Domestic Refrigerator By Sub cooling And Superheating Using Shell &Tube Type Heat Exchanger"

Performance analysis of a vapour compression refrigeration system with a diffuser for theeco-friendly refrigerants R-134a, R-600a and R-152a

Modeling of a regenerative indirect evaporative cooler for a desiccant cooling system

Thermodynamic Analysis of Cascade Refrigeration System Using R12-R13, R290-R23 and R404A-R23

(Refer Slide Time: 00:00:40 min)

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 04 Issue: 05 May p-issn:

PREDICTION OF THE PRESSURE DROP OF CO 2 IN AN EVAPORATOR USED FOR AIR COOLING ABSTRACT 1. INTRODUCTION 2. EXPERIMENTAL SET-UP AND PROCEDURE

International Journal of Engineering & Technology Sciences Volume 03, Issue 01, Pages 55-64, 2015

Homework Chapter2. Homework Chapter3

ASSESSMENT OF R430A REFRIGERANT AS A POSSIBLE SUBSTITUTE TO R134A REFRIGERANT IN LARGE CAPACITY FREEZER

Feasibility of Controlling Heat and Enthalpy Wheel Effectiveness to Achieve Optimal Closed DOAS Operation

Comparison Simulation between Ventilation and Recirculation of Solar Desiccant Cooling System by TRNSYS in Hot and Humid Area

Modelling the Performance of a Diffusion Absorption Refrigeration System

Chapter 10. Refrigeration and Heat Pump Systems

9. ENERGY PERFORMANCE ASSESSMENT OF HVAC SYSTEMS

PRESSURE-ENTHALPY CHARTS AND THEIR USE By: Dr. Ralph C. Downing E.I. du Pont de Nemours & Co., Inc. Freon Products Division

Effect of the Outlet Air Reuse on Thermal Efficiency of a Pilot Plant Spray Dryer with Rotary Atomizer

A Generalized Correlation for Pressure Drop of Refrigerant R-134a through Helical Capillary Tubes

Techniques of Heat Transfer Enhancement and their Application. Chapter 4. Performance Evaluation Criteria for Two-Phase Heat Exchangers

Capillary Tube and Thermostatic Expansion Valve Comparative Analysis in Water Chiller Air Conditioning

Thermodynamic analysis of air cycle refrigeration system for Chinese train air conditioning

EXPERIMENTAL PERFORMANCE ANALYSIS OF AN AMMONIA-WATER DIFFUSION ABSORPTION REFRIGERATION CYCLE

c Dr. Md. Zahurul Haq (BUET) Refrigeration Cycles ME 6101 (2013) 2 / 25 T270 COP R = Q L

Refrigeration Cycles. Refrigerators, Air-conditioners & Heat Pumps. Refrigeration Capacity/Performance. Dr. Md. Zahurul Haq

Modeling And Testing Of R23/R134a Mixed Refrigerant System With Water Cooled Separator For Low Temperature Refrigeration

T270 COP R = Q L. c Dr. Md. Zahurul Haq (BUET) Refrigeration Cycles ME 6101 (2017) 2 / 23 T354

Feasible Working Domains Decision Support for Heat Pump Projects

Efficiency of Non-Azeotropic Refrigerant Cycle

Numerical Study on Improvement of COP of Vapour Compression Refrigeration System

Chapter 11 REFRIGERATION CYCLES

ME 354 THERMODYNAMICS LAB THE REFRIGERATION CYCLE

Life-Cycle Energy Costs and Greenhouse Gas Emissions for Gas Turbine Power

Control Method Of Circulating Refrigerant Amount For Heat Pump System

Thermal Design of Condenser Using Ecofriendly Refrigerants R404A-R508B for Cascade Refrigeration System

AIR CONDITIONER PERFORMANCE RATING

EXERGY ANALYSIS OF DOMESTIC REFRIGERATOR WITH DIFFERENT REFRIGERANTS

International Journal of Research in Engineering and Innovation Vol-3, Issue-1 (2019), 1-5

Numerical Studies On The Performance Of Methanol Based Air To Air Heat Pipe Heat Exchanger

Feasibility study on an energy-saving desiccant wheel system with CO 2 heat pump

Dynamic Simulation of Liquid Chillers

The Refrigeration Cycle

Compendium DES July 2016, CARN

Analysis of Coefficient of Performance & Heat Transfer Coefficient on Sterling Cycle Refrigeration system.

Maximum Obtainable Efficiency For Engines And Refrigerators Based On The Stirling Cycle

Combination unit to support instruction in Thermodunamics, Fluid Mechanics, and Heat Transfer

A WET-VAPOUR INJECTION AND VARIABLE SPEED SCROLL COMPRESSOR AIR TO WATER HEAT PUMP MODEL AND ITS FIELD TEST VALIDATION

HEFAT th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics Sun City, South Africa Paper number:pp1

Transcription:

17 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 5, 15 Guest Editors: Petar Sabev Varbanov, Jiří Jaromír Klemeš, Sharifah Rafidah Wan Alwi, Jun Yow Yong, Xia Liu Copyright 15, AIDIC Servizi S.r.l., ISBN 978-88-9568-36-5; ISSN 83-916 The Italian Association of Chemical Engineering www.aidic.it/cet DOI: 1.333/CET15537 Shortcut Model for Predicting Refrigeration Cycle Performance Asma Etoumi a *, Megan Jobson b, Mansour Emtir a a Libyan Petroleum Institute, Tripoli, Libya, P.O. Box 631 b Centre for Process Integration, School of Chemical Engineering and Analytical Science, The University of Manchester etomi6@yahoo.com Compression refrigeration systems are very widely used to provide cooling to sub-ambient processes. The power demand of the cycle depends strongly on the temperature at which cooling is required, the temperature at which the refrigerant is condensed, as well as the type of refrigerant being used. At lower temperatures (typically lower than C), complex refrigeration schemes, such as cascaded refrigeration cycles, may be needed, increasing the complexity of the models used to predict the power requirements for a given cooling demand. This work proposes a simple model for predicting the power consumption of such complex cycles, based on regression of more rigorous process simulation models. A simple linear refrigeration model which relates the actual power demand of a refrigeration cycle to the ideal performance (i.e. the Carnot cycle) is developed. The model predicts the power demand prior to design of the refrigeration scheme given the condensing and evaporation temperatures of the refrigerant. The model predictions are shown to be in good agreement with those of more accurate simulation models. Case studies demonstrate the validity of the refrigeration model. The predicted power demand is shown to be within 1 % of that of Branan (5). The simplicity of the model enables its use for optimizing the design conditions of a complex refrigeration cycle and/or the associated processing conditions. 1. Introduction A refrigeration system is needed to provide cooling to a process stream at temperatures below ambient. Heat is removed from a process stream at a low temperature (heat source) and rejected to a heat sink, a process sink stream or a utility such as cooling water. To transfer heat from a low-temperature heat source to a high-temperature heat sink, compression work is needed. Figure 1 shows a simple vapourcompression cycle and a cascaded refrigeration cycle. Cascade cycles are usually applied in two cases (Tahouni et al., 13): 1) when the temperature range between condensation and evaporation cannot be covered by any single refrigerant and ) when use of a single refrigerant cycle consumes more work than a cascade cycle. Condenser Compressor Power Valve Evaporator Power 1 (a) (b) Figure 1: (a) Simple refrigeration cycle, (b) Cascaded refrigeration cycle Please cite this article as: Etoumia A., Jobson M., Emtir M., 15, Shortcut model for predicting refrigeration cycle performance, Chemical Engineering Transactions, 5, 17- DOI:1.333/CET15537

18 Branan (5) presented graphs that help prediction of power requirements for simple and multi-level refrigeration cycles at various temperature ranges using propane, propylene, ethane or ethylene as the refrigerant. Since it is more convenient to use correlations for evaluation of refrigeration requirements during separation process design and optimization, there have been several attempts to establish an analytical expression for predicting the actual coefficient of performance, COP act, which is the ratio of the refrigeration cooling duty to the work input into the system (Eq(1)). Shelton and Grossmann (1985) developed a model to predict the coefficient of performance of simple refrigeration cycles that is a function of system temperatures and thermal properties of a refrigerant (i.e. specific heat capacity and molar latent heat of vaporization). The model can be used in preliminary design calculations and in optimization where evaluation of a large number of cycles may be required. Bahadori and Mokhatab (7) proposed a polynomial correlation to estimate compressor power demand and condenser duty per unit of refrigeration duty for three-level refrigeration cycles using propane as the working fluid. The theoretical basis of the correlation, a function of only evaporating and condensing temperatures is not reported. The correlation can be applied only for multi-level cycles within a narrow range of evaporating temperatures, to 6 C. Moreover, an option to reject heat to lower temperature heat sinks, rather than to cooling water or air, is not considered. Yang et al., (1) proposed to use the reverse Carnot model, as shown in Eq(), to calculate the actual performance and the power requirement of a refrigeration cycle in heat exchanger network design with heat pumps. The Carnot efficiency is assumed to be.6. while this value can give good predictions of the shaft work for refrigeration systems providing cooling at temperatures down to approximately C, for lower operating temperatures the Carnot efficiency may be as low as. (Broughton, 199). COP Q evap act * COPideal (1) W COP T evap ideal () Tcond Tevap Where Q evap is the cooling duty, W is the actual shaft work, T evap and T cond are the absolute temperatures of evaporation and condensing of the refrigerant. In this work, to estimate the actual shaft work of practical refrigeration cycles, rather than assuming a constant Carnot efficiency, η, a new correlation is proposed to predict the COP act as function of the ideal performance (i.e. the Carnot cycle).. Methodology The first step in building the new refrigeration model is to generate performance data using a rigorous simulation package, Aspen HYSYS, where it is assumed that the detailed thermodynamic and unit operation models provide a relatively realistic representation of the refrigeration cycle. Inputs to the simulation software include the refrigerant evaporating temperature, process cooling duty and refrigerant condensing temperature. Rigorous simulations of refrigeration cycles are carried out with the following assumptions: 1. Soave-Redlich-Kwong equation of state is used to calculate thermodynamic and physical properties.. A centrifugal compressor that has an adiabatic efficiency of 75 % compresses the refrigerant. 3. Let-down valves are adiabatic.. There is negligible pressure drop in heat exchangers and pipe work and no heat gains or losses. 5. The refrigerant leaves the condenser as a saturated liquid and leaves the evaporator as a saturated vapour. 6. In a cascaded system, the temperature difference between the condensing temperature of the lower cycle and the evaporating temperature in the upper cycle is 5 C. 7. The temperature difference between the process source stream temperature and the evaporating temperature is 5 C. 8. The condensing temperature is variable; to account for heat rejection to ambient media or other heat sinks. The simulation outputs include the compressor power demand and the refrigerant condenser duty. The simulation is repeated for an appropriate range of operating conditions (evaporation and condensing temperatures). The inputs and outputs are then used to correlate the actual COP with the ideal COP. For example, Figure shows a linear relationship between COP ideal and COP act for a cascaded refrigeration system, where ethylene and propylene are used in the lower and upper cycles. The partition

temperature between the two cycles is optimised to minimise the total shaft work of the cascaded system. The comparison between the simulated results and the computed values of COP act yields a coefficient of determination, R of 99.5 % for the cascaded system. Figure 3 illustrates the linear relationships between COP ideal and COP act for simple cycles. The linear models of Figures and 3 can be applied (within the appropriate range of evaporating and condensing temperatures) to predict compression power requirements more accurately than when assuming a Carnot efficiency of.6. 19 COPact 6 5 3 1 Y =.596x -.13 R =.995 Evaporation temperature range: -1 to -9 C Condensing temperature range: - to 6 C 6 8 1 COP ideal Figure : Linear model for cascaded cycles using ethylene/propylene as refrigerants. (a) COP act 1 1 1 8 6 Y =.758x -.77 R =.999 Evaporation temperature range: -7 to C Condensing temperature range: - to 6 C 5 1 15 COP ideal (b) COP act 1 1 1 8 6 Y =.71x -.81 R =.993 Evaporation temperature range: -1 to -1 C Condensing temperature range: -1 to -9 C 5 1 15 COP ideal Figure 3: Linear model for a simple cycle using (a) propylene as refrigerant, (b) ethylene as refrigerant. The relative error of the models, i.e. the difference between the rigorously calculated COP act (HYSYS) and the predicted COP act (model), divided by the rigorous COP act (HYSYS), is less than or equal to 5 % for 85 % of the sample in the three models shown. Further statistical tests confirm the adequacy of the linear models. For example, Figure presents a parity plot and a residual plot for the cascaded cycles; the model matches the simulation results nearly perfectly. It may be seen in Figure (for the cascaded cycles) that there is no systematic variation between predictions of the new model and rigorous simulation results. The same approach has been applied to other refrigerants and similar results were obtained, in terms of

accuracy. The potential benefit of the linear model is that it is fast and easy to implement in a synthesis framework for evaluating refrigeration power demand, as will be illustrated in the next section. COP Model COP HYSYS - COP Model 1.5 -.5-1 (a) Residual plot 1 3 5 6 7 3.5 3.5 1.5 1.5 y =.996x +.87 R² =.995 (a) Parity plot 1 3 COP Ideal COP HYSYS Figure : (a) Residual plot; (b) Parity plot of the model in Figure (ethylene/propylene cascaded system). 3. Model validation and implementation Case 1: Prediction power requirement in simple refrigeration cycle In this case, the models are validated against the published data of Branan (5). A simple propylene refrigeration cycle is investigated for refrigeration evaporating temperature of 35 C, condensing temperature of 3 C and refrigeration duty of 53 kw. The coefficient of performance predicted using the published data of Branan is 1.8 (W = 91 kw) while the COP act obtained using the equation presented in Figure 3 (b) is (W = 61 kw). It can be seen that the COP act predicted by the regressed correlation is within 1 % of that of Branan (5). These results indicate that the shortcut model can be used for preliminary estimation of refrigeration cycle performance. Case : Prediction power requirement in cascaded refrigeration cycle This case compares the total shaft work prediction by the shortcut model with the shaft work calculated using HYSYS and with the published data of Branan (5) when there is a large temperature difference between refrigerant condensing and evaporation. In this case, 53 kw cooling is required at a temperature of 8 C. The condensing temperature is assumed to be C. In the cascaded refrigeration cycle, as shown in Figure 1(b), ethylene and propylene are used to provide cooling at 8 C. Ethylene is the refrigerant in the lower cycle and propylene is used in the upper cycle. The partition temperature between the two cycles is optimised to minimise power demand, using rigorous simulation and found to be C, corresponding to a total shaft power demand of 781 kw. The results in Table 1 show good agreement between the model predictions and HYSYS results. To calculate the power demand from the refrigeration charts presented in Branan (5), the cascaded cycle is decomposed to two simple cycles; the condensing temperature of the lower cycle and the cooling duty of the upper cycle from HYSYS simulations are used for refrigeration power evaluation. Table 1 demonstrates that the shortcut model is able to predict the total power demand with reasonable accuracy in the absence of a detailed refrigeration system design. Table 1: Comparison of total shaft work calculated by rigorous model HYSYS, published data of Branan (5) and new model Power demand, kw % Error # Shortcut model 76 7 Published data of Branan (5) 196 + 63 = 819 5 HYSYS (reference case) + 581 = 781 # Relative to HYSYS simulation results

Case 3: Prediction power requirement in multi-stage refrigeration cycle - two heat sources and a single heat sink This case illustrates how the new models can be used to estimate the power demand in a multi-level cycle, with propylene as the refrigerant. The power demand in the two-level cycle is estimated by representing the two-level refrigeration cycle as a two parallel simple cycles, as shown in Figure (b) (Wang, 5). Case study data are given in Table. In this case, model results are compared in Table 3 with HYSYS simulation results, demonstrating the usefulness of the model for estimating the net power demand in complex refrigeration cycles. 1 Table : Problem data two heat sources and one heat sink (Wang, 5) Temperature ( C) Duty (kw) Heat source 1 3, Heat source 1.75 3, Heat sink 3 Overall temperature difference 3 C Table 3: Predicted power demand for complex cycle using HYSYS and new model Modelling approach Power demand (kw) % Error # Complex cycle (HYSYS) 981+,3 = 3,18 Two simple cycles (shortcut model) 1,937 + 9 =,859 1 Two simple cycles (HYSYS) 1,93 + 977 =,9 8 # Relative to complex cycle simulation in HYSYS T cond T cond Upper cycle T evap, Q evap T evap, Q evap T cond Lower cycle T evap1, Q evap1 T evap1, Q evap1 (a) T cond : Condeensing temperature T evap : Evaporating temperature Q evap : Evaporating duty (b) Figure : (a) Two-level refrigeration cycle; (b) Decomposition into simple cycles (adapted from Wang, 5). The error between the model and HYSYS predictions for overall shaft power prediction is about 1 %. As can be seen from the HYSYS simulation results for the two parallel cycles, this error arises mainly from the mixing effect at the inlet to the compressor in the two-level cycle. Nevertheless, this scale of error should be acceptable for preliminary estimation of refrigeration power consumption.. Conclusions In this work, a linear refrigeration model, regressed from rigorous simulation results, is proposed. This model can predict the shaft work of simple, cascaded and multi-level vapour compression refrigeration systems without the need for details of the refrigeration system design. The model requires only condensing and evaporating temperatures. To demonstrate the accuracy of the presented correlation, the

predictions of the shortcut model, rigorous simulation models and the published data of Branan (5) are compared results of the shortcut model are within 1 % of rigorous simulation results. This model has been implemented in the synthesis of a hybrid distillation-membrane separation process and its associated refrigeration system (Etoumi et al., 1). In future works, the published data of Branan (5) will be regressed and compared with the new refrigeration model to show the adequacy of the proposed correlation over a wide temperature range between which the specific source and sink operate. References Bahadori A., Mokhatab S., 7, Estimating design parameters in propane refrigerant systems, Pumps and Systems, November 7, 68-71. Branan C.R., 5, Rules of Thumb for Chemical Engineers: A manual of quick, accurate solutions to every day process engineering problems, Gulf Professional Publishing, Burlington, USA. Broughton J., 199, Process Utility Systems: Introduction to Design, Operation and Maintenance, Institution of Chemical Engineers, Rugby, Warwickshire, UK. Etoumi A., Jobson M., Emtir M., 1, Hybrid membrane-distillation separation processes, Chemical Engineering Transactions, 39, 175-18. Shelton M.R., Grossmann I.E., 1985, A shortcut procedure for refrigeration systems, Computers and Chemical Engineering, 96, 615-619. Tahouni N., Bagheri N., Towfighib J., Panjeshahi M.H., 13, Improving energy efficiency of an Olefin plant A new approach, Energy Conversion and Management, 76: 53-6. Wang J.,, Synthesis and optimisation of low temperature gas separation processes, PhD Thesis, the University of Manchester, UK. Yang M., Feng X., Liu G., 1, Heat exchanger design considering heat pump performance, Chemical Engineering Transactions, 39, 199-11.