ADVANCES in NATURAL and APPLIED SCIENCES

Similar documents
Enhancement of COP using Nanoadditives in Domestic Refrigerator

A performance study of Vapour compression refrigeration system using ZrO2 Nano particle with R134a and R152a

EXPERIMENTAL ANALYSIS OF VAPOUR COMPRESSION REFRIGERATION SYSTEM USING NANOREFRIGERANT

Heat Transfer Analysis of Vapor Compression System Using Nano Cuo-R134a

Performance Analysis of a Refrigeration System Using Nano Fluid

ENHANCEMENT OF HEAT TRANSFER USING NANO-REFRIGERANT. * Corresponding author s

VCR SYSTEM USING R-600a/ POE OIL/MINERAL OIL/NANO-SiO 2 AS WORKING FLUID: AN EXPERIMENTAL INVESTIGATION

A Review on Performance of Vapour Compression Refrigeration System Using Nano Additive Refrigerants

PERFORMANCE STUDIES ON A VAPOUR COMPRESSION REFRIGERATION SYSTEM USING NANO-LUBRICANT

Exergy and sustainability investigation of waste heat recovery vapor compression refrigeration system with silver Nano fluid

Performance Analysis of VCRS with Nano-Refrigerant

Role of Nano-technology for improving of thermal performances of vapour compression refrigeration system (VCRS): An Overview

ENHANCEMENT OF VAPOUR COMPRESSION REFRIGERATION SYSTEM USING NANOFLUIDS

Modelling of vapour compression refrigeration system (VCRS) by using alternative refrigerants with CuO and without Nano materials

EXPERIMENTAL INVESTIGATIONS ON AL 2 O 3 NANO REFRIGERANT WITH DIFFUSER AT CONDENSER INLET IN A VCR SYSTEM

Optimization of Capillary Tube Parameters in Vapour Compression System using Environmentally Friendly Refrigerant R1234yf

中国科技论文在线 Energy Conversion and Management 52 (2011)

ASSESSMENT OF R430A REFRIGERANT AS A POSSIBLE SUBSTITUTE TO R134A REFRIGERANT IN LARGE CAPACITY FREEZER

Subscripts 1-4 States of the given system Comp Compressor Cond Condenser E Evaporator vol Volumetric G Gas L Liquid

Performance Analysis of Electronic Expansion Valve in 1 TR Window Air Conditioner using Various Refrigerants

NUMERICAL SIMULATION OF VAPOUR COMPRESSION REFRIGERATION SYSTEM USING REFRIGERANT R152A, R404A AND R600A

WORK STUDY ON LOW TEMPERATURE (CASCADE) REFRIGERATION SYSTEM

Experimental investigation for enhancing thermal performance of vapour compression refrigeration system using nano fluids

Analysis of Constant Pressure and Constant Area Mixing Ejector Expansion Refrigeration System using R-1270 as Refrigerant

Effect of Inclination Angle in Heat Pipe Performance Using Copper Nanofluid

Experimental analysis of Vapour Compression Refrigeration System using the refrigerant with Nano particles

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 04 Issue: 05 May p-issn:

Global Journal of Engineering Science and Research Management

A Study of Refrigeration Applications Using Nanofluids

Performance Comparison of Ejector Expansion Refrigeration Cycle with Throttled Expansion Cycle Using R-170 as Refrigerant

NUMERICAL SIMULATION OF VAPOUR COMPRESSION REFRIGERATION SYSTEM USING REFRIGERANT R152A, R404A AND R600A

Experimental Analysis Of Vapour Compression Refrigeration System With Superheating By Using R-134a, R-12, R-717 Refrigerant

International Journal Of Core Engineering & Management (IJCEM) Volume 2, Issue 9, December 2015

Performance analysis of a vapour compression refrigeration system with a diffuser for theeco-friendly refrigerants R-134a, R-600a and R-152a

Theoritical Analysis For Miniature Vapor Compression Cycle Performance Using Microchannel And Finned Tube Condenser

A Review of Hydroflorocarbons (HFC S) Refrigerants as an Alternative to R134a Refrigerant

Experimental Evaluation on Exergy Analysis of Vapour Compression Refrigeration System Using LPG with TiO 2 -Nanoparticle

Study of Performance of Binary Mixture of R134a and R161 as a Substitution of R134a in a Domestic Refrigerator

International Journal of Engineering & Technology Sciences Volume 03, Issue 01, Pages 55-64, 2015

Thermodynamic Analysis of Cascade Refrigeration System Using R12-R13, R290-R23 and R404A-R23

PERFORMANCE OF DEEP FREEZER BY USING HYDROCARBON BLENDS AS REFRIGERANTS

EVALUATION OF REFRIGERANT R290 AS A REPLACEMENT TO R22

International Journal of Research in Engineering and Innovation Vol-1, Issue-5 (2017), 68-72

EFFECT OF INLET TEMPERATURE ON REYNOLDS NUMBER AND NUSSELT NUMBER WITH MIXED REFRIGERANTS FOR INDUSTRIAL APPLICATIONS

Numerical Study on Improvement of COP of Vapour Compression Refrigeration System

EXPERIMENTAL INVESTIGATION OF COMPARISION OF AIR COOLED AND WATER COOLED CONDENSER ATTACHED WITH COOLING TOWER

Seyedeh Sepideh Ghaffari 1 & Seyed Ali Jazayeri 2

Effect of capillary diameter on the power consumption of VCRS using different refrigerants

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 12, December

Available online at ScienceDirect. Energy Procedia 109 (2017 ) 56 63

Numerical Studies On The Performance Of Methanol Based Air To Air Heat Pipe Heat Exchanger

Study of R-161 refrigerant as an Alternate Refrigerant to various other refrigerants

Enhancement of COP by Using Spiral and Microchannel Condenser instead of conventional Condenser of VCR System

η second law = Second law efficiency

Performance Enhancement of Refrigeration Cycle by Employing a Heat Exchanger

Experimental Research On Gas Injection High Temperature Heat Pump With An Economizer

HEFAT th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics Sun City, South Africa Paper number:pp1

[Jhansi, 5(10): October 2018] ISSN DOI /zenodo Impact Factor

ADVANCES in NATURAL and APPLIED SCIENCES

Volume 4, Issue 1 (2016) ISSN International Journal of Advance Research and Innovation

PERFORMANCE OF VCRS SYSTEM WITH HEAT EXCHANGER AND PHASE CHANGE MATERIAL

ADVANCES in NATURAL and APPLIED SCIENCES

Performance Evaluation of R290 as Substitution to R22 & Mixture of Them in Vapour Compression Refrigeration System

ADVANCES in NATURAL and APPLIED SCIENCES

A Theoretical investigation on HC Mixtures as Possible Alternatives to R134a in Vapor Compression Refrigeration

Australian Journal of Basic and Applied Sciences. Investigation of New Eco Friendly Refrigerant Mixture Alternative to R134a in Domestic Refrigerator

Comparative assessment for drop in replacement of R134a in domestic refrigerator.

An Experimental Study of a Simple Vapour Compression Refrigeration System with Varying Parameters

Department of MCE, Islamic University of Technology 2. Abstract

International Journal of Informative & Futuristic Research ISSN (Online):

Exergy analysis of refrigeration system using R600a with TiO2 Nano lubricant

Effect of Operating Parameters on the Performance of Direct Evaporative Cooler

EXERGY ANALYSIS OF DOMESTIC REFRIGERATOR WITH DIFFERENT REFRIGERANTS

Performance Evaluation of R290 as Substitution to R22 & Mixture of Them in Vapour Compression Refrigeration System

Experimental Evaluation of Refrigerant Mixtures as Substitutes for HFC134a

Effects of evaporator load on vapour compression refrigeration system using ecofriendly hydrocarbon refrigerants with sub cooling

Comparative Study of Transcritical CO 2 Cycle with and Without Suction Line Heat Exchanger at High Ambienttemperature

Design of Divided Condensers for Desiccant Wheel-Assisted Separate Sensible and Latent Cooling AC Systems

Performance Enhancement of Refrigeration Cycle by Employing a Heat Exchanger

Performance of an Improved Household Refrigerator/Freezer

Volume 2, Issue 4 (2014) ISSN International Journal of Advance Research and Innovation

International Journal of Research in Engineering and Innovation Vol-2, Issue-2 (2018),

Capillary Tube and Thermostatic Expansion Valve Comparative Analysis in Water Chiller Air Conditioning

PERFORMANCE INVESTIGATION AND EXERGY ANALYSIS OF VCRS OPERATED USING R600a REFRIGERANT AND NANOADDITIVE COMPRESSOR OIL.

Study of R161 Refrigerant for Residential Airconditioning

"COP Enhancement Of Domestic Refrigerator By Sub cooling And Superheating Using Shell &Tube Type Heat Exchanger"

Sarthak Thakar, 2 R.P.Prajapati 1

Enhancement of COP in Vapour Compression Refrigeration System

International Journal of Research in Engineering and Innovation Vol-1,Issue-3 (2017), 37-48

A study of Transient Performance of A Cascade Heat Pump System

Design and Development of Water Cooled Condenser for Domestic Refrigerator

Experimental Analysis of a Stirling Refrigerator Employing Jet-Impingement Heat Exchanger and Nanofluids

Pressure drop analysis of evaporator using refrigerants R-22, R-404A and R-407C

International Journal of Research in Engineering and Innovation Vol-3, Issue-1 (2019), 1-5

IR-REVERSIBILITY ANALYSIS OF A SPLIT TYPE AIRCONDITIONER USING R600a AS REFRIGERANT

DESIGN AND ANLYSIS OF MODIFIED HYBRID SOLAR SYSTEM USING NANO FLUIDS

American International Journal of Research in Science, Technology, Engineering & Mathematics

Analysis of a Condenser in a Thermal Power Plant for Possible Augmentation in its Heat Transfer Performance

CFD Analysis of a 24 Hour Operating Solar Refrigeration Absorption Technology

4th International Conference on Sensors, Measurement and Intelligent Materials (ICSMIM 2015)

Transcription:

ADVANCES in NATURAL and APPLIED SCIENCES ISSN: 1995-0772 Published BYAENSI Publication EISSN: 1998-1090 http://www.aensiweb.com/anas 2017 Special 11(6): pages 508-516 Open Access Journal Performance Analysis of a Nano Refrigerant Mixtures in a Domestic Refrigeration System 1 B Pitchia Krishnan, 2 K Gokulnath, 3 R Dr.Vijayan, 4 A Ragland Gazetrin Prabhu 1,2,4 PG Scholar, Department of Mechanical of Engineering, Government College of Engineering, Salem, Tamil Nadu, 636011, India. 3 Professor and Head, Department of Mechanical of Engineering, Government College of Engineering, Salem, Tamil Nadu, 636011, India. Received 28 January 2017; Accepted 22 March 2017; Available online 28 April 2017 Address For Correspondence: B Pitchia Krishnan, PG Scholar, Department of Mechanical of Engineering, Government College of Engineering, Salem, Tamil Nadu, 636011, India. E-mail: b.p.krishnan001@gmail.com Copyright 2017 by authors and American-Eurasian Network for ScientificInformation (AENSI Publication). This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ ABSTRACT This analysis deals with performance analysis of nano-refrigerant (Al2O3-R290/R600a) in a Vapour Compression Refrigeration System. Analysis was done by writing a simulation program based on the steady state mathematical models of the VCR system. The effects of performance parameters such as mass flow rate, actual piston displacement of compressor, heat rejected in condenser and compressor power on the system performance was investigated by varying evaporating and condensing temperatures. The results indicates that when using Nano-refrigerant mixture, the Coefficient of performance, mass flow rate, actual piston displacement of compressor is slightly increased whereas heat rejected in condenser and compressor power is slightly decreased. KEYWORDS: Nano-Refrigerant, Al2O3-R290/R600a, Coefficient of performance, VCR. INTRODUCTION The most common refrigerant in current time is R134a in all the refrigeration systems like vapour compression refrigeration system, domestic refrigerators and air conditioners. But the only problem with this type of refrigerant is they need large amount of electric power. The new technology which is being introduced in present time is nanotechnology. By the help of nanotechnology nano refrigerants are formed. As compared to alternative refrigerant the nano refrigerant has better heat transfer. We have seen some research has been done by taking the nano refrigerant and they have found better heat transfer and energy consumption. Sheng-shan Bi et al. [5] studied the nanoparticles application in domestic refrigerators. They observed that HFC134a and mineral oil with TiO 2 nanoparticles works safely in the refrigerator. The HFC134a and nano particle/mineral oil system improves the refrigerator performance and TiO 2-R134a consumed less energy of 26.1%. Kai Guo et al. [6] states that TiO 2 R600a can work normally and efficiently in refrigerators. Compared with refrigerator with pure R600a as working fluids, 0.1 and 0.5 g/l concentrations of TiO 2-R600a can save 5.94% and 9.60% energy consumption respectively. Sabareesh et al. [7] presents the application of TiO 2 nanoparticles in vapour compression refrigeration systems-an experimental investigation. According to their results, the usage of nano refrigerant in the VCR system decreases compressor work by 11% and increases the COP. D. Sendil Kumar et al. [8] studied on Al 2O 3-R134a Nano Refrigerant in VCR System. They found that the replaced nano refrigerant increases the heat transfer rate.the system performance was improved with 10.2% less energy consumption when 0.2%v Al 2O 3-R134a refrigerant was added. Subramani et al. [9] investigated the performance of refrigeration system with the help of nano-lubricant. The results showed that SUNISO 3GS ToCite ThisArticle: B Pitchia Krishnan, K Gokulnath, R Dr.Vijayan, A Ragland Gazetrin Prabhu, Performance Analysis of a Nano Refrigerant Mixtures in a Domestic Refrigeration System. Advances in Natural and Applied Sciences. 11(6); Pages: 508-516

509 B Pitchia Krishnan et al., 2017/Advances in Natural and Applied Sciences. 11(6) Special 2017, Pages: 508-516 lubricant oil produced a very effective result. By usage of TiO 2 nano particles with R134a, the COP was increased and 15.4% less energy was consumed. In another work, D. Sendil kumar et al. [10] presents the ZnO nano refrigerant in R152a refrigeration system for energy conservation and green environment. The result indicates that ZnO nano particles improved the thermo physical properties of refrigerant. The system performance was significantly improved and 0.5%v ZnO-R152a refrigerant can save 21% energy consumption. T.Coumaressin et al. [11] presents the performance analysis of a vapour compression refrigeration system using CuO nano fluid. In this paper the VCR system was analyzed on FLUENT software with CuO-R134a as working fluid. The results showed that the evaporating heat transfer is improved by adding CuO nano particles to an alternate refrigerant R134a. Fadhilah et al. [12] presents the Copper oxide nano particles for advance refrigerant thermo physical properties. They noted that the Al 2O 3 nano-particle used with R134a reduces the energy consumption by 10.32% while TiO 2 nano-particles with R600a can reduce the power consumption by 5.94% with a nano particle concentration of 0.1g/L. Melih Aktas et al. [13] presents a theoretical comparative study on nano refrigerant performance in a single-stage vapourcompression refrigeration cycle. In this paper five different nano refrigerants such as R12, R134a, R430a, R436a, and R600a with Al 2O 3 nanoparticles was used. The compressor work and Coefficient of performance (COP) are investigated at various condenser and evaporation temperatures. The nano refrigerants enthalpy is obtained through the density. The results showed that COP is enhanced by adding nanoparticles (Al 2O 3) to the pure (R600a) refrigerant. Jose Vicente Hallak d'angelo et al. [14] presents a performance evaluation of a vapour injection refrigeration system using a mixture refrigerant R290/R600a, through steady-state simulations used to accomplish a parametric analysis such as COP, power consumption by compressor, Refrigerant mass flow rate. The results showed that a maximum COP was obtained when mixture containing 60 wt% of R600a and 40 wt% of R290. Theoritical Analysis: T-s and p-h diagram of simple vapour compression refrigeration system is shown in fig 1 respectively. It consists of the following four processes: (1-2) Compressing refrigerant in compressor isentropically, (2-3) Condensation at constant pressure, (3-4) Adiabatic expansion in the expansion valve, (4-1) Evaporation at constant pressure. Fig. 1: p-h and T-s diagram of vapour compression refrigeration system The work required to compressor is calculated as follows: For isentropic compression, W C = m (h 2-h 1) (1) For non-isentropic compression, W C = (h 2s h 2 ) ƞ c (2) Heat rejection in condenser is calculated as follows: Q C = m (h 2-h 3) (3) Heat addition in evaporator is calculated as follows: Q e = m (h 1-h 4) (4) Mass flow rate of refrigerant is expressed as follows: m = Q 0 q 0 Where, Q 0 is refrigerant capacity and q 0 is refrigerating effect Actual Piston displacement of compressor is calculated as follows: V P = mϑ 1 η v Where, ϑ 1 is specific volume at inlet of compressor and ƞ v is the volumetric efficiency (5) (6)

510 B Pitchia Krishnan et al., 2017/Advances in Natural and Applied Sciences. 11(6) Special 2017, Pages: 508-516 The performance of vapour compression refrigeration system can be measured in terms of coefficient of performance (COP), which is expressed as follows: Refrigerating Effect COP = Workdone COP = (h 1 h 4 ) (h 2 h 1 ) (7) A.Thermo-Physical Properties of the Nano Fluid: Thermo-physical properties of nano fluids are pre conditions for analyze of vapour compression system performance. 1) Density of Nano Fluid: The nano fluid density for different concentrations of nano particles is developed by Pak and Cho [1] and it is given below. Density of Nano fluid (ρ nf) = Ф ρ np + (1- Ф) ρ bf (8) 2) Isobaric Specific Heat of Nano Fluid: The equation for evaluating specific heat of nano refrigerant is developed by J. Lee et al [2] and it is given below. Isobaric specific heat of nano fluid (C nf) = Ф C np + (1- Ф) C bf (9) 3) Thermal conductivity of Nano Fluid: The equation for evaluating thermal conductivity is developed by Maxwell et al [3] and it is given below. Thermal conductivity of nano fluid (K nf) = K bf { [(1+2Ф )(1 ( Kbf Kbf ))/(2(( Knp Knp )+1)] Ф(1 ( Kbf Knp )) [(1 ( Kbf ] Knp )+1 } (10) 4) Viscosity of Nano Fluid: The equation for evaluating the viscosity of the nano fluid is developed by H. Brinkman et al [4] and it is given below. 1 Viscosity of nano fluid (µ nf) = µ bf 2.5 (11) (1 Ф) Methodology: The various thermo physical properties of the chosen In this paper performance of analysis nano refrigerant (Al 2O 3/R290/R600a) with alternate refrigerant mixture (R290/R600a) in vapour compression refrigeration system has been carried out with help of Refprop software and Visual Basic software. The simulation programme was written based on the mathematical formula of vapour compression refrigeration system. The programming language used for writing the simulation program was Visual Basic.NET. Visual Basic.NET (VB.NET) is a multi-paradigm, object oriented programming language.the tool used for supporting the Programming language was Microsoft Visual Studio. Fig. 2: Performance comparison of various proportion of R290/R600a mixture.

511 B Pitchia Krishnan et al., 2017/Advances in Natural and Applied Sciences. 11(6) Special 2017, Pages: 508-516 RESULTS AND DISCUSSION Comparison of performance of R290/R600a mixture with adding nano particles to the same mixture in vapour compression refrigeration system has been carried out with the help of Refprop software and mathematical coding is developed by using visual studio software and graphs are plotted as below. 5.1 Comparison of Coefficient of performance with various proportion of R290/R600a mixture: Figure 2 shows that the comparison of Coefficient of performance of various proportion of R290/R600a mixture. It is concluded from fig.2 R290/R600a (0.9/0.1) have notably high coefficient of performance than other proportion of R290/R600a mixture. Therefore, R290/R600a (0.9/0.1) can be suitable alternate mixture for adding the nano particles. 5.2 Comparison of Coefficient of performance with Nano refrigerant (Al 2O 3/R290/R600a): Figure 3 shows that the comparison of Coefficient of performance of R290/R600a (0.9/0.1) with adding Al 2O 3 with different proportion. It is concluded from fig.3 by adding nano particles (Al 2O 3) to alternate refrigerant mixture (R290/R600a), the coefficient of performance will be improved based on concentration of nano particles. Fig. 3: Performance comparison of R290/R600a (0.9/0.1) with adding Al 2O 3 with different proportion. Fig. 4: Effect of evaporator temperature on Coefficient of performance. Fig. 5: Effect of evaporator temperature on mass flow rate of refrigerant. Figure 4 shows the effect of evaporator temperature on Coefficient of performance of R290/R600a (0.9/0.1) mixture and Al 2O 3/R290/R600a (0.04/0.9/0.1). It is concluded from figure 4 Coefficient of performance

512 B Pitchia Krishnan et al., 2017/Advances in Natural and Applied Sciences. 11(6) Special 2017, Pages: 508-516 increases with increase in evaporator temperature till the optimum evaporator temperature and here, Al 2O 3/R290/R600a (0.04/0.9/0.1) have significantly high Coefficient of performance than R290/R600a (0.9/0.1). Therefore, by adding the nano particles (Al 2O 3) to the alternate refrigerant mixture (R290/R600a) the Coefficient of performance is slightly increases. Figure 5 shows the effect of evaporator temperature on mass flow rate of refrigerant of R290/R600a (0.9/0.1) mixture and Al 2O 3/R290/R600a (0.04/0.9/0.1). It is concluded from figure 5 mass flow rate of refrigerant decreases with increase in evaporator temperature till the optimum evaporator temperature and here, Al 2O 3/R290/R600a (0.04/0.9/0.1) have significantly higher mass flow rate of refrigerant than R290/R600a mass flow rate of refrigerant is slightly increases. Fig. 6: Effect of evaporator temperature on heat rejected in condenser. Figure 6 shows the effect of evaporator temperature heat rejected in condenser of R290/R600a (0.9/0.1) mixture and Al 2O 3/R290/R600a (0.04/0.9/0.1). It is concluded from figure 6 heat rejected in condenser decreases with increase in evaporator temperature till the optimum evaporator temperature and here, Al 2O 3/R290/R600a (0.04/0.9/0.1) have significantly lower heat rejected in condenser than R290/R600a (0.9/0.1). Therefore, by adding the nano particles (Al 2O 3) to the alternate refrigerant mixture (R290/R600a) the heat rejected in condenser is slightly decreases. Fig. 7: Effect of evaporator temperature on power consumption by compressor. Figure 7 shows the effect of evaporator temperature power consumption by compressor of R290/R600a (0.9/0.1) mixture and Al 2O 3/R290/R600a (0.04/0.9/0.1). It is concluded from figure 7 power consumption by compressor decreases with increase in evaporator temperature till the optimum evaporator temperature and here, Al 2O 3/R290/R600a (0.04/0.9/0.1) have significantly lower power consumption by compressor than R290/R600a power consumption by compressor is slightly decreases.

513 B Pitchia Krishnan et al., 2017/Advances in Natural and Applied Sciences. 11(6) Special 2017, Pages: 508-516 Fig. 8: Effect of evaporator temperature on piston displacement of compressor. Figure 8 shows the effect of evaporator temperature piston displacement of compressor of R290/R600a (0.9/0.1) mixture and Al 2O 3/R290/R600a (0.04/0.9/0.1). It is concluded from figure 8 piston displacement of compressor decreases with increase in evaporator temperature till the optimum evaporator temperature and here, Al 2O 3/R290/R600a (0.04/0.9/0.1) have significantly higher piston displacement of compressor than R290/R600a piston displacement of compressor is slightly increases. Fig. 9: Effect of condenser temperature on Coefficient of performance. Figure 9 shows the effect of condenser temperature on Coefficient of performance of R290/R600a (0.9/0.1) mixture and Al 2O 3/R290/R600a (0.04/0.9/0.1). The pressure ratio across the compressor increases, with increase in condenser temperature causing work required by the compressor increases and cooling capacity decreases due to decrease in latent heat of evaporation. Hence, the combined effects of these two parameters decrease the Coefficient of performance decreases with increase in condenser temperature. It is concluded from figure 9 Al 2O 3/R290/R600a (0.04/0.9/0.1) have significantly higher Coefficient of performance than R290/R600a Coefficient of performance is slightly increases. Fig. 10: Effect of condenser temperature on mass flow rate of refrigerant.

514 B Pitchia Krishnan et al., 2017/Advances in Natural and Applied Sciences. 11(6) Special 2017, Pages: 508-516 Figure 10 shows the effect of condenser temperature on mass flow rate of refrigerant of R290/R600a (0.9/0.1) mixture and Al 2O 3/R290/R600a (0.04/0.9/0.1). It is concluded from figure 10 mass flow rate of refrigerant increases with increase in condenser temperature till the optimum condenser temperature and here, Al 2O 3/R290/R600a (0.04/0.9/0.1) have significantly higher mass flow rate of refrigerant than R290/R600a mass flow rate of refrigerant is slightly increases. Fig.11: Effect of condenser temperature on heat rejected in condenser. Figure 11 shows the effect of condenser temperature heat rejected in condenser of R290/R600a (0.9/0.1) mixture and Al 2O 3/R290/R600a (0.04/0.9/0.1). It is concluded from figure 11 heat rejected in condenser increases with increase in condenser temperature till the optimum condenser temperature and here, Al 2O 3/R290/R600a (0.04/0.9/0.1) have significantly lower heat rejected in condenser than R290/R600a (0.9/0.1). Therefore, by adding the nano particles (Al 2O 3) to the alternate refrigerant mixture (R290/R600a) the heat rejected in condenser is slightly decreases. Fig. 12: Effect of condenser temperature on power consumption by compressor. Fig. 13: Effect of condenser temperature on piston displacement of compressor.

515 B Pitchia Krishnan et al., 2017/Advances in Natural and Applied Sciences. 11(6) Special 2017, Pages: 508-516 Figure 12 shows the effect of condenser temperature power consumption by compressor of R290/R600a (0.9/0.1) mixture and Al 2O 3/R290/R600a (0.04/0.9/0.1). It is concluded from figure 12 power consumption by compressor increases with increase in condenser temperature till the optimum condenser temperature and here, Al 2O 3/R290/R600a (0.04/0.9/0.1) have significantly lower power consumption by compressor than R290/R600a power consumption by compressor is slightly decreases. Figure 13 shows the effect of condenser temperature piston displacement of compressor of R290/R600a (0.9/0.1) mixture and Al 2O 3/R290/R600a (0.04/0.9/0.1). It is concluded from figure 13 piston displacement of compressor increases with increase in condenser temperature till the optimum condenser temperature and here, Al 2O 3/R290/R600a (0.04/0.9/0.1) have significantly higher piston displacement of compressor than R290/R600a piston displacement of compressor is slightly increases. Conclusion: In this paper performance analysis nano refrigerant (Al 2O 3/R290/R600a) with alternate refrigerant mixture (R290/R600a) in vapour compression refrigeration system has been carried out with help of Refprop software and Mathematical coding is developed by using visual studio software. The conclusions present in this analysis are given as follows. R290/R600a (0.9/0.1) have higher coefficient of performance than other proportion of R290/R600a mixture. Therefore, R290/R600a (0.9/0.1) can be suitable alternate mixture for adding the nano particles. By adding nano particles (Al 2O 3) to alternate refrigerant mixture (R290/R600a), the coefficient of performance will be improved based on concentration of nano particles. Al 2O 3/R290/R600a (0.04/0.9/0.1) has significantly higher Coefficient of performance, mass flow rate of refrigerant, actual piston displacement of compressor than R290/R600a (0.9/0.1). Therefore, by adding the nano particles (Al 2O 3) to the alternate refrigerant mixture (R290/R600a) the Coefficient of performance, mass flow rate of refrigerant, actual piston displacement of compressor is slightly increases. Al 2O 3/R290/R600a (0.04/0.9/0.1) has significantly lower heat rejected in condenser, power consumption by compressor than R290/R600a (0.9/0.1). Therefore, by adding the nano particles (Al 2O 3) to the alternate refrigerant mixture (R290/R600a) the heat rejected in condenser, power consumption by compressor is slightly decreases. With increasing evaporator temperature the Coefficient of performance increases, where mass flow rate of refrigerant, actual piston displacement of compressor, heat rejected in condenser and power consumption by compressor are decreases. With increasing condenser temperature the Coefficient of performance decreases, where mass flow rate of refrigerant, actual piston displacement of compressor, heat rejected in condenser and power consumption by compressor are increases. REFERENCES 1. Pak, B.C., Y.I. Cho, 1998, Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles, Experimental Heat Transfer, 11(2): 151-170. 2. Lee, J., I. Mudawar, 2007. Assessment of the effectiveness of nanofluids for single phase and two-phase heat transfer in micro-channels, Int. J. Heat Mass Transfer, 50(3 4): 452 463. 3. Maxwell, J., 1891. A Treatise on Electricity and Magnetisms, third ed., Clarendon Press, Oxford, 1(9): 310 314, 435. 4. Brinkman, H., 1952. The viscosity of concentrated suspensions and solutions, J. Chem. Phys., 20: 571. 5. Sheng-shan Bi, Lin Shi, Li-li Zhang, 2008. Application of Nanoparticles in Domestic Refrigerators Applied Thermal Engineering, 28: 1834 1843. 6. Kai Guo, Zhigang Liu, Shengshan Bi, 2008. Performance of Domestic Refrigerator using TiO 2-R600a Nano Refrigerant as working fluid, Applied Thermal Engineering, 28: 1834 1843. 7. Sabareesh, R.K., N. Gobinath, V. Sajith, S. Das and C.B. Sobhan, 2012. Application of TiO 2 nanoparticles as a lubricant-additive for vapor compression refrigeration systems-an experimental investigation, International Journal of Refrigeration, 35(7): 1989 1996. 8. Sendil Kumar, D., Dr. R. Elansezhian, 2012. Experimental Study on Al 2O 3-R134a Nano Refrigerant in Refrigeration System, International Journal of Modern Engineering Research, 2(5): 3927-3929. 9. Subramani, N., Aswin Mohan, Dr. M Jose Prakash,2013. Performance Studies on a Vapour Compression Refrigeration System using Nano-Lubricant, International Journal of Innovative Research in Science, Engineering and Technology An ISO 3297: Certified Organization, 2(1).

516 B Pitchia Krishnan et al., 2017/Advances in Natural and Applied Sciences. 11(6) Special 2017, Pages: 508-516 10. Sendil Kumar, D., R. Elansezhian, 2013. ZnO nano refrigerant in R152a refrigeration system for energy conservation and green environment International Journal of Modern Engineering Research, 2(5): 3927-3929. 11. Coumaressin, T. and K Palaniradja, 2014. Performance analysis of a refrigeration system using nano fluid, International Journal of Advanced Mechanical Engineering. ISSN 2250-3234, 4(4): 459-470. 12. Fadhilah, SA., RS. Marhamah and A.H.M Izzat, 2014. Copper oxide nano particles for advance refrigerant thermo physical properties: mathematical modeling, Hindawi Publishing Corporation Journal of Nanoparticles Volume 2014, Article ID 890751, p: 5. 13. Melih Aktas, Ahmet Selim Dalkilic, Ali Celen, and Alican Cebi, A Theoretical Comparative Study on Nanorefrigerant Performance in a Single-Stage Vapor Compression Refrigeration Cycle, Journal of advance in Mechanical Engineering, Article ID 138725, p: 12. 14. Jose Vicente Hallak d'angelo, Vikrant Aute, Reinhard Radermacher, 2016. Performance Evaluation of a Vapor Injection Refrigeration System using mixture Refrigerant R290/R600a, International Journal of Refrigeration, pp: 1-34. 15. Guo-liang Ding, 2007. Recent developments in simulation techniques for Vapour Compression Refrigeration Systems, International Journal of Refrigeration 30 (2007), pp: 1119-1133. 16. Juan Carlos Valdez Loaiza, Frank Chaviano Pruzaesky, Jose Alberto Reis Parise, 2010. A Numerical Study on the Application of Nanofluids in Refrigeration Systems, International Refrigeration and Air Conditioning Conference at Purdue, July 12-15, pp: 2010-2495. 17. Hao Peng, Guoliang Ding, Haitao Hu, 2011. Influences of Refrigerant-based nanofluid composition and heating condition on the migration of nanoparticles during pool boiling. Part I: Experimental measurement, International Journal of Refrigeration 34 (2011), pp: 1823-1832. 18. Elena Timofeeva, V., Yu. Wenhua, M. David France, Dileep Singh, L. Jules Routbort, 2011. Nanofluids for heat transfer: an engineering approach Timofeeva et al. Nanoscale Research Letters 2011, 6: 182. 19. Reji Kumar, R., K. Sridhar, M. Narasimha, Heat transfer Enhancement in Domestic Refrigerator using R600a/mineral oil/nano-al 2O 3 as working fluid, International Journal of Computational Engineering, 03(4). 20. Subramani 1, N., M.J. Prakash, 2011. Experimental studies on a Vapour Compression System using nanorefrigerants, International Journal of Engineering, Science and Technology, 3(9): 95-102. 21. Eed Abdel-Hafez Abdel-Hadi, Sherif Hady Taher Abde Hamid Mohamed Torki and Samar Sabry Hamad, 2011. Heat transfer analysis of vapour compression system using Nano CuO-R134a, 2011 International Conference on Advanced Materials Engineering IPCSIT, vol, 15. 22. Mahbubul, I.M., R. Saidur and M.A. Amalina, 2012. Investigation of viscosity of R123-TiO 2 Nano refrigerant, International Journal of Mechanical and Materials Engineering, 7(2): 146-151. 23. Jose Alberto Reis Parise, Ricardo Fernando Paes Tiecher, 2012. A Simulation Model for the Application of Nanofluids as Condenser Coolants in Vapour Compression Heat Pumps, International Refrigeration and Air Conditioning Conference at Purdue, July 16-19, 2531. 24. Lixin Cheng, Lei Liu, 2013. Boiling and two-phase flow phenomena of refrigerant-based nanofluids: Fundamentals, applications and challenges, International Journal of Refrigeration, 36: (421-446). 25. Dr. Mishra, RS., 2014. Methods for improving Thermodynamic performance of Vapour Compression Refrigeration System using twelve ecofriendly refrigerants in primary circuit and nano fluid in secondary, International Journal of Emerging Technology and Advanced Engineering Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, 4(6). 26. Parvinder Singh, 2015. To Study the Application of Nano Refrigerant in Refrigeration System, International Journal of Research in Engineering and Technology, 4(06): 414-417.