Root growth in almond trees. Astrid Volder Plant Sciences, UC Davis

Similar documents
CMG GardenNotes #659 Understanding Tree Roots. Functions of Tree Roots. Support\anchorage

Soils 101: A practical approach. Kevin Marini UCCE Placer/Nevada Counties

Understanding Soil Microbiology and Biochemistry

High frequency irrigations as means for reduction of pollution hazards to soil and water resources and enhancement of nutrients uptake by plants

Full Disclosure, I create and sell Sumo Cakes Bonsai Fertilizer Basics

Soil Quality / Understanding Soil Health what are we missing?

Unit D: Fruit and Vegetable Crop Production. Lesson 4: Growing and Maintaining Tree Fruits

Sunlight. Chlorophyll

Soil characteristics that influence nitrogen and water management

Tree Physiology: Young Trees and Orchard Management. December 8, 2016

5.1 Introduction to Soil Systems IB ESS Mrs. Page

Watering Trees. by Dr. Kim D. Coder, Professor of Tree Biology & Health Care Warnell School of Forestry & Natural Resources, University of Georgia

PLANTING PRACTICES THAT GROW SUCCESS. Erik Draper, Commercial Horticulture Educator Ohio State University Extension- Geauga County

DRY FARMING. Martha Stoumen notes for discussion on 6/22/17

Lecture 3: Soil Microclimatology

Fertilizers. TheBasics. Whats in a Fertilizer? Why use Fertilizer? Nitrogen (N) Nitrogen (N) Its on the Label! Other sources of Nitrogen

Lesson 1: Recognizing the Characteristics of Soils and the Soil Requirements for Fruit and Nut Crops

Eco new farmers. Module 2 Soil and Nutrient Cycling. Section 1 Soils and soil fertility

STOLLER ENTERPRISES, INC. World leader in crop nutrition Potato Production Challenge - Page 1 of 9

Root Structures, Functions, and Growth

Selecting Quality Trees from the Nursery. Created from research by Dr. Edward F. Gilman and Traci Partin (University of Florida)

Planting Trees & Shrubs. and Shrubs Study Guide

Soil Damage From Compaction

Soil and Plant Basics 2016 EKS Grazing School September 20, 2016

Planting Trees & Shrubs. Choosing Trees and Shrubs. Tree Quotes

Lecture # 20 Pruning and Grooming

KEEPING PLANTS HEALTHY

What? No Soil? Grade Level(s) Estimated Time. Purpose. Materials. Essential Files (maps, charts, pictures, or documents) 6-8.

Soil Chemistry. Key Terms.

Unit 4 Landscape Installation

UNIVERSITY OF GEORGIA WARNELL SCHOOL OF FOREST RESOURCES EXTENSION PUBLICATION FOR00-5 WEB Site =

Recommended Resources: The following resources may be useful in teaching

SUPPLEMENTARY INFORMATION

Soil Nutrient Management

Identifying the SIX Critical Control Points in High Tunnel Production

Soil Organic Matter. Organic Carbon and Nitrogen. What Factors Influence the Amount of SOM? What is Soil Organic Matter? Why is SOM Important?

Soil Structure and the Physical Fertility of Soil

BOTANY/HORTICULTURE PLANT SCIENCE AG

Trees and Levees: How and Where Do Tree Roots Grow?

The Latest Dirt: Research Based Innovation in Soil Health. Physical Characteristics of Soil Plant Roots and the Rhizosphere

EARTH SCIENCE CONCEPTS -Geologic time scale

HG Homeowner Landscape Series: Planting Problems of Trees and Shrubs

Course: Landscape Design & Turf Grass Management. Unit Title: Watering Landscape TEKS: (C)(5)E) Instructor: Ms. Hutchinson.

Training and Pruning Almond Trees

Soil Notes. General Soil Information

My name is Zack Holden, co-instructor for this course. Many people associate severe fire with catastrophic, stand-destroying forest fires.

Integration of Tree Spacing, Pruning and Rootstock Selection for Efficient Almond Production

Lecture 20: Soil Organic Matter; Soil Aeration

Planting Landscape Trees Larry A. Sagers Extension Horticulture Specialist Utah State University Thanksgiving Point Office

Basic Botany Master Gardener and Horticulture Training. Mark Heitstuman. WSU Asotin and Garfield County Director January 9, 2018

Success with Trees in Your Yard. Debbie D. Dillion Extension Agent, Horticulture Serving Culpeper, Madison, & Orange Counties

Select the location: Dig a wide planting hole: Place the tree in the hole at the proper height: Backfill with soil around the rootball:

CHECKLIST NUTRIENT MANAGEMENT

ROOT GROWTH DYNAMICS AND CONSTRAINTS ON ABOVE GROUND GROWTH AND YIELD IN WALNUTS

Budding and Grafting. Chuck Ingels UC Cooperative Extension Sacramento County

Mechanisms of Nutrient Uptake: Is Fertilization Enough?

COMPETITION AMONG VEGETATIVE AND REPRODUCTIVE CYCLES AND ROLE OF PRUNING. Musacchi, S.

Plant exudates can adjust ph and nutrient supply, and even affect soil quality, by the organisms of the soil food web. 2

Optimizing the Water Relations of Cuttings During Propagation

Planting Containerized Trees

Unit E: Fruit and Nut Production. Lesson 3: Growing Apples

Basics of Plant Growth in Greenhouses: Temperature, Light, Moisture, Growing Media, etc.

How to Propagate Hybrid Hazelnuts by Mound Layering

Evaluating rootzone stresses and the role of the root system on rose crop productivity and fertilizer-water use efficiency:

Propagation by Grafting and Budding

Report: (Anne Lotter, Gloria Gessinger, Olivie Parthiot) Figure 1: Device to measure the shear strength.

Soil Health: Composting, and the Benefits of Intercropping and Cover Crops

The relationship between soil (growing

Pruning is one of the oldest

Beginning Viticulture

Fire Effects on Soil. Factsheet 2 of 6 in the Fire Effects on Rangeland Factsheet Series PHYSICAL AND CHEMICAL PROPERTIES

ACHIEVEMENT LEVEL DESCRIPTORS

CLAY, SANDY AND PEAT SOILS, AND SOIL ORGANIC MATTER

Master Composting Program. Sam Angima OSU Extension Lincoln County, Oregon

Factoids on SC soils. Soils. What is Soil? Variability of soils in your yard. Soil Components. Soil Tilth 6/23/14

Plant Propagation Methodologies

1. Potassium nitrate for efficient plant nutrition

Soil Management: the basis of sustainable agriculture

Managing Orchard Salinity During and After Drought. December 9, 2015

Getting fruit trees off to a good start. Bill Shane Tree Fruit Extension Specialist SW Michigan Research and Extension Center, Benton Harbor, MI

Taking Compost to the Next Level Duane Friend University of Illinois Extension

0.40 Argent-Loblolly Pine. Clarksville-Shortleaf Pine 0.20 Dome-Ponderosa Pine Cohasset-Ponderosa Pine

Cover Crops Can Help Maximize Available Soil Moisture. Rachel Stout Evans Soil Scientist USDA-NRCS Metcalfe Soil Survey Office

Plant Growth Hormone Technology

2. Which of the following is NOT a principle of landscape design? A. Balance B. Simplicity C. Comfort D. Focalization

Evan G. Johnson Citrus Growers Institute April 8, 2014

With the advancement of perennial production,

Soil Health and Fertilizer. Pam Brown, Extension Agent Emeritus, Gardening Coach

Managing Soils in Rangelands. Jerry Daigle

Planting Landscape Trees

Soil Plant Water Relationships 1

Soils and plant nutrients

Management, 2nd Edition

Fundamentals of Vine Management (vine training, trellis, planting, early vine training, nutrition, canopy management & crop management)

HOW TO PLANT A FRUIT TREE

CCA Exam Prep Intro to Soil & Water

Soil Moisture and Aeration

The Exciting World Beneath Our Feet.

Training and Pruning Apple Trees Richard P. Marini, Extension Specialist, Horticulture, Virginia Tech

THINKING ABOUT GROWING PISTACHIOS? BEN THOMAS Ben Thomas Consulting

Transcription:

Root growth in almond trees Astrid Volder Plant Sciences, UC Davis avolder@ucdavis.edu

Types of roots Large diameter framework roots anchorage Majority of root biomass Smaller diameter exploratory roots soil exploration/anchorage Very fine diameter, short-lived roots water uptake, nutrient absorption Majority of root length

Woody Root Architecture The woody part of root systems is a combination of: Heart roots (root plate) Horizontal roots (framework to pioneer) Sinker roots Tree root systems can easily extend >2X the height of the tree, and surprisingly, most tree root systems are not very deep

Bare root almond root system, one year after planting (Krymsk 86) Notice that roots respond to pruning at planting very much the way that shoots do lots of branching at cut tips

Fine roots versus coarse roots Fine roots: Equivalent to leaves acquire resources Direct acquisition of water & nutrients Low mass, high length (high absorptive surface) Short lifespan Signaling (hormones e.g. production of auxin, cytokinin, abscisic acid, ACC/ethylene) Coarse roots: Anchor the plant Framework for soil exploration Transport of water & nutrients (up), redistribute carbohydrates to fine roots High mass, low length (high transport capacity) Long lifespan Storage

Large roots Anchorage is concentrated in two general locations around a tree base close to the stem base on the leeward side and focused on several large diameter roots farther away from the stem base on the windward side in many, smaller, medium diameter, near-surface roots. Coder, Kim D. 2010. Root Strength & Tree Anchorage. University of Georgia Warnell School of Forestry & Natural Resources monograph publication WSFNR10-19*. Pp.88

Tree Root Biomechanics crown asymmetry, sun exposure, slope, soil instability Tree weight distribution affects structural root systems A few very large diameter roots on the compression side Root plate Roots under tension More lateral woody roots on the tension side Also, the direction of growth of roots on tension vs. compressed sides may differ Roots & -Claus Mattheck

Coarse root system Number of lateral roots Trees that were allowed to move made more lateral roots and they were located deeper (don t immobilize with a stake) Less lateral roots occur on the leeward side trees adjust root growth pattern to prevailing wind condition

Root systems are optimized for efficient acquisition and transport of water and nutrients Maximize soil exploration lots of fine branching

Fine roots short lived, highly active Functional classification 2 nd order lateral Primary root 1 2 3 1 st order lateral 4 5

Proportion of root length 60 50 40 30 20 10 0 1 2 3 4 5 Krymsk 86 (plum/peach hybrid) Mariana (plum) Root order Proportion of root mass 70 60 50 40 30 20 10 0 1 2 3 4 5 Root order Krymsk Mariana 120 Length/mass (m g -1 ) 100 80 60 40 20 0 1 2 3 4 5 Mariana has more root length invested in fine roots, while Krymsk has slightly more length, and much more mass, allocated to coarser roots BUT Krymsk 1 st order roots are finer Implications for nutrient uptake and anchorage (still working on this) Root order

Types of growth Indeterminate Growth does not have a pre-set stopping point Pioneer roots Generally larger diameter (> 1 mm (0.039 inch) and order (3rd order or larger) Determinate Growth stops when a maximum size/length is reached 1st order roots (functional classification) Almond 0.5 mm (0.020 inch) diameter or smaller Large fraction at 0.1 mm (0.004 inch)

Fine roots proliferate rapidly in response to localized patches of nutrients and/or water Grape fine roots aggregating near subsurface drip Locally enriched zone with nitrate - N Drew and Saker 1975

65-85 cm 9 images stitched together depth 85-102 cm Depth 17 cm increments Time 3 weeks apart Notice progression down tube, branching, and browning 102-119 cm time 5/5/16 5/27/16 6/17/16

New root production (full irrigation only) Note absence of Fall peak should fertilize when you have new (not brown) roots!

Roots & rhizosphere Shoot C capture (aboveground) Whole Plant Growth Biomass Allocation Root System Root characteristics: E.g. root length, root distribution, specific root length, nutrient uptake rates, root respiration, root turnover, root age, root exudation Nutrient capture, water acquisition, anchoring. The rhizosphere system is an integral part of ecosystem functioning and affects many processes such as; C cycling, nutrient (N,P) cycling, water availability, soil quality etc. Soil Conditions: E.g. nutrient availability, soil moisture, soil strength, mineralization, soil fauna, mycorrhizae etc.

Rhizosphere Zone of soil around roots that is affected by the presence of the roots The zone from which water and nutrient uptake takes place Zone with Altered water content (generally more moist) than bulk soil Enhanced microbial activity Stimulated by carbon rich compounds released by roots Direct signaling between plants & microorganism Mycorrhizal sphere Expanded zone that includes the soil area influenced by the presence of a root associated mycorrhizal fungus Microbes and roots need oxygen for respiration (oxygen is displaced by water when soil is saturated)

Factors essential for good root development Pore space contains Water Air/Oxygen Oxygen diffuses 10,000 times slower through water than through air. Too much water not enough oxygen to support root function Ideal soil:

Oxygen is essential for root growth Oxygen uptake Faster growing roots require more oxygen Root growth

Oxygen is essential to generate energy (ATP) in roots Cellular respiration 4-10 ATP Converting to ATP requires O 2 50 ATP Taiz and Zeiger Plant Physiology Bottom line: Without O 2, the total ATP yield from one sucrose is 4 ATP instead of 60 ATP a loss in efficiency of 93% ATP is used for growth, maintain existing living cells, and nutrient uptake! Excess water leads to low oxygen, impaired root functioning and leaf nutrient deficiency - In this case fertilization is not the solution should reduce watering.. Reproduced from Plants in Action, http://plantsinaction.science.uq.edu.au, published by the Australian Society of Plant Scientists. Chapter 6

Most respiratory energy is used for nutrient uptake & growth Nutrient uptake (65%) Growth (25%) Maintenance (10%) Reproduced from Plants in Action, http://plantsinaction.science.uq.edu.au, published by the Australian Society of Plant Scientists. Chapter 6

Function of fine lateral roots Acquisition of water & nutrients expand soil volume explored Formation of nutrient depletion zones requires constant new growth & exploration Nitrogen (dissolved in soil water, moves easily) Phosphorus (doesn t diffuse well through soil sticks to soil particles)

1234567 Roots have to continually grow to continue water & nutrient uptake and explore new soil One week interval - fine laterals appear and disappear - higher order root turns brown

Benefit (N uptake) Metabolic activity (respiration) Nitrogen uptake Root browning For container grown grape rootstocks N uptake and respiration declined very rapidly as roots aged Repeat in field showed same result Oxygen use

Favorable physical environment for root functioning Water (requires smaller pores to hold water against gravity) Reduces resistance to root growth Essential for cell elongation as well as leaf gas exchange and overall plant growth Oxygen (requires air filled pores macro-pores, well drained soil) Energy is used for cellular maintenance, root growth AND nutrient uptake Respiration in the presence of oxygen yields 15 times more energy (ATP) Nutrients Stimulates fine root proliferation and overall plant growth Balance between providing roots with water, while not reducing oxygen availability to the point it damages the roots. Problems when keeping soils too wet (saturated) too often and/or too long!

At Turlock most fine roots were in the top 10 cm (oxygen, water & nutrients) 20 km per cubic meter = 9.5 mile per cubic yard Irrigating slightly below ET yielded the highest standing root length density in July

Many root problems can be avoided by paying attention at planting time! Roots well distributed Roots free of disease Roots free of defects, such as: Kinked roots Sharp bend in the tap root or major structural roots Circling roots Roots growing in a circle around the trunk or other roots

Kinked and center circling Center circling roots. Kinked root J root

Root zones of containerized trees What happens after planting in the landscape? 1. Trunk surface zone (problems here are almost impossible to correct) 2. Center zone (container size; also very difficult to correct) 3. Peripheral zone (to edges of the container; can be corrected with root pruning)

Potential impact of girdling roots Example of nice bare root system Photograph: David Doll Twisting, girdling or J-roots are undesirable and will likely cause problems

Circling & girdling root issues Reduced soil exploration outside the planting hole > reduced canopy development Planting hole may retain more water majority of circling roots exposed to anoxic conditions perfect conditions for root rot Tree growth & development severely delayed Stunted trees receive the same amount of water as big trees and are exposed to saturated conditions longer Could grow out of this, but.also long term problem

Year 1 Year 2 Year 3 STEM Root grows in width too Stem above girdling root will still increase in width, and sometimes even swells, creating a structurally weak pivot point for trees to snap stem Structural roots & stems both grow in width restricting stem growth

At planting Bare root trees Generally dormant (no transpiration, very little water use) No included growth media roots placed into same soil as surrounding soil Container trees May be active (leaves transpire, higher water use) Included growth media, generally coarser than surrounding fill soil

Result: Bare root trees use little water until the tree leafs out while container trees will need very regular irrigation (often already leafed out) Coarse container soil will lose water to the surrounding soil water moves from coarse to fine soil Root ball will dry out faster for container trees due to soil texture difference Covering the root ball with field soil will exacerbate the problem! Plant container trees slightly above grade, place drip emitter on the root ball (do not cover with field soil), water frequently Layer of gravel

Impact of heading at planting it reduces deep root production in the first 5 months after planting Root length below 2.5 feet deep No treatment Headed & Pruned 0-13 13-30 30-48 48-65 65-83 83-100 100-117 117-134 0 50 100 150 200 Standing root length (m m -2 )

Aboveground factors that affect root growth and function Canopy activity carbohydrate availability for root growth Management (pruning) Solar radiation intercepted Temperature & humidity Wind (coarse roots) Tight staking prevents good root development which leads to poor anchorage trees must be allowed to move Tie loosely at lowest possible height (not at multiple heights) Roots

Impact of irrigation and scion on carbohydrate reserves in fine roots (Krymsk 86) When receiving adequate irrigation, fine roots of Krymsk 86 with Wood Colony as the scion had the greatest amount of starch and sugars (NSC) Fine roots of Krymsk 86 with Monterey and Wood Colony as scion reduced starch and sugars when watering was reduced Strong rootstock x scion interaction which depends on management! As with heading and staking, what you do aboveground will have effects belowground

Important factors - belowground Soil texture (particle composition) and structure affects soil permeability, water and nutrient transport through the soil to the root, root architecture Soil moisture roots grow where there is soil moisture and nutrients Soil oxygen affects ability of root to function (respire). Generally roots need oxygen concentrations > 10% Soil temperature high soil temps (> 35 o C) inhibit root function, 20-25 o C tends to be optimal Soil flora and fauna recycle nutrients and fungal symbiosis may increase root functioning Most nutrient availability is greatest at a soil ph between 5.5 6.5

Acknowledgements UC Davis pomology farm staff Sierra Gold nursery for donating the trees Funding provided by: Almond Board of California Department of Plant Sciences at UC Davis Paul Martinez, Bruce Lampinen, Courtney Nichols, Hana You, Xinyu Yao, David Doll, Ken Shackel, Sam Metcalf, Tamara McClung, Loreto Contador, Maciej Zwieniecki

Primary functions of roots Absorption and transport of water water is taken up and transport along a water potential gradient. (See water transport lectures) Nutrient absorption nutrients can be taken up actively or passively depending on the elements. (See nutrition lectures) Anchorage this is extremely important and rootstocks can vary quite a bit even when grown with a common scion cultivar. This is most influenced in a given soil type by root architectural characteristics such a number of fine vs. course roots, rooting depth, angle of major structural roots, etc. Storage as noted in previous discussion of CHO storage, dormant season CHO concentrations tend to be highest in root tissues and can account for as much a 50% of total stored CHO in trees. Conversion or synthesis of growth regulators Auxins Gibberellins Cytokinins Abscisic acid