ANNUAL PROGRESS REPORT 2012/13 ISCM PROJECT ON MODELLING WORLD-WIDE GXE INTERACTION

Similar documents
Pan-African Soybean Variety Trial Protocol Training. I

Unit D: Fruit and Vegetable Crop Production. Lesson 1: Planning and Preparing a Vegetable Garden Site

CHARACTERISING THE FACTORS THAT AFFECT GERMINATION AND EMERGENCE IN SUGARCANE

Effects of Phosphorus and Calcium on Tuber Set, Yield, and Quality in Goldrush Potato

New Planting. A&L Canada Laboratories Small Fruit News Letter Vol. 3 April 17, application should be at a 90 o direction to the row direction.

Recommended Resources: The following resources may be useful in teaching this

Managing Phosphorus to Optimize Potato Tuber Yield in the San Luis Valley

Onion Production. IDEA-NEW, May, 2010

Name: B3 PLANT DISEASE. Class: Question practice. Date: 41 minutes. Time: 41 marks. Marks: BIOLOGY ONLY. Comments: Page 1 of 18

Arnold Schumann, Kevin Hostler, Laura Waldo, Wije Bandaranayake (UF/IFAS, CREC) 2015 Fluid Forum February 17, 2015 Scottsdale, AZ

SOIL TEST HANDBOOK FOR GEORGIA

PERFORMANCE EVALUATION OF EIGHT MAURITIAN SUGARCANE VARIETIES IN SWAZILAND

Definitions in Handbook

RESIDUAL LIME IN COMMERCIAL MEDIA DURING CROP PRODUCTION

Demonstrate that inoculation can increase the yield of legumes.

WOODY AND TURF MANAGEMENT Lesson 14: FERTILIZERS

PROUDLY MADE IN AUSTRALIA

Fundamentals of Vine Management (vine training, trellis, planting, early vine training, nutrition, canopy management & crop management)

Potatoes (2007) Potatoes Comparisons of Nitrogen Sources and Foliars (2008) Potatoes Nitrogen Types (2008) Potato Seed Piece Direct Fertilizer

Vine Nutrition. A g e n d a 4/10/2017. Soil How to sample Sample submission sheet Lab analysis & results Interpretation

Effect of Method of Application of Double Superphosphate on the Yield and Phosphorus Uptake by Sugar Beets 1

Arnold Schumann, Kevin Hostler, Laura Waldo (UF/IFAS, CREC) 2013 Fluid Forum February 18-19, 2013 Scottsdale, AZ

Eggplant Production IDEA-NEW

Also available on the web at

General concept of fertilizer efficiency

Fertigation. There are four fundamental components for success with fertigation: 1) Do not irrigate longer than 1 hour at a time.

Fertilizers and nutrient management for hops. Diane Brown, Michigan State University Extension

Sandy, low CEC, irrigated soil Acidic ph High ph Cold soils Soil low in P content or available P

Unlock your soil s potential with K-humate

Asparagus Response to Water and Nitrogen

Farmers will increase yield and profit by taking care of the hot pepper from planting the seed to harvesting the fruit.

Sugarbeets Enjoy Warm Winter

GUIDE AND INSTRUCTIONS FOR SOIL AND LEAF SAMPLING FOR TROPICAL AND SUBTROPICAL CROPS

satg WATERMELON CULTIVATION DISEASES PESTS

GALLATIN GARDENER CLUB APRIL 6, Clain Jones

Soil characteristics that influence nitrogen and water management

SOIL SAMPLING PROCEDURES

Nutrient Management for Tree Fruit. Mary Concklin Visiting Extension Educator Fruit Production and IPM University of Connecticut

Statement of Purpose. What s New in 2014? Highlights of Changes in This Edition. Weed Management. Disease Management.

Fruit Pests BOTRYTIS (GREY MOLD) Botrytis (Gray Mould) Alberta Farm Fresh Local Food Short Course 2012 Red Deer, AB. Attacks various plant parts

Hawaii Agriculture Research Center -1- Vegetable Report 2. Hawaii Agriculture Research Center Vegetable Report 2 January 2000

Terminology & Soil Science. Andy Spetch

Nutrient Considerations for Olives

Plant Tissue Testing as a Guide to Side-Dressing Sugar Beets 1

CAUTION KEEP OUT OF REACH OF CHILDREN COUNTRY. Metalaxyl. Systemic Fungicide Granules. ACTIVE CONSTITUENT: 50 g/kg METALAXYL D

The Nature of Soil Soil Conservation Sustainable Ag.

CHECKLIST NUTRIENT MANAGEMENT

Getting the Most out of Your Strawberry Soil Test Report. General Information

High Tunnel Primocane Fruiting Blackberry Production in Cold Region of Midwest*

Vineyard Establishment (vine training, trellis, planting, early vine training, nutrition, & canopy management)

GROWTH AND PERFORMANCE OF OWN-ROOTED CHANDLER AND VINA COMPARED TO PARADOX ROOTED TREES

Soil quality indicators & plant growth

Sam Turner Agronomist B.T. Loftus Ranches, Inc.

New big projects of high density groves in Chile

Further Evaluation of Biological Control Agents for Verticillium Wilt in Peppermint. Sai Sree Uppala, Bo Ming Wu, Mark Hagman and Jim Cloud

Chapter 1 - Lawn maintenance scheduling

Section 5: Vegetables and Bulbs

ECO-GREEN: GUIDELINE / PROGRAMME FOR FRUIT TREES

What s in Your Media? Analysis of media components for micronutrient content

ECO-GREEN: GUIDELINE / PROGRAMME FOR NUT TREES

Trees, your other Plants: Fertilizer Application

THE TENNESSEE VEGETABLE GARDEN

Asparagus (Asparagus officinalis) is a

FERTILIZER, IRRIGATION STUDIES ON AVOCADOS AND LIMES ON THE ROCKDALE SOILS OF THE HOMESTEAD AREA

The Kalahari Melon Seed Breeding Project FARMERS FIELD TESTING OF IMPROVED KMS CROSSES. GUIDELINES, January 2009

Nutrient Management of Irrigated Alfalfa and Timothy

Growing Broccoli at Veg-Acre Farms

TRANSPLANTING METHODS FOR THE CULTIVATION OF CORN LILY (VERATRUM CALIFORNICUM)

A&L Canada Laboratories Inc.

Active Chitosan. 100 Natural. Biostimulant. With. For use in all type of crops. Developed at The University of Cambridge

Title: Lecture 16 Soil Water and Nutrients Speaker: Teresa Koenig Created by: Teresa Koenig, Kim Kidwell. online.wsu.edu

POTATO VARIETY RESPONSE TO PHOSPHORUS FERTILIZER

Vegetarian Newsletter

Assessing and Amending Your Garden Soil Craig Cogger, Soil Scientist Emeritus Washington State University Puyallup

Improving Corn Water Use With Hybrid Selection: Trait evaluation for both dryland and limited irrigated systems

Planting Recommendations & Suggestions for or Louisiana Sugar. oducers

Evaluating Suitable Tomato Cultivars for Early Season High Tunnel Production in the Central Great Plains

Table 4. Nutrient uptake and removal by sunflower in Manitoba studies. Nutrient Uptake Removal Uptake Removal

Compostability of Restaurant Kitchen Waste Using Effective Microorganisms Preparations

Understanding Soil Variability to Utilize Variable Rate Fertilizer Technology

Garlic Production IDEA-NEW

Plant Breeding Crossing & Selection Programmes

APPLICATION METHOD AND RATE OF QUADRIS FOR CONTROL OF RHIZOCTONIA CROWN AND ROOT ROT. Jason R. Brantner and Carol E. Windels

UNIVERSITY OF WISCONSIN SYSTEM SOLID WASTE RESEARCH PROGRAM

Soil and Plant Basics 2016 EKS Grazing School September 20, 2016

Foliar fungicide timing and interaction with soybean maturities: Effect on soybean disease suppression and yield

Plant Profile.

1 Determination of soil moisture content by theromogravimetric method.

CMG GardenNotes #711 Vegetable Gardens: Soil Management and Fertilization

Fertilizers. TheBasics. Whats in a Fertilizer? Why use Fertilizer? Nitrogen (N) Nitrogen (N) Its on the Label! Other sources of Nitrogen

Effect of Max-In Technology on Roundup Power Max Performance on Sugarbeet and Weeds at Mitchell, Nebraska during the 2009 Growing Season.

NUTRITION MANAGEMENT FOR PRODUCING BOGS 2005

Watermelon Farming. Ecological requirements. Altitude

Getting Started with Your Vegetable Garden

Effect of Five Planting Dates on Yield of Six Sweet Onions

Intro t to S Soilils and S d Soi lil Fertility

Rootstocks are the foundation of a healthy and productive

Brian Arnall Oklahoma State Univ. Dept. Plant and Soil Science

Fertilizing Grass for Hay and Pasture

Technology Transfer of Greenhouse Aeroponic Lettuce Production Information to Alberta Growers,

Transcription:

ANNUAL PROGRESS REPORT 2012/13 ISCM PROJECT ON MODELLING WORLD-WIDE GXE INTERACTION A. Eksteen, S. Chinorumbe, M. Singh, D. Zhao, K. Polacik, J. Shine, J. Martine and A. Singels 11 June 2014 1. General The goal of the project is to gain a better understanding of the physiological mechanisms underlying the genetic variation in crop response to environmental factors by monitoring key plant processes contributing to yield and quality in a common set of diverse cultivars grown in diverse environments from around the world. Specific objectives are to: measure canopy development, radiation interception, water use, water stress sensitivity and, biomass accumulation and partitioning for a number of diverse cultivars (from different countries) in diverse environments (in different countries), determine model trait parameters (genetic coefficients) for each cultivar, derived from development, growth and water use measurements, identify and formulate underlying mechanisms of genotype response to environmental factors, and evaluate models ability to simulate genotypic differences in crop performance. The following organizations are participating in the project: SASRI, ZSAES, SIRC, and CIRAD and the following cultivars will be used in the trials:, R570, CP88-1762, HoCP96-540 and ZN7. In some cases NCo376 and Q183 will also be planted. The main activities in the project so far have been to generate and distribute genetically-true, disease-free seed material of the relevant cultivars to each of the participating countries, to propagate for the experiments, and to plant experiments. Crop measurements have started in three experiments. A standardised field sampling sheet, including detailed information on sampling protocols, was created for experiment measurements in July 2013 by SASRI staff. The sampling sheet and sampling protocols formed part of a G x E data capture template (MS Excel), which was emailed to all project participants in August 2013. The template is to be completed by all 1

project participants to standardise and collate information regarding experiment details, treatments per plot, soil characteristics, trial management, field operations, weather data, as well as soil and leaf observations. The template also includes a data capture tab, and will automatically summarise data captured for the different sampling measurements. 2. Progress in South Africa Soil description and analysis The soil of the fields at the Pongola Research station that will be used for the trial is of a Hutton form and of the Shorrocks series (SA soil classification system as shown in SASRI, 1999), otherwise correlated with a Rhodic and Helvic Ferrasol (FAO) or Oxisols/Ultisols (USDA Soil Classification). The chemical and physical analysis of soil layers in Field 322 (plant crop experiment) at Pongola is shown in Table 1.1 and 1.2, respectively. Soil samples at four sampling points were taken with an auger on Field 322 at the following depths: 0 20cm, 20 40cm, 40 60cm, 60 80cm and soil from each layer was mixed together to form four composite depth samples for analysis. Soil chemical analysis was performed by FAS (Fertiliser Advisory Service) at SASRI and the soil physical analysis was performed by the Soil Physics Lab at SASRI, Mount Edgecombe. All soil layers have a ph of approximately 5.0. The acid saturation was very low (0.6% in each layer) and therefore the existence of subsoil acidity is very unlikely. Soil phosphorous and potassium were found to be adequate and FAS advised that 100 kg /ha of MAP fertiliser should be applied in furrow at planting. Results from the soil physical analysis showed that all soil layers have a relatively high clay content (29 38%) and the bulk density of the soil ranged from 1.27 1.30 g soil cm -3. The available soil water content in each of the layers ranged from 129 137 mm. Soil depth exceeds 2.5 m. 2

Table 1.1: Chemical Analysis of different soil layers at Field 322 at SASRI Research Farm in Pongola, South Africa Soil layer # Depth of bottom of soil layer (cm) ph P (Truog) (mg/l)* K (mg/l) ** * P > 16.4 mg/l (adequate); ** K > 155 mg/l (adequate) Soil Organic Matter (%) Cation Exchange Capacity (cmol / kg) Acid saturation (%) Extractible Aluminium (cmol / kg) 1 20 5.04 21.6 192 2.1 9.06 0.6 0.05 2 40 5.14 12.1 77 1.3 8.96 0.6 0.05 3 60 4.95 5.4 70 1.0 8.69 0.6 0.05 4 80 5.02 10.5 66 0.9 8.16 0.6 0.05 Table 1.2: Physical Analysis of different soil layers at Field 322 at SASRI Research Farm in Pongola, South Africa Soil layer # Depth of bottom of soil layer (cm) Clay (%) Silt (%) Sand (%) Bulk density (g soil / cm 3 ) Drained upper limit (Field capacity) (mm) Lower limit (PWP) (mm) Available soil water (mm) 1 20 29 10 61 1.30 279 150 129 2 40 36 7 57 1.28 335 201 134 3 60 37 8 55 1.27 338 203 135 4 80 38 9 53 1.27 349 212 137 Trial Planting Seedcane from the bulking plots from five varieties (, R570, ZN7, HOCP96-540, CP88-1762) was planted into plant crop and ratoon crop fields at the SASRI Research station in Pongola (on 25 March 2014). Seedcane from each variety was planted into four replicate plots (5 varities x 4 replicates = 20 plots) that consisted of 5 rows per plot (with 1.5m row spacing) and each plot was 21m in length, with a 1m break between plots (see Figure 2.1). The single plot detail is shown in Figure 2.2, which includes the destructive sampling areas at 3, 6, 9 and 12 months crop age. Each row was fertilised with 100 kg / ha of MAP fertiliser on 25 March 2014 (as per SASRI Fertiliser Advisory Service (FAS) recommendations) and sprayed with fungicide (26 March 2014). Plant emergence is currently being monitored every two weeks in two 4m sections of each plot in the 4 th destructive sample area. Further plant measurements will commence in May 2014. Planting operations are shown in Figure 2.3 and 2.4. 3

Figure 2.1: Trial plan of the plant crop (Field 322) and ratoon crop (Field 323) at the SASRI Research Station in Pongola. Plot detail is not drawn to scale. 4

Figure 2.2: Single plot detail of each plot in Field 322 showing four destructive sample areas, row spacing and breaks between each sample area. Figure 2.3: Bulked seedcane (variety ZN7) before cutting. 5

Figure 2.4: Planting operation of Field 322 at Pongola (plant crop sampling). 3. Progress in Reunion Because of heavy rains at the end of 2012 and at the beginning of 2013, the first planting of failed (see May 2013 report). With a few sets of from ercane we planted this variety again in November 2013 (Figure 3.1) for rapid multiplication, but this caused a great delay in previously planned operations. Three weeks ago, the other five varieties (R570, Q183, CP88-1762, NCo376 and ) were planted in the nursery (Figure 3.2) with success using the one-eye method, and will then be transplanted at the beginning of May in a last bulking plot. So, the seedcane of five varieties will have exactly the same age and will be planted, in January 2015, into plant crop and ratoon crop field trials. Unfortunately, HoCP96 were not available from Montpellier Quarantine. 6

Figure 3.1 Bulking plot (November 2013) Figure 3.2 One-eye sets nursery 7

4. Progress in Zimbabwe Hardened tissue cultured plants from six varieties (ZN7,, Q183, CP88-1762, HoCP96-540, and R570) were planted into the field on 15 December 2011 at the ZSAES. The varieties were harvested and planted out on 2 November 2012 for further bulking to produce the amount of seedcane required for planting out the trials. Sites The trials were planted out on 30 October 2013 and on 11 December 2013 in Fields L3, Sable Block (plant crop) and B1-5, Impala Block, ZSAES (ratoon). Other sites details include 21º 02 S, 31º 36 E, and 21º 02 S, 31º 37 E, Alt 430 m. A B Figure 4.1. Crop growth stage [A] and re-growth following the first destructive sampling [B] of variety R570 at three months of age in Field L3, Sable block. Fertiliser application: Soil samples will be collected at a depth of 0 30 cm using Dutch Augers after the fields were ploughed and disced but before opening up the planting furrows [ridging]. ZSAES recommended application [banding in the furrows] of phosphorus at 100 kg ha -1 P 2O 5 [Single Super Phosphate was the source of P]. Nitrogen was applied as a top dressing of Ammonium Nitrate (34.5% N) in three splits of 47 kg ha -1 each at four, seven and ten weeks after the average day of emergence of cane varieties. Potassium, as muriate of potash [MOP, 60% K 2O] was applied in two equal splits at 30 kg ha -1 K 2O each split together with the first two nitrogen applications (at four and seven weeks). 8

Table 4.1. Field plans of the plant crop (L3, Sable Block) and ratoon crop (B1-5, Block, Impala) at the ZSAES. Plant crop 1 2 3 4 5 6 R570 Q183 ZN7 CP88-1762 HoCP96-540 12 11 10 9 8 7 ZN7 Q183 R570 CP88-1762 HoCP96-540 13 14 15 16 17 18 CP88-1762 ZN7 HoCP96-540 Q183 R570 24 23 22 21 20 19 Q183 R570 HoCP96-540 CP88-1762 ZN7 Ratoon Crop 1 2 3 4 5 6 ZN7 R540 CP88-1762 HoCP96-540 Q183 12 11 10 9 8 7 HoCP96-540 CP88-1762 R570 ZN7 Q183 13 14 15 16 17 18 R540 ZN7 CP88-1762 HoCP96-540 Q183 24 23 22 21 20 19 ZN7 R540 HoCP96-540 CP88-1762 Q183 Weed control The herbicides [a tank-mix of Acetochlor and Metribuzin as pre-emergence] were applied a day after irrigation when soil was still moist. Irrigation The plant crop trial [L3, Sable Block] is irrigated using furrows at 50 % moisture depletion and the ratoon is irrigated using floppy sprinkler system. Progress on data collection Weather data 9

All other necessary data is collected routinely at the nearest meteorology station [about 600m away] except for the solar radiation. Soil data Soil sampling. Pits (measuring 1 m by 0.7 m) were dug manually, up to gravel level and shaped before soil sampling (Figure 4.2). The sides of the pits were smoothened using a spade to clearly expose the different layers with different characteristics e.g. colour and particle size. The vertical distances (0-5; 6-10; 11-15; 16-20; 21-25; 26-30; 30-40; 41-55; 56-70; 71-85; 86-100; 101-120 etc); were measured and samples collected at centre of the layers as indicated (Figure 4.2.). Mechanical analysis was done to determine clay and silt percentages. The information was used to calculate within DSSAT; Bulk density, Upper and lower drained limits. Other soil information collected included slope and color. Permeability and drainage were estimated. Layer 1 a Soil depth Layer 2 Layer 3 Holes Layer 4 Figure 4.2. Layout of the cross section of soil profile showing layers numbered from 1 upwards. The central marked positions (holes) show where the soil samples were collected. Data Collection: Non Destructive Measurements Number of shoots: The counting of shoots (tillers and stalks) continue routinely for 8m row length at bi-monthly intervals from planting and now at one month until harvest. Stalk (TVD) height and canopy height are also measured every two weeks with stalk height being measured from ground level [fixed] to the TVD leaf. Also being measured is the light interception at bi-monthly from 11am to 2pm with SunScan (10 readings per plot). Leaf counts and measurements Total number of leaves up to the spindle is being counted. The length of leaves [from the stalk to the tip of the leaf] and width [maximum width] of the TVD leaves 10

No. of shoots / 8m is also measured. Complete TVD leaf analysis [N, P, K, Ca, Mn, Fe, Cu] of actively growing crop at 4 months of age was done however Si was not done due to lack of capacity. The Minolta SPAD is being used to collect data on TVD leaf chlorophyll at time of destructive sampling and when leaf sampling for nutrient analysis is done. Destructive sampling Two destructive samplings at 3 and 6 months of age have been done. The following were measured in a sub sample of 2 m of cane that was collected in each destructive sampling: number of millable stalks, total fresh mass, total millable stalk fresh mass, total green leaf fresh mass, average stalk length from ground level to the apex, total millable stalk dry mass [samples are oven dried at 60 o C until constant weight], total green leaf dry mass, leaf sheath dry mass, tops dry mass and trash dry mass. Cane Quality analysis The following were measured at the second destructive sampling; stalk brix, fibre, pol, non-pol and moisture content [DAC analysis method]. At three months, no such stalks were available for processing. Data entry Data capture into electronic format is being affected by shortage of staff [more graphs could have been presented in the report] 250 200 150 100 50 R570 Q183 ZN7 CP88-1762 HoCP96-540 0 21 31 47 84 112 126 Days after planting Figure 4.3. Sugarcane shoot population up to 126 days after planting for all the sugarcane varieties represented in the trial. Challenges faced: Leaf scald During the planting out of the trial, symptoms associated with leaf scald [chlorosis, excessive side-shooting, pencil lines and general necrosis] were observed in variety Q183 but serological diagnoses was not done due to lack of capacity. Stalks showing no signs were used as source of seed. There were fears however that plants not 11

showing any visible symptoms could have been latently infected and symptoms would develop during the plant crop or in the ratoon crops. A B Figure 4.4. Photos of variety Q183 in the seed bulking stage infected with a disease suspected to be Leaf scald. Symptomless stalks were selected and planted in the trials. Yellow aphids; There was also an outbreak of yellow aphids in both the plant and ratoon trials. The attacked varieties exhibited yellowing and reddening of leaves, premature senescence of leaves as in the grass species shown [A, Figure 4.5]. Also identified were natural enemies that ensured the densities of Sipha flava remained low so no insecticide was sprayed and the cane has grown out of the infestation (no aphids were observed at the time of compiling this report). 12

Yellow aphids A B Figure 4.5. Yellow aphids [Sipha flava (Forbes)] on the underside of a leaf [A] of a weed [Echinocloa crus-galli] close to the experiment site [L3, Sable Block, ZSAES]. Variety [B] at the same site after recovering from aphid attack. The aphids were also observed on all sugarcane varieties in the trial except on ZN7. 13

5. Progress in U.S.A General: Varieties, NCo376, CP 88-1762, R 570, Q183, and HoCP 96-540 were planted manually on Dec 12, 2013 at the Everglades Research and Education Center (EREC) of the University of Florida at Belle Glade, FL. Seed cane was harvested from the plots planted for seed bulking in the fall of 2012. The test was planted in a randomized complete block design (RCBD) with four replications, each for data collection from plant-cane crop and from first-ratoon crop (Figure 5.1). As shown in Figure 5.1, plot # 1-24 will be used for data collection from plant-cane crop in 2014 and plot # 25-48 will be used for data collection from first-ratoon crop in 2015. Each plot consisted of 9 rows spaced 1.5m with row length of 11m. Four sections were marked in each plot (3 rows with row length of 4m; Figure 5.1, bottom panel), to perform destructive harvest at around 3, 6, 9, and 12 months period. Non-destructive measurements will be conducted in the section reserved for final destructive harvest. Emergence in all varieties started around early January (Figure 5.2). Early growth was delayed due to cold weather conditions in south Florida in mid-late January. Variety Q183 showed earliest emergence and fast early growth compared to other varieties. By early April, all varieties have shown good early growth (Figure 5.3). 14

3m 96m NCo376 HoCP96-540 Q183 CP88-1762 R570 24 23 22 21 20 19 Rep 4 5m 18 Q183 NCo376 R570 CP88-1762 HoCP96-540 17 16 15 14 13 Rep 3 CP88-1762 R570 Q183 HoCP96-540 NCo376 12 11 10 9 8 7 Rep 2 HoCP96-540 Q183 R570 CP88-1762 NCo376 6 5 4 3 2 1 Rep 1 HoCP96-540 R570 Q183 CP88-1762 NCo376 48 47 46 45 44 43 Rep 4 42 CP88-1762 NCo376 Q183 HoCP96-540 R570 41 40 39 38 37 Rep 3 NCo376 CP88-1762 HoCP96-540 R570 Q183 36 35 34 33 32 31 Rep 2 5m 30 R570 HoCP96-540 Q183 NCo376 CP88-1762 29 28 27 26 25 3m Rep 1 1m 4m 11m 1m 4m 1m 1 2 3 4 5 6 7 8 9 13.5m Figure 5.1: Layout of the trial for plant-cane crop (top panel), first-ratoon crop (middle panel), and individual plot (bottom panel). 15

Figure 5.2: Planting (leaf panel) and emergence (right panel) for all verities in the trial. A B C D E F Figure 5.3: Varieties planted in the trial: (A), (B) NCo376, (C) CP 88-1762, (D) R 570, (E) Q183, and (F) HoCP 96-540. Pictures were taken on April 10, 2014. 16

Challenges faced Variety Q183 has shown brown spotting symptoms that could not be identified after consultation with various scientists at EREC and USDA-ARS (Figure 5.4). No disease spores or insect damage was seen on the leaves showing these symptoms. These spots were present both in the plant-cane crop in the current trial and in the first-ratoon crop in the plots used for seed cane. These spots are present in all plots in the main study and are severe on lower canopy. Some symptoms were also present on varieties and NCo376 but absent in other varieties. Figure 5.4: Brown spotting observed on Q183 during March 2014, in the main trial planted in fall of 2013 (plant-cane crop; top panels) and in the plots planted for seed bulking in the fall of 2012 (first-ratoon crop; bottom panels). Due to mild winters, this year has seen early initiation of brown and orange rust symptoms in sugarcane in south Florida. In this trial, variety HoCP 96-540 has shown most severe symptoms of brown rust (Figure 5.5, left panel). Minimal to no symptoms were seen in other varieties until now. Manganese nutrient deficiency symptoms were observed in only one variety (Q183; Figure 5.5, right panel) in this trial. 17

Figure 5.5: Brown rust on HoCP 96-540 (leaf panel) and Manganese deficiency in Q183 along with some brown spotting (right panel). The study is kept weed-free by in-row cultivation and herbicide spray. Various narrow and broad leaf weeds, particularly fall panicum (Panicum dichotomiflorum), infested the study plots. Herbicide Asulam was sprayed to control fall panicum in the plots. Progress on data collection Data were collected on sugarcane emergence and tiller count in all the varieties (Figures 5.6 and 5.7). Variety Q183 showed earliest emergence and time to reach to 90% emergence compared to all other varieties. Variety R570 showed the slowest emergence rate (Figure 5.6). Tiller count data was collected in the section marked for final destructive harvest. Again, varieties Q183 and R570 have showed highest and lowest tiller count in the early phase of growth. Eight plants were tagged in each plot (in the section marked for final harvest) and data will be collected on green leaf count and plant height. Some data have already been collected on these parameters. Also, first destructive harvest was conducted on April 10, 2014. We also conducted destructive harvest on three CP varieties during 2013 (CP 89-2143, CP 88-1762, and CP 00-1101) in one of our trials during August and December of 2013 to acquaint ourselves with the sampling protocol. 18

100 80 Emergence (%) Tiller count per hectare 60 40 NCo376 20 0 CP 88-1762 R 570 Q183 HoCP 96-540 20 40 60 80 100 120 Days After Planting (DAP) Figure 5.6: Sugarcane emergence (%) for all six varieties planted on December 12, 2013. 120000 NCo376 100000 80000 CP 88-1762 R 570 Q183 HoCP 96-540 60000 40000 20000 0 40 60 80 100 120 Days After Planting (DAP) Figure 5.7: Tiller count per hectare for all six sugarcane varieties planted on December 12, 2013. 19

6. Conclusion The project is well on track. Trials have been planted in the USA and South Africa and data have been collected in these two trials as well as the trial planted earlier in Zimbabwe. It is estimated that the Reunion trial will be planted in January 2015. The focus is now on managing the trials and collecting the data according to the agreed trial and data collection protocols. To this end a data recording and storage sheet was developed. The suggestion is that project participants send the first batch of data (collected up to an including the first destructive sampling) in the data storage sheet to the project manager so that potential discrepancies can be addressed as soon as possible. A technical report is also due after the completion of the first season. 7. Reference South African Sugar Research Institute (1999). Identification and management of the soils of the South African sugar industry (3 rd Edition).. 20