BACKGROUND ABSTRACT PSIG 1428

Size: px
Start display at page:

Download "BACKGROUND ABSTRACT PSIG 1428"

Transcription

1 PSIG 1428 Economic Benefits of Leak Detection Systems: A Quantitative Methodology Trevor Slade, Alyeska Pipeline, Yoshihiro Okamoto, Alyeska Pipeline, Jonathan Talor, Copyright 2014, Pipeline Simulation Interest Group This paper was prepared for presentation at the PSIG Annual Meeting held in Baltimore, Maryland, 6 May 9 May This paper was selected for presentation by the PSIG Board of Directors following review of information contained in an abstract submitted by the author(s). The material, as presented, does not necessarily reflect any position of the Pipeline Simulation Interest Group, its officers, or members. Papers presented at PSIG meetings are subject to publication review by Editorial Committees of the Pipeline Simulation Interest Group. Electronic reproduction, distribution, or storage of any part of this paper for commercial purposes without the written consent of PSIG is prohibited. Permission to reproduce in print is restricted to an abstract of not more than 300 words; illustrations may not be copied. The abstract must contain conspicuous acknowledgment of where and by whom the paper was presented. Write Librarian, Pipeline Simulation Interest Group, P.O. Box 22625, Houston, TX 77227, U.S.A., fax ABSTRACT Effective risk and cost management are paramount concerns for pipeline owners and operators. Leak detection systems (LDS), while having no effect on the probability of a leak occurring, limit the scope of potential damage and reduce risk. The authors propose using a stochastic simulation to quantify the economic effectiveness of these systems in mitigating these low-probability, high impact events for liquid pipelines. When considering any capital investment, it is useful to estimate its expected value; the authors propose using a stochastic simulation to perform an economic analysis on these systems analyzing the ability of these systems to mitigate the impact of oil spills. For this methodology, each leak detection system is measured in terms of the reduction to total oil spill impact. This is accomplished by using leak probabilities to generate theoretical leaks that mimic the expected leak behavior of a pipeline. Next, probability maps are used to generate theoretical onset-to-response times, where the generated times mimic the expected behavior of the LDS. These generated values are used as input to a cost model to estimate the total spill costs for each leak, and repeated application results in an expected value for each subsystem. The costs are converted to a present value using the internal rate of return specified by the operating company. Risk is estimated with and without a proposed change to the current leak detection system; the difference between the two total spill risks is the value or impact of the proposed change. Comparing risk reduction values provides a meaningful way of evaluating LDSs and potential changes to LDSs. Additionally, it can justify the removal of unnecessary LDS components and allow comparison of proposed leak detection projects with other investment options. BACKGROUND A leak detection system and its components operate in tandem with human controllers and process equipment to detect and diagnose pipeline hydraulic anomalies and respond appropriately in the event of a leak. LDSs provide an essential tool for mitigating the risks associated with operating Hazardous Liquid and Gas Pipelines. Adhering to even the best integrity management practices cannot completely eliminate the probability of a leak occurring and the associated hazards of a leak and spill, including loss of life, environmental impact and negative public perception are signif Various factors determine which LDS and subsystems are appropriate for a pipeline: government regulation, pipeline size, location, expected throughput, etc. In order to evaluate what is best for a specific pipeline, the authors propose that the risk reduction through improved response time provided by the LDS be taken into account. LDSs vary in their performance and cost; the correct one should add the most value to the core business. The U.S. Department of Transportation s (USDOT) study on leak detection 1 defined risk in terms of expected cost in dollars/year as: ( ) ( ) LDSs ultimately reduce the economic impact by limiting spill volume and spill area in the event of a leak via two avenues: producing a process response such as a shut down or isolation and speeding up oil spill response activities. Additionally, even the most sensitive system is monitored by human controllers and operators who are ultimately the true detectors of leaks; a system that detects rapidly but is too cumbersome to diagnose efficiently may result in a longer onset-to-response time than a simpler LDS.

2 2 TREVOR SLADE, YOSHIHIRO OKAMOTO, JONATHAN TALOR PSIG 1428 Basics of Leak Alarm Response The process of responding to a leak can be illustrated by splitting it into four phases. The initial phase is the dynamic phase between the moment of pipe integrity failure and the leak rate stabilizing. The second phase is the period where the leak rate has stabilized but the LDS has yet to elicit the appropriate process response. The third phase is the period where the response is taking place, and the fourth and final phase is the time between the completion of the response and the leak stopping. At the onset of a leak, a pipeline integrity failure of some sort creates a path of least resistance through which a portion of the total pipeline flow is diverted. During the initial phase of the leak, the flow through this diversion will typically be larger than the eventual steady state leak rate. This behavior can be estimated using a transient pipeline model, the output of which is an estimate of the total spill size for a given leak rate. After some time, the system reaches a state of stable leak rate. A leak detection system is expected to alarm some time after the onset of the leak. The time required for the system to detect the leak depends on the type of system and its design characteristics. It may not be appropriate to assume that leak alarms will immediately trigger the appropriate process response because it is typical for LDSs to broadcast non-leak (false) alarms. These alarms can affect the time required to elicit a response based on the strategy the pipeline operator uses to handle leak alarms. Some examples of different strategies include: 1. Immediately respond to all leak alarms. 2. Define a maximum alarm analysis time period; the response is initiated if this period expires and if the analyzer s confidence that this is a false alarm has not reached a certain threshold. 3. Respond to the alarm only when the analyzer s confidence that it is a true leak alarm reaches a specified threshold. It is apparent that each strategy has a relative cost: immediately responding to all leak alarms will increase the cost of each false alarm while waiting to analyze the alarms can slow down the response. The choice of alarm management strategy depends on many factors but risk/cost analysis can help balance the need for quick leak response with the objective of maintaining stable operations. When a leak alarm successfully elicits the appropriate process response, the response will consist of manipulating pumps, closing or opening remote valves, etc. It will require time to ramp down the pumps, close remote valves, and whatever other remedial action is required. Rapid shutdown of the system is often limited by the need to prevent pipeline overpressuring via water hammer effects. Other factors that can influence the total leak size are the pipeline s topography and normal operating pressures. Upon completion of the alarm response, which typically ends with complete pipeline isolation, the leak will continue until the static head directly upstream of the leak drops to or below atmospheric pressure. This dynamic depends on remote valve and check valve selection and locations and the elevation of the pipeline. METHODOLOGY Prerequisites In order to evaluate how LDSs can improve leak response, data about their characteristics and behavior must be gathered. rate based LDSs can be vetted by performing commodity withdrawal tests if already in place, and with software based methods, such as those described in PSIG 05A1 2. Using such methods, it is possible to obtain a performance curve for a given LDS and leak rate, where the cumulative probability of detecting a leak is plotted against time after leak onset. A set of these curves over various leak rates can be considered the performance map of that LDS. The performance map used for the sample cases in this paper is shown in Figure 1. For observational LDSs, such as pipeline route inspections or fly-overs, an estimation of the probability of observing a leak is required. Inputs to these methods would be leak size and location, whether it is above or below ground, and the frequency of observation at each location. It could also account for missed observations; due to the highly variable nature of observation based LDSs, we concentrate our analysis in this paper on flow rate based LDSs. To estimate the cost for a given leak, we used the Basic Oil Spill Cost Estimation Model (BOSCEM) published by the Environmental Protection Agency (EPA) 3. This model sums spill response, socio-economic, and environmental costs of a leak and includes influencing factors like oil and terrain type. For even the smallest leaks, there is a substantial base cost, and the increase in cost for increasing leak sizes is less than linear. Additionally, the disparity between high-impact and low-impact areas is significant; a spill in a high-impact environmental area, such as a river used by wildlife or residential land, can cost more than 2.5 times the amount than a spill of the same volume in an industrial area. From BOSCEM, one can construct a cost matrix that contains the estimated cost for a leak of a given volume at any point along the pipeline, Cost(milepost, volume1, volume2, ). Ideally, a full GIS survey would be conducted; in the likely situation that a very detailed survey is available from pipeline route and construction planning. These can be used if no major route changes have occurred. For simplicity, we have assumed fixed coefficients for the entirety of our sample pipeline.

3 PSIG 1428 ECONOMIC BENEFITS OF LEAK DETECTION SYSTEMS: A QUANTITATIVE METHODOLGY 3 Secondly, a leak probability matrix must be created, P_Leak(milepost, rate1, rate2, ). This information can be obtained via risk analysis studies of the pipeline and deductions from operating data. Though these probabilities will differ along the length of the pipeline for example, leaks often tend to occur closer to pump stations or at the bottom of downhill segments we have assumed that every location and leak rate has equal probability. Another consideration is the operator response time after a leak alarm has been issued. This can vary by milepost, as instrumentation may be of better quality in different parts of the pipeline. Custody transfer meters at the supply and delivery points usually have a higher degree of accuracy, but in-line flow meters may be less accurate. Furthermore, smaller leak rates may take longer to interpret, as they cause less disturbance in the normal operating data displayed to the controller/operator. Procedure The probabilistic nature of leak detection encouraged the authors to use a stochastic simulation to estimate the value of leak detection systems. In these simulations, each variable is represented by a probability distribution. The simulation steps forward in time and at each time step generates random numbers for each variable and compares them to the probability distribution to determine the outcome. A large number of trials are important in order for the random distribution to accurately reflect the determined performance of the LDS. After a leak occurs, the total volume of the leak can be estimated by finding the length of time between the onset of the leak and the time at which operational response takes effect. If a leak detection system successfully detects the leak, the series of events is illustrated in Figure 2. After the leak starts, the leak detection system will require a length of time for detection, which can be estimated using a random number and the leak detection system s performance map. After an alarm is successfully broadcast, the alarm needs to elicit an appropriate response. For most pipelines, a field response requires time to take effect; this amount of time is the final component of determining the total response time. The series of events in Figure 2 shows a completely successful response to a leak. It is important to recognize the possibility of failure at each step. A leak simulation starts by stepping forward in time by a designated time step. At each time step, a random number is generated and if the random number is less than the probability of a leak occurring, a leak is simulated. Otherwise, no leak occurs and the leak simulation moves on to the next time step. When triggered, the leak simulation determines the location and size of the leak using a cumulative probability function of these variables and a random number for each. For our sample cases, each location and leak rate has an equal probability of occurring, but an analysis of pipeline-specific factors could improve the accuracy by generating a more realistic distribution of leaks along the profile of the pipeline. Possible contributions to an increased leak probability at a specific point include vulnerability to over pressurizing or an area where water could collect and cause corrosion. When a leak occurs as defined by the simulations, the leak simulation pauses and a leak detection simulation begins. The leak detection simulation first computes the cumulative probability of detecting a leak for the given location and leak rate from the LDS performance map. If multiple leak detection systems exist, the joint probability of the group of systems detecting a leak should be estimated. A random number from 0 to 1 is generated and compared to the cumulative probability of a leak having been detected at the current time. If that number is less than the detection probability, the leak is considered detected. Otherwise, the leak simulation continues onto the next time step and repeats until the leak is determined to be caught or the maximum time for detection elapses. Detecting a leak with the leak detection systems will trigger the response simulation. Once the response threshold is achieved, the time required for the response to take effect is added to the time required to elicit a response and the time required for the leak detection systems to alarm in order to estimate the time to response. The total required time is used to calculate the total leak volume, which is input into a cost estimation model. These steps will be repeated thousands of times. The average present value of the leak costs is then computed as the current risk associated with an oil spill. An overview of this methodology is given in Figure 3. It is unfortunately common for an LDS to broadcast non-leak alarms. These alarms are caused by pipeline transients and/or instrumentation uncertainties that create data inputs that can be confused for a leak. Tuning a LDS often requires a tradeoff between increasing sensitivity and increasing the number of non-leak alarms. The costs associated with false alarms can be estimated by measuring the total number of non-leak (false) alarms that occur in a given time period. The cost of the non-leak alarms depends on the strategy used to handle leak alarms. The common strategy in which all leak alarms are immediately responded to means that 100% of alarms will trigger the appropriate response. It also means that 100% of false alarms will shut the pipeline down for a specified period of time. The cost of false alarms for this type of management can be estimated by considering the cost of shutting the pipeline down for each false alarm. If a period is specified, such that within this time it must be

4 4 TREVOR SLADE, YOSHIHIRO OKAMOTO, JONATHAN TALOR PSIG 1428 determined whether to respond or not, it is assumed whoever is analyzing the alarm must prove that the alarm is not indicative of a leak. During this analysis, if a confidence level is specified, the performance maps that show the confidence level as a function of leak size and time after leak onset can be used in conjunction with a stochastic simulation to determine whether each false alarm was attributed in time. For the case which requires the analyzer to reach a specified confidence level prior to initiating a response, the performance maps can be used in conjunction with a stochastic simulation to determine the average number of cases where the analyzer mistakenly reaches the specified confidence level when given a false alarm. SAMPLE CASES A simplified example pipeline was created to illustrate the different types of results that can be obtained by this type of economic analysis. There are three different cases of the same pipeline, where the area classification can change based on milepost. The first case is a pipeline whose entire route spans a low consequence area, the second has interspersed high consequence areas that account for 20% of the total pipeline length, and the third is a pipeline that goes entirely through high consequence areas. For the mixed case, the high impact areas are evenly distributed in three sections at the beginning, middle, and end of the pipeline. These high-impact sections can be placed to cover any 20% of the pipeline because we have assumed that the probability of a leak in any location is uniform across the entire pipeline. In a real pipeline, this would not be the case because the pipeline route is fixed and has non-uniform probabilities for leak occurrence. Additionally, it is possible to create any number of sections with different impacts along the pipeline; the sample cases are simple, but real pipelines can and do cross multiple environmentally or economically important areas. We created representative, but realistic, detection probabilities corresponding to different leak rates:,,,, and of flow (Figure 1). All had 100% detection at 24 hours after leak onset. The maximum leak time is also 24 hours. The leak volume over 24 hours was used to calculate the risk with no LDS. For each case, we separated out each leak rate and investigated the total volume reduction provided by the LDS. We also looked at the effect of pipeline integrity (designated by the number of leaks a pipeline can expect to have in one year) on the risk reduction gained by LDS implementation. The results of these sample cases are detailed in Tables 1-9 and Figures 4-6. For each case, we ran 100,000 trials and varied the pipeline integrity with 0.1, 0.2 and 1 leak per year. The tables show the estimated risk with and without the LDS, as well as the risk reduction for a single integrity value across the different leak rates. The figures compare the effect of pipeline integrity on risk reduction for each leak rate. Case 1 Low Consequence The percentage risk reduction ranges from 46-6 for a pipeline experiencing 1 leak per year for 10 years, increasing to 79-86% for a pipeline with 1 leak per 10 years. The highest reduction for each integrity value is experienced at the low and high ends of the leak rates. Case 2 Mixed Low/High Consequence The percentage risk reduction ranges from 42-60% for a low integrity pipeline, increasing to 78-86% for a high integrity pipeline. Again, the highest reduction for each integrity value is experienced at the low and high ends of the leak rates. Case 3 High Consequence Similar to the previous two cases, though with greatly increased actual cost, the risk reduction ranges from 49-65% in the low integrity scenario to 80-86% in the high integrity one; again showing the largest reduction at for the largest and smallest leak rates. DISCUSSION Overall, the risk reduction is very similar in these cases, with a slight trend towards better reduction in higher impact areas. However, pipelines constructed in high consequence areas (wildlife reservations, near water resources, etc.) often have additional technical challenges that can reduce the performance of LDSs. These can include altered pipeline construction, e.g. alternating above- and below-ground sections designed not to disturb wildlife migration routes, or having to rapidly cool the oil from a supply station in order for the heat not to damage a delicate tundra environment. While, in our examples, we assumed that the LDS performed equally well on the high consequence pipeline as the low consequence one, this is not necessarily the case in real operations. It is important that the risk reduction provided by LDSs be influenced by the number of leaks that occur over the operating lifespan of the pipeline. This implies a cooperative effect between good pipeline maintenance and the effectiveness of leak detection. This effect is reflected in the coefficients in the BOSCEM model, which scale at a less than linear rate (i.e. it costs less per barrel spilt for a 100,000 BBL spill than a 10,000 BBL spill). Given equivalent total spill volumes, a single large leak will most likely be less costly than the sum of multiple smaller leaks. Therefore, reducing the probability of leaks occurring through good pipeline integrity maintenance bolsters the effectiveness of LDSs. The extra risk reduction gained by leak detection can be viewed as enhancing the benefits of maintenance and infrastructure, which is another aspect that should be taken into account when choosing a LDS. When combined, it is possible that a high performing, albeit expensive LDS could prove cheaper than a

5 PSIG 1428 ECONOMIC BENEFITS OF LEAK DETECTION SYSTEMS: A QUANTITATIVE METHODOLGY 5 moderately performing, but inexpensive to install LDS. It may be noted there was a small, but consistent, drop in risk reduction in the mid-range leak sizes (1- flow). This can be explained in two ways: for very small leaks (< flow), any level of detection represents a significant reduction versus over letting the leak persist. For large leaks (> flow), the rapidity of detection ensures that the large final cost of a continued leak never reaches that potential. Though we have given equal weight to leak sizes, most leaks that occur in real pipelines are smaller in size, which would increase the overall LDS risk reduction slightly. It is important to note that high sensitivity at low leak sizes, P(Alarm Leak), is often correlated with higher false alarms, P(Alarm No Leak) and smaller leak sizes will take longer to diagnose. Additionally, it is possible for LDSs to have different types of alarms, each requiring separate investigation. The controller s time to response was set at a static number in our model. An analysis of false alarms and their effects on response time would improve its accuracy. Though our simplified pipeline did not have additional instrumentation or other equipment, real pipelines often have isolation valving that should be taken into account. During the progression of a leak, without check valves and remotely operated valves, a pipeline would drain until the leak could be stopped. Even if the pipeline were shut down, differences in pressure based on topography would cause additional spillage until equalized. The strategic placement of valving is, therefore, an important consideration in pipeline construction. When choosing a LDS, there can be a tradeoff between the effectiveness of that system and the configuration of the valving along the pipeline. rate-based LDSs require that the instrumentation used to provide them with data have access to the pipeline hydraulic measurements; they cannot function in sections of the pipeline where they cannot see. One possible further analysis would be to look at how often a pipeline shuts down (for example for maintenance purposes) and look at what visibility the LDS has into the pipeline under these operating conditions. This could be used to further refine the cost model by including the probability that the pipeline is shut down when a leak occurs and reverting to a detection probability for those trials. It is not uncommon for pipeline operators to employ multiple LDSs, each with different inputs, such that at least one can be used in the event that input data becomes unavailable for one or more of them. Having these backup leak detection systems is important, and can justify keeping lower performing systems or subsystems in operation. CONCLUSIONS Although the cases considered in this paper were very simple compared to real world leak detection management problems, they illustrate that the risk reduction of a leak detection system can be estimated. This type of analysis can be used to assist pipeline operators to make informed management decisions concerning leak detection systems including selection of new systems, tuning of existing systems and prioritizing system maintenance. REFERENCES 1. United States Department of Transportation. Leak Detection Study DTPH56-11-D Carpenter P, Nicholas E, Henrie M. Accurately Representing Leak Detection Capability and Determining Risk. Pipeline Simulation Interest Group, October Etkin D. Modeling Oil Spill Response and Damage Costs. FSS, April Kristiansen M. Leak Detection Metrics: What Should I Focus on? Pipeline Simulation Interest Group, May ACKNOWLEDGEMENTS The authors would like to acknowledge Hugh Robinson and Jon Barley for their efforts in helping review this paper. We also acknowledge Phil Carpenter, Ed Nicholas, and Morgan Henrie, for their extensive experience and investigation into determining the performance of rate based leak detection systems. Finally, we acknowledge Morten Kristiansen for his PSIG paper on choosing leak detection systems, which influenced the direction of ours. ABOUT THE AUTHORS Trevor Slade is a Process Controls Engineer at Alyeska Pipeline Services Company in Anchorage, Alaska. He has experience with pipeline leak detection, process safety management, and DCS systems. Trevor has a Bachelor s of Science in Chemical Engineering from Brigham Young University in Provo, Utah. Yoshihiro Okamoto is an Automation Engineer at Alyeska Pipeline Services Company in Anchorage, Alaska. He is a recent graduate and is currently working on SCADA systems. Yoshihiro has a Bachelor s of Science in Electrical Engineering from the University of Alaska, Anchorage. Jonathan Talor is a Project Engineer at Energy Solutions International in Houston, Texas. He has experience with pipeline leak detection and simulation. Jonathan has a Bachelor s of Science in Chemical and Biomolecular Engineering from the University of Pennsylvania in Philadelphia, PA.

6 6 TREVOR SLADE, YOSHIHIRO OKAMOTO, JONATHAN TALOR PSIG 1428 TABLES Case 1 No. of Trials: , Leaks/Year: 1, Max Leak Time: 1 Day, Operation: 10 Risk, No LDS ($MM) , Risk, LDS ($MM) Risk Reduction (%) 56.06% % 52.89% 62.35% Table 1 Risk Reduction, Case 1; Trials per, 1 Leak per Year, Max Leak Time = 1 Day, Operation = 10 Case 1 No. of Trials: , Leaks/Year: 0.2, Max Leak Time: 1 Day, Operation: 10 Risk, No LDS ($MM) Risk, LDS ($MM) Risk Reduction 71.88% 66.18% 65.24% 69.37% 75.70% Table 2 Risk Reduction, Case 1; Trials per, 1 Leak per 5, Max Leak Time = 1 Day, Operation = 10 Case 1 No. of Trials: , Leaks/Year: 0.1, Max Leak Time: 1 Day, Operation: 10 Risk, No LDS ($MM) Risk, LDS ($MM) Risk Reduction 83.18% 79.90% % Table 3 Risk Reduction, Case 1; Trials per, 1 Leak per 10, Max Leak Time = 1 Day, Operation = 10 Case 2 No. of Trials: , Leaks/Year: 1, Max Leak Time: 1 Day, Operation: 10 Risk, No LDS ($MM) , Risk, LDS ($MM) Risk Reduction (%) 55.55% % 50.04% 60.16% Table 4 Risk Reduction, Case 2; Trials per, 1 Leak per Year, Max Leak Time = 1 Day, Operation = 10

7 PSIG 1428 ECONOMIC BENEFITS OF LEAK DETECTION SYSTEMS: A QUANTITATIVE METHODOLGY 7 Case 2 No. of Trials: , Leaks/Year: 0.2, Max Leak Time: 1 Day, Operation: 10 Risk, No LDS ($MM) Risk, LDS ($MM) Risk Reduction % 63.40% Table 5 Risk Reduction, Case 2; Trials per, 1 Leak per 5, Max Leak Time = 1 Day, Operation = 10 Case 2 No. of Trials: , Leaks/Year: 0.1, Max Leak Time: 1 Day, Operation: 10 Risk, No LDS ($MM) Risk, LDS ($MM) Risk Reduction 80.96% % 85.55% Table 6 Risk Reduction, Case 2; Trials per, 1 Leak per 10, Max Leak Time = 1 Day, Operation = 10 Case 3 No. of Trials: , Leaks/Year: 1, Max Leak Time: 1 Day, Operation: 10 Risk, No LDS ($MM) , , , Risk, LDS ($MM) Risk Reduction (%) % 49.40% 56.38% 65.6 Table 7 Risk Reduction, Case 3; Trials per, 1 Leak per Year, Max Leak Time = 1 Day, Operation = 10 Case 3 No. of Trials: , Leaks/Year: 0.2, Max Leak Time: 1 Day, Operation: 10 Risk, No LDS ($MM) Risk, LDS ($MM) Risk Reduction % 67.09% 71.54% 77.68% Table 8 Risk Reduction, Case 3; Trials per, 1 Leak per 5, Max Leak Time = 1 Day, Operation = 10

8 8 TREVOR SLADE, YOSHIHIRO OKAMOTO, JONATHAN TALOR PSIG 1428 Case 3 No. of Trials: , Leaks/Year: 0.1, Max Leak Time: 1 Day, Operation: 10 Risk, No LDS ($MM) Risk, LDS ($MM) Risk Reduction 82.50% 80.36% % 86.46% Table 9 Risk Reduction, Case 3; Trials per, 1 Leak per 10, Max Leak Time = 1 Day, Operation = 10

9 PSIG 1428 ECONOMIC BENEFITS OF LEAK DETECTION SYSTEMS: A QUANTITATIVE METHODOLGY 9 FIGURES 100% Leak Detection Probability for Various s Leak Detection Probability (%) 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% Hours Figure 1 Leak Detection Probability for Various s LEAK! Time required for Leak Detection System to Alarm LEAK ALARM Time required for Leak Alarm to Elicit the Appropriate Response RESPONSE Time required for Response to Take Effect END TOTAL LEAK VOLUME Figure 2 - Diagram of the series of events initiated by a leak START, CURRENT TIME LEAK SIMULATON, Time, Location Leak Simulation Time of Alarm Response Simulation Time Response Takes Effect COST MODEL END, PRESENT VALUE OF LEAK COST Next Time Step Next Time Step Next Time Step Figure 3 Overview of Stochastic Simulation

10 10 TREVOR SLADE, YOSHIHIRO OKAMOTO, JONATHAN TALOR PSIG 1428 Risk Reduction 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% Case 1 - Risk Reduction Figure 4 Case 1: Risk Reduction for Each and Interval 1 Leak/Year 0.2 Leaks/Year 0.1 Leaks/Year Risk Reduction 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% Case 2 - Risk Reduction Figure 5 Case 2: Risk Reduction for Each and Interval 1 Leak/Year 0.2 Leaks/Year 0.1 Leaks/Year

11 PSIG 1428 ECONOMIC BENEFITS OF LEAK DETECTION SYSTEMS: A QUANTITATIVE METHODOLGY 11 Risk Reduction 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% Case 3 - Risk Reduction Figure 6 Case 3: Risk Reduction for Each and Interval 1 Leak/Year 0.2 Leaks/Year 0.1 Leaks/Year

Presented at 6 th Pipeline Technology Conference Hannover, Germany April 4-5, 2011

Presented at 6 th Pipeline Technology Conference Hannover, Germany April 4-5, 2011 Presented at 6 th Pipeline Technology Conference 2011 Hannover, Germany April 4-5, 2011 Introduction Recent Pipeline Leak Detection History in the US Inspection Finding and Enforcement Actions Overview

More information

Real Time Pipeline Leak Detection on Shell s North Western Ethylene Pipeline

Real Time Pipeline Leak Detection on Shell s North Western Ethylene Pipeline Real Time Pipeline Leak Detection on Shell s North Western Ethylene Pipeline Dr Jun Zhang & Dr Ling Xu* REL Instrumentation Limited ABSTRACT In the past ten years, a number of pipeline leak detection systems

More information

SYNERGY IN LEAK DETECTION: COMBINING LEAK DETECTION TECHNOLOGIES THAT USE DIFFERENT PHYSICAL PRINCIPLES

SYNERGY IN LEAK DETECTION: COMBINING LEAK DETECTION TECHNOLOGIES THAT USE DIFFERENT PHYSICAL PRINCIPLES Proceedings of the 2014 10 th International Pipeline Conference IPC2014 September 29-October 3, 2014, Calgary, Alberta, Canada IPC2014-33387 SYNERGY IN LEAK DETECTION: COMBINING LEAK DETECTION TECHNOLOGIES

More information

6 th Pipeline Technology Conference 2011

6 th Pipeline Technology Conference 2011 6 th Pipeline Technology Conference 2011 Pipeline Leak Detection and Theft Detection Using Rarefaction Waves Authors: Dr Alex Souza de Joode, VP International Operations; ATMOS International, UK. Andrew

More information

Leak Detection Program Management (RP 1175) April 24-26, 2018 St. Louis, Missouri

Leak Detection Program Management (RP 1175) April 24-26, 2018 St. Louis, Missouri Leak Detection Program Management (RP 1175) April 24-26, 2018 St. Louis, Missouri Agenda Introduction Part 1 - Part 2 - Part 3 - Presentation from Chris Hoidal (PHMSA) Audience Q/A (~5 minutes) Presentation

More information

RLDS - Remote LEAK DETECTION SYSTEM

RLDS - Remote LEAK DETECTION SYSTEM RLDS - Remote LEAK DETECTION SYSTEM Asel-Tech has spent considerable time and resources over the past 8 years to improve our technology, to the point where it is unparalleled in reliability and performance

More information

USER APPROVAL OF SAFETY INSTRUMENTED SYSTEM DEVICES

USER APPROVAL OF SAFETY INSTRUMENTED SYSTEM DEVICES USER APPROVAL OF SAFETY INSTRUMENTED SYSTEM DEVICES Angela E. Summers, Ph.D., P.E, President Susan Wiley, Senior Consultant SIS-TECH Solutions, LP Process Plant Safety Symposium, 2006 Spring National Meeting,

More information

Study and Design Considerations of HRSG Evaporators in Fast Start Combined Cycle Plants. Govind Rengarajan, P.E.CEM, Dan Taylor

Study and Design Considerations of HRSG Evaporators in Fast Start Combined Cycle Plants. Govind Rengarajan, P.E.CEM, Dan Taylor Study and Design Considerations of HRSG Evaporators in Fast Start Combined Cycle Plants Govind Rengarajan, P.E.CEM, Dan Taylor CMI Energy, Erie PA 1651 Bernd Pankow P.E, Pankow Engineering Abstract Combined

More information

Fire Risks of Loviisa NPP During Shutdown States

Fire Risks of Loviisa NPP During Shutdown States Fire Risks of Loviisa NPP During Shutdown States Sami Sirén a*, Ilkka Paavola a, Kalle Jänkälä a a Fortum Power And Heat Oy, Espoo, Finland Abstract: Fire PRA for all 15 shutdown states of Loviisa NPP

More information

HOT IN HERE: OFFICE OCCUPANT THERMAL COMFORT IN LAWRENCE HALL

HOT IN HERE: OFFICE OCCUPANT THERMAL COMFORT IN LAWRENCE HALL GROUP 1 HOT IN HERE: OFFICE OCCUPANT THERMAL COMFORT IN LAWRENCE HALL Daniel Abrahamson Department of Architecture University of Oregon Eugene, Oregon 97403 dva@uoregon.edu Dijon Jones Department of Architecture

More information

Brine Generation Study

Brine Generation Study DOE/WIPP 00-2000 Brine Generation Study April 2000 Waste Isolation Pilot Plant Carlsbad, New Mexico Processing and final preparation of this report was performed by the Waste Isolation Pilot Plant Management

More information

A Comprehensive Approach to Leak Detection

A Comprehensive Approach to Leak Detection A Comprehensive Approach to Leak Detection Real Water Loss: A Real Issue for Water Utilities Every day, water utilities lose billions of gallons of water designated for public use. In many areas of the

More information

BRIDGING THE SAFE AUTOMATION GAP PART 1

BRIDGING THE SAFE AUTOMATION GAP PART 1 BRIDGING THE SAFE AUTOMATION GAP PART 1 Angela E. Summers, Ph.D., P.E, President, SIS-TECH Solutions, LP Bridging the Safe Automation Gap Part 1, Mary Kay O Conner Process Safety Center, Texas A&M University,

More information

CITY CLERK. Parkland Acquisition Strategic Directions Report (All Wards)

CITY CLERK. Parkland Acquisition Strategic Directions Report (All Wards) CITY CLERK Clause embodied in Report No. 10 of the, as adopted by the Council of the City of Toronto at its meeting held on November 6, 7 and 8, 2001. 10 Parkland Acquisition Strategic Directions Report

More information

Leak Detection. Ron Threlfall Manager, Leak Detection, Maintenance and Integration

Leak Detection. Ron Threlfall Manager, Leak Detection, Maintenance and Integration Leak Detection Ron Threlfall Manager, Leak Detection, Maintenance and Integration 1 Introduction Enbridge Liquids Pipeline Energy Transportation Map Operates world s longest liquids pipeline and Canada

More information

Options for Developing a Compliant PLC-based BMS

Options for Developing a Compliant PLC-based BMS Options for Developing a Compliant PLC-based BMS Jack Boone aesolutions Greenville, South Carolina, United States of America ABSTRACT Facilities are focusing on improving the reliability of their burner

More information

Phoenix Artificial Lift Downhole Monitoring. Improving artificial lift system performance

Phoenix Artificial Lift Downhole Monitoring. Improving artificial lift system performance Phoenix Artificial Lift Downhole Monitoring Improving artificial lift system performance TRIP Applications Lift system and completion performance monitoring Wells with potential startup or instability

More information

A Study on Improvement of Fire Protection Systems based on Failure Characteristics accodrding to Yearly Variation in Old Commercial Buildings

A Study on Improvement of Fire Protection Systems based on Failure Characteristics accodrding to Yearly Variation in Old Commercial Buildings Indian Journal of Science and Technology, Vol 9(24), DOI: 10.17485/ijst/2016/v9i24/96032, June 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 A Study on Improvement of Fire Protection Systems

More information

Saying Mahalo to Solar Savings: A Billing Analysis of Solar Water Heaters in Hawaii

Saying Mahalo to Solar Savings: A Billing Analysis of Solar Water Heaters in Hawaii Saying Mahalo to Solar Savings: A Billing Analysis of Solar Water Heaters in Hawaii Jenny Yaillen, Evergreen Economics Chris Ann Dickerson, CAD Consulting Wendy Takanish and John Cole, Hawaii Public Utilities

More information

Battery Performance Alert: A TOOL FOR IMPROVED PATIENT MANAGEMENT FOR DEVICES UNDER BATTERY ADVISORY

Battery Performance Alert: A TOOL FOR IMPROVED PATIENT MANAGEMENT FOR DEVICES UNDER BATTERY ADVISORY Battery Performance Alert: A TOOL FOR IMPROVED PATIENT MANAGEMENT FOR S UNDER BATTERY ADVISORY VERSION 1.0 AUGUST 8, 2017 Abstract: BACKGROUND: In October 2016, St. Jude Medical issued an advisory on a

More information

Study of Hot-air Recirculation around Off-road Tier-4 Diesel Engine Unit Using CFD Abbreviations Keywords Abstract Introduction and Background

Study of Hot-air Recirculation around Off-road Tier-4 Diesel Engine Unit Using CFD Abbreviations Keywords Abstract Introduction and Background Study of Hot-air Recirculation around Off-road Tier-4 Diesel Engine Unit Using CFD Siddharth Jain, Yogesh Deshpande, Atul Bokane, Arun Kumar Santharam, and Deepak Babar, Halliburton Abbreviations: Computational

More information

Effective Alarm Management for Dynamic and Vessel Control Systems

Effective Alarm Management for Dynamic and Vessel Control Systems DYNAMIC POSITIONING CONFERENCE October 12-13, 2010 OPERATIONS SESSION Effective Alarm Management for Dynamic and Vessel Control Systems By Steve Savoy Ensco Offshore Company 1. Introduction Marine control

More information

Is your current safety system compliant to today's safety standard?

Is your current safety system compliant to today's safety standard? Is your current safety system compliant to today's safety standard? Abstract It is estimated that about 66% of the Programmable Electronic Systems (PES) running in the process industry were installed before

More information

CT398 Heaterstat TM Temperature Controller. Technical User Guide

CT398 Heaterstat TM Temperature Controller. Technical User Guide CT398 Heaterstat TM Temperature Controller Technical User Guide CT398 HeaterStat Controller Contents CT398 HeaterStat Controller... 2 Contents... 2 Document Overview... 2 For More Information... 2 Introduction...

More information

AVOID CATASTROPHIC SITUATIONS: EXPERT FIRE AND GAS CONSULTANCY OPTIMIZES SAFETY

AVOID CATASTROPHIC SITUATIONS: EXPERT FIRE AND GAS CONSULTANCY OPTIMIZES SAFETY AVOID CATASTROPHIC SITUATIONS: EXPERT FIRE AND GAS CONSULTANCY OPTIMIZES SAFETY World-class services help reduce incidents, protect the environment, and keep people and plants safe White Paper PAGE 1 Introduction

More information

HOW IT RELATES TO PERFORMANCE IN REFRIGERATED COMPRESSED AIR DRYERS

HOW IT RELATES TO PERFORMANCE IN REFRIGERATED COMPRESSED AIR DRYERS ENERGY CONSUMPTION HOW IT RELATES TO PERFORMANCE IN REFRIGERATED COMPRESSED AIR DRYERS Introduction Those in charge of specifying and purchasing equipment for industrial compressed air systems have many

More information

S TAR-ORION S OUTH D IAMOND P ROJECT E NVIRONMENTAL I MPACT S TATEMENT APPENDIX A FUNDAMENTALS OF ACOUSTICS

S TAR-ORION S OUTH D IAMOND P ROJECT E NVIRONMENTAL I MPACT S TATEMENT APPENDIX A FUNDAMENTALS OF ACOUSTICS APPENDIX 5.2.5-A FUNDAMENTALS OF ACOUSTICS Definition of Acoustical Terms Acoustics is the study of sound and noise is defined as unwanted sound. Airborne sound is a rapid fluctuation or oscillation of

More information

Aspirating Systems. Ducts. System Sensor Design Guide

Aspirating Systems. Ducts. System Sensor Design Guide Aspirating Systems Ducts System Sensor Design Guide Introduction The FAAST Fire Alarm Aspiration Sensing Technology 8100 smoke detector is an extremely flexible combustion particulate sensor. It is suitable

More information

TECHNICAL PUBLICATION

TECHNICAL PUBLICATION TECHNICAL PUBLICATION Title: A Common Sense Approach to Intelligent Completions Page 1/7 COPYRIGHT NOTATION: This paper is copyright material of PROMORE, A Core Laboratories Company. Publication rights

More information

Use of Dispersion Modeling Software In Ammonia Refrigeration Facility Design. By: Martin L. Timm, PE Corporate Process Safety Manager

Use of Dispersion Modeling Software In Ammonia Refrigeration Facility Design. By: Martin L. Timm, PE Corporate Process Safety Manager Use of Dispersion Modeling Software In Ammonia Refrigeration Facility Design By: Martin L. Timm, PE Corporate Process Safety Manager For the UW-Madison IRC R&T Forum, May 8-9, 2013 Introduction My IIAR

More information

AVOID CATASTROPHIC SITUATIONS: EXPERT FIRE AND GAS CONSULTANCY OPTIMIZES SAFETY

AVOID CATASTROPHIC SITUATIONS: EXPERT FIRE AND GAS CONSULTANCY OPTIMIZES SAFETY AVOID CATASTROPHIC SITUATIONS: EXPERT FIRE AND GAS CONSULTANCY OPTIMIZES SAFETY World-class services help reduce incidents, protect the environment, and keep people and plants safe White Paper PAGE 1 Introduction

More information

Optical Time-Domain Reflectometry for the Transport Spatial Filter on the OMEGA Extended Performance Laser

Optical Time-Domain Reflectometry for the Transport Spatial Filter on the OMEGA Extended Performance Laser Optical Time-Domain Reflectometry for the Transport Spatial Filter on the OMEGA Extended Performance Laser Troy Thomas Webster Thomas High School Advisor: Dr. Brian Kruschwitz Laboratory for Laser Energetics

More information

PRESSURE-ENTHALPY CHARTS AND THEIR USE By: Dr. Ralph C. Downing E.I. du Pont de Nemours & Co., Inc. Freon Products Division

PRESSURE-ENTHALPY CHARTS AND THEIR USE By: Dr. Ralph C. Downing E.I. du Pont de Nemours & Co., Inc. Freon Products Division INTRODUCTION PRESSURE-ENTHALPY CHARTS AND THEIR USE The refrigerant in a refrigeration system, regardless of type, is present in two different states. It is present as liquid and as vapor (or gas). During

More information

How to Use Fire Risk Assessment Tools to Evaluate Performance Based Designs

How to Use Fire Risk Assessment Tools to Evaluate Performance Based Designs How to Use Fire Risk Assessment Tools to Evaluate Performance Based Designs 1 ABSTRACT Noureddine Benichou and Ahmed H. Kashef * Institute for Research in Construction National Research Council of Canada

More information

Link loss measurement uncertainties: OTDR vs. light source power meter By EXFO s Systems Engineering and Research Team

Link loss measurement uncertainties: OTDR vs. light source power meter By EXFO s Systems Engineering and Research Team Link loss measurement uncertainties: OTDR vs. light source power meter By EXFO s Systems Engineering and Research Team INTRODUCTION The OTDR is a very efficient tool for characterizing the elements on

More information

Improved Dryer Control

Improved Dryer Control Improved Dryer Control Kenneth C. Hill President Kadant Johnson Systems Division David Vijh Senior Process Control Engineer Technical White Paper Series EXECUTIVE SUMMARY Significant improvements in dryer

More information

Numerical Stability Analysis of a Natural Circulation Steam Generator with a Non-uniform Heating Profile over the tube length

Numerical Stability Analysis of a Natural Circulation Steam Generator with a Non-uniform Heating Profile over the tube length Numerical Stability Analysis of a Natural Circulation Steam Generator with a Non-uniform Heating Profile over the tube length HEIMO WALTER Institute for Thermodynamics and Energy Conversion Vienna University

More information

Reported Fires in High-Rise Structures in Selected Occupancies with and without Automatic Extinguishing Systems by Extent of Smoke Damage

Reported Fires in High-Rise Structures in Selected Occupancies with and without Automatic Extinguishing Systems by Extent of Smoke Damage Reported Fires in High-Rise Structures in Selected Occupancies with and without Automatic Extinguishing Systems by Extent of Smoke Damage Marty Ahrens Fire Analysis and Research Division National Fire

More information

Optimizing Chemistry and Coater Settings for Faster Drying

Optimizing Chemistry and Coater Settings for Faster Drying Optimizing Chemistry and Coater Settings for Faster Drying David Keely, Field Tech Service Manager, The Dow Chemical Company, Louisville, KY Dr. Bill Griffith, Principal Scientist, The Dow Chemical Company,

More information

Pipeline Leak Detection: The Esso Experience

Pipeline Leak Detection: The Esso Experience Pipeline Leak Detection: The Esso Experience Bruce Tindell, Project Manager, Esso Petroleum Company Ltd, UK Dr Jun Zhang, Managing Director, ATMOS International (formerly REL Instrumentation) Abstract

More information

CEE:3371 Principles of Hydraulics and Hydrology Project #2 Flow Measurement with a Weir

CEE:3371 Principles of Hydraulics and Hydrology Project #2 Flow Measurement with a Weir CEE:3371 Principles of Hydraulics and Hydrology Project #2 Flow Measurement with a Weir Problem Statement The Iowa DNR plans to monitor a proposed prairie restoration project in eastern Iowa as an experiment.

More information

A STUDY ON THE BEHAVIOR OF STEAM CONDENSATION IN U-SHAPED HEAT TUBE

A STUDY ON THE BEHAVIOR OF STEAM CONDENSATION IN U-SHAPED HEAT TUBE A STUDY ON THE BEHAVIOR OF STEAM CONDENSATION IN U-SHAPED HEAT TUBE Satoru Ito 1, Keisuke Tsukada 1, Nobuyoshi Tsuzuki 2, Takao Ishizuka 3 and Hiroshige Kikura 3 1 Department of nuclear Engineering, Graduate

More information

The evolution of level switches and detectors

The evolution of level switches and detectors Introduction Improving maintenance practices is vital in process industries, bringing significant gains in terms of safety, production up-time and reduction in unscheduled downtime. Increasing efficiency

More information

ACHIEVING REDUNDANT INTRINSICALLY-SAFE FIELDBUS SEGMENTS FOR FISCO & ENTITY DEVICES

ACHIEVING REDUNDANT INTRINSICALLY-SAFE FIELDBUS SEGMENTS FOR FISCO & ENTITY DEVICES Foundation Fieldbus End Users Council Australia Inc. P.O. Box Z5546 Perth AUSTRALIA 6831 ACHIEVING REDUNDANT INTRINSICALLY-SAFE FIELDBUS SEGMENTS FOR FISCO & ENTITY DEVICES Mike O Neill Director, MooreHawke

More information

THERMAL DIAGNOSIS OF MV SWITCHBOARDS: A COST-EFFECTIVE, DEPENDABLE SOLUTION BASED ON AN OPTICAL SENSOR

THERMAL DIAGNOSIS OF MV SWITCHBOARDS: A COST-EFFECTIVE, DEPENDABLE SOLUTION BASED ON AN OPTICAL SENSOR THERMAL DIAGNOSIS OF MV SWITCHBOARDS: A COST-EFFECTIVE, DEPENDABLE SOLUTION BASED ON AN OPTICAL SENSOR Christian PETIT Anticipation manager Schneider Electric - Network protection and control unit -Marketing

More information

Fire and Gas Detection and Mitigation Systems

Fire and Gas Detection and Mitigation Systems Fire and Gas Detection and Mitigation Systems Dr. Lawrence Beckman, PE, TÜV FSExp SafePlex Systems, Inc., Houston, Texas ABSTRACT Fire and Gas Detection systems are key components in the overall safety

More information

Preface. Erie. Scranton. Allentown. Pittsburgh. Harrisburg. Philadelphia

Preface. Erie. Scranton. Allentown. Pittsburgh. Harrisburg. Philadelphia The Southern Alleghenies Region The Southern Alleghenies Region spans the Laurel Highlands and Allegheny Front in the west across the Appalachians to the east. It is comprised of Blair, Bedford, Cambria,

More information

Grower Summary PO 005

Grower Summary PO 005 Grower Summary PO 005 Column stocks (cut-flowers): An Investigation into the cause(s) of poor establishment, growth and flower uniformity in commercial crops. Annual 2011 Disclaimer AHDB, operating through

More information

Alarm Management Plan

Alarm Management Plan John E. Bogdan, Susan F. Booth, & David P. Garcia Abstract Why prepare an Alarm Management Plan just to meet PHMSA requirements (49 CFR Parts 192.631 and 195.446) when, for essentially the same effort,

More information

Novel Press Fabric Cleaning Method Increases Productivity in a Sustainable Manner

Novel Press Fabric Cleaning Method Increases Productivity in a Sustainable Manner Novel Press Fabric Cleaning Method Increases Productivity in a Sustainable Manner Dave Kelso Senior Account Manager DuBois Chemical (david.kelso@duboischemicals.com) John Schwamberger Paper Chemicals Division

More information

Application of Air Source Variable Refrigerant Flow in Cold Climates

Application of Air Source Variable Refrigerant Flow in Cold Climates PREPARED BY Seventhwave with the assistance of Daikin North America, LLC Masters Building Solutions Application of Air Source Variable Refrigerant Flow in Cold Climates A White Paper March 2015 275-1

More information

Battery Performance Alert

Battery Performance Alert Battery Performance Alert A TOOL FOR IMPROVED PATIENT MANAGEMENT FOR S UNDER BATTERY ADVISORY VERSION 2.0 Abstract BACKGROUND: In October 2016, St. Jude Medical (now Abbott) issued an advisory on a family

More information

AmpLight Lighting Management System

AmpLight Lighting Management System AmpLight Lighting Management System Centralized Streetlight Control Centralized Streetlight Control The AmpLight solution is a complete web-based solution with advanced communication and easy integration

More information

Y. ORMIERES. Fire risk analysis method for nuclear installations

Y. ORMIERES. Fire risk analysis method for nuclear installations Y. ORMIERES Fire risk analysis method for nuclear installations 2 Fire risk analysis method for nuclear installations A position on the management of fire safety analysis in nuclear installations by specifying:

More information

U.S. FIRE DEPARTMENT PROFILE THROUGH 2009

U.S. FIRE DEPARTMENT PROFILE THROUGH 2009 U.S. FIRE DEPARTMENT PROFILE THROUGH 2009 Michael J. Karter, Jr. Gary P. Stein October 2010 National Fire Protection Association Fire Analysis and Research Division U.S. FIRE DEPARTMENT PROFILE THROUGH

More information

2. HEAT EXCHANGERS MESA

2. HEAT EXCHANGERS MESA 1. INTRODUCTION Multiport minichannel and microchannel aluminium tubes are becoming more popular as components in heat exchangers. These heat exchangers are used in various industrial applications and

More information

U.S. Fire Department Profile 2015

U.S. Fire Department Profile 2015 U.S. Fire Department Profile 2015 April 2017 Hylton J.G. Haynes Gary P. Stein April 2017 National Fire Protection Association Abstract NFPA estimates there were approximately 1,160,450 firefighters in

More information

CITY OF FARGO PARKING RAMP SITE EVALUATION

CITY OF FARGO PARKING RAMP SITE EVALUATION CITY OF FARGO PARKING RAMP SITE EVALUATION EXECUTIVE SUMMARY Helenske Design Group (architect) and Carl Walker Inc (Parking Consultant) were retained by the City of Fargo to complete a downtown parking

More information

Modeling and Simulation of Axial Fan Using CFD Hemant Kumawat

Modeling and Simulation of Axial Fan Using CFD Hemant Kumawat Modeling and Simulation of Axial Fan Using CFD Hemant Kumawat Abstract Axial flow fans, while incapable of developing high pressures, they are well suitable for handling large volumes of air at relatively

More information

Hybrid Refrigerated/Desiccant Compressed Air Dryers

Hybrid Refrigerated/Desiccant Compressed Air Dryers Hybrid Refrigerated/Desiccant Compressed Air Dryers This paper first appeared at the 2013 World Energy Engineering Congress Wayne Perry, Senior Technical Director David Phillips, Air Treatment Product

More information

Compression of Fins pipe and simple Heat pipe Using CFD

Compression of Fins pipe and simple Heat pipe Using CFD Compression of Fins pipe and simple Heat pipe Using CFD 1. Prof.Bhoodev Mudgal 2. Prof. Gaurav Bhadoriya (e-mail-devmudgal.mudgal@gmail.com) ABSTRACT The aim of this paper is to identify the advantages

More information

SMOKE MANAGEMENT AND EGRESS ANALYSIS OF A SPORTS ARENA USING THE PERFORMANCE-BASED DESIGN

SMOKE MANAGEMENT AND EGRESS ANALYSIS OF A SPORTS ARENA USING THE PERFORMANCE-BASED DESIGN , Volume 4, Number 2, p.73-83, 2003 SMOKE MANAGEMENT AND EGRESS ANALYSIS OF A SPORTS ARENA USING THE PERFORMANCE-BASED DESIGN K.H. Yang and C.S. Yang Mechanical Engineering Department, National Sun Yat-Sen

More information

State-of-the-art Developments to Save Energy in Coating Drying

State-of-the-art Developments to Save Energy in Coating Drying State-of-the-art Developments to Save Energy in Coating Drying Executive Summary Coating drying is expensive. A great deal of energy is needed to effectively evaporate sufficient water to dry the coating.

More information

Demand-Controlled Ventilation For Commercial Kitchens

Demand-Controlled Ventilation For Commercial Kitchens Demand-Controlled Ventilation For Commercial Kitchens Tetra Images/Corbis By Derek Schrock, Member ASHRAE; Jimmy Sandusky, Associate Member ASHRAE; Andrey Livchak, Ph.D., Member ASHRAE Food service facilities

More information

STUDY FOR SAFETY AT A RELATIVELY SHORT TUNNEL WHEN A TUNNEL FIRE OCCURRED

STUDY FOR SAFETY AT A RELATIVELY SHORT TUNNEL WHEN A TUNNEL FIRE OCCURRED - 133 - STUDY FOR SAFETY AT A RELATIVELY SHORT TUNNEL WHEN A TUNNEL FIRE OCCURRED Y. Mikame 1,2, N. Kawabata 1, M. Seike 1, M. Hasegawa 1 1 Kanazawa University, Japan 2 Metropolitan Expressway Company

More information

Certain Uncertainty - Demonstrating safety in fire engineering design and the need for safety targets.

Certain Uncertainty - Demonstrating safety in fire engineering design and the need for safety targets. Certain Uncertainty - Demonstrating safety in fire engineering design and the need for safety targets. Danny Hopkin 1, Ruben Van Coile 2 & David Lange 3 Introduction In his 2008 IAFSS plenary, Andy Buchannan

More information

DR Series Appliance Cleaner Best Practices. Technical Whitepaper

DR Series Appliance Cleaner Best Practices. Technical Whitepaper DR Series Appliance Cleaner Best Practices Technical Whitepaper Quest Engineering November 2017 2017 Quest Software Inc. ALL RIGHTS RESERVED. THIS WHITE PAPER IS FOR INFORMATIONAL PURPOSES ONLY, AND MAY

More information

What Utility Analytics means to Exelon

What Utility Analytics means to Exelon What Utility Analytics means to Exelon Presented by Bart Enright IT Director Smart Grid Initiatives at ComEd Exelon s Analytic Journey Exelon Utilities Overview T&D Grids Data Visualization Data Analytics/Notifications

More information

Application Note. Application Note for BAYEX

Application Note. Application Note for BAYEX Application Note Application Note for BAYEX Preface This application note provides the user a more detailed description of the Bayesian statistical methodology available in Version 8.05 and above, of the

More information

GAS DETECTOR LOCATION. Ø.Strøm and J.R. Bakke, GexCon AS, Norway

GAS DETECTOR LOCATION. Ø.Strøm and J.R. Bakke, GexCon AS, Norway AUTHOR BIOGRAPHICAL NOTES GAS DETECTOR LOCATION Ø.Strøm and J.R. Bakke, GexCon AS, Norway Øyvind Strøm graduated in 1996 from Stavanger University College with a M.Sc. degree in Offshore Safety Technology.

More information

Alarm System Performance Metrics

Alarm System Performance Metrics Alarm System Performance Metrics FPID Symposium, Cork March 2016 Standards Certification Education & Training Publishing Conferences & Exhibits Presenter Kim Van Camp is the Emerson Process Management

More information

Clinical Alarm Effectiveness: Recognizing & Mitigating Risk to Patient Care

Clinical Alarm Effectiveness: Recognizing & Mitigating Risk to Patient Care Clinical Alarm Effectiveness: Recognizing & Mitigating Risk to Patient Care Thomas Bauld, PhD, CCE, Biomedical Engineer National Center for Patient Safety (NCPS) Elena Simoncini, Clinical Engineer VA Boston

More information

Impacts of an Energy Star Promotion

Impacts of an Energy Star Promotion Impacts of an Energy Star Promotion Jack Habart and Joe Kelly, Habart and Associates Consulting Inc. Iris Sulyma and Ken Tiedemann, BC Hydro ABSTRACT BC Hydro s Power Smart group has been encouraging the

More information

CITY OF CHARLOTTESVILLE, VIRGINIA CITY COUNCIL AGENDA

CITY OF CHARLOTTESVILLE, VIRGINIA CITY COUNCIL AGENDA CITY OF CHARLOTTESVILLE, VIRGINIA CITY COUNCIL AGENDA Agenda Date: December 16, 2013 Action Required: Adoption of Resolution Presenter: Staff Contacts: Title: James E. Tolbert, AICP, Director of NDS James

More information

Implementing a Reliable Leak Detection System on a Crude Oil Pipeline

Implementing a Reliable Leak Detection System on a Crude Oil Pipeline Implementing a Reliable Leak Detection System on a Crude Oil Pipeline By Dr Jun Zhang & Dr Enea Di Mauro* 1. Introduction Pipeline leak detection or integrity monitoring (PIM) systems have been applied

More information

TESTS OF ADSIL COATING

TESTS OF ADSIL COATING TESTS OF ADSIL COATING Test B - Long Term Test FSEC-CR-1259-01 July 11, 2001 Prepared for: Bob Suggs Florida Power & Light Company 9250 W. Flagler Street Miami, Florida 33174 Principal Investigator Dr.

More information

Failure Modes, Effects and Diagnostic Analysis

Failure Modes, Effects and Diagnostic Analysis Failure Modes, Effects and Diagnostic Analysis Project: Detcon FP-700 Combustible Gas Sensor Customer: Detcon The Woodlands, TX USA Contract No.: DC 06/08-04 Report No.: DC 06/08-04 R001 Version V1, Revision

More information

API RP 1175 Pipeline Leak Detection Leak Detection Program, Culture, & Strategy

API RP 1175 Pipeline Leak Detection Leak Detection Program, Culture, & Strategy API RP 1175 Pipeline Leak Detection Leak Detection Program, Culture, & Strategy Part 4: Leak Detection Program (LDP) Pipeline leak detection should be managed by structuring the elements of leak detection

More information

Cool Roofs in Northern Climates

Cool Roofs in Northern Climates COOL ROOFING WRITTEN BY KURT SHICKMAN Cool Roofs in Northern Climates eflective roofs are a tried and true way to improve building energy efficiency and comfort, generate net energy savings and help mitigate

More information

PIPELINE LEAK DETECTION FIELD EVALUATION OF MULTIPLE APPROACHES FOR LIQUIDS GATHERING PIPELINES

PIPELINE LEAK DETECTION FIELD EVALUATION OF MULTIPLE APPROACHES FOR LIQUIDS GATHERING PIPELINES Prepared for: North Dakota Industrial Commission and Energy Development and Transmission Committee PIPELINE LEAK DETECTION FIELD EVALUATION OF MULTIPLE APPROACHES FOR LIQUIDS GATHERING PIPELINES Prepared

More information

WURDEE BULOC INLET CHANNEL FAILURE. Lincoln Thomson & Gwyn Hatton. Barwon Water

WURDEE BULOC INLET CHANNEL FAILURE. Lincoln Thomson & Gwyn Hatton. Barwon Water WURDEE BULOC INLET CHANNEL FAILURE Paper Presented by: Lincoln Thomson & Gwyn Hatton Authors: Lincoln Thomson, Senior Engineer Network Operations, Gwyn Hatton, Network Asset Coordinator Headworks, Barwon

More information

EFFECT OF RELICT JOINTS IN RAIN INDUCED SLOPE FAILURES IN RESIDUAL SOIL

EFFECT OF RELICT JOINTS IN RAIN INDUCED SLOPE FAILURES IN RESIDUAL SOIL EFFECT OF RELICT JOINTS IN RAIN INDUCED SLOPE FAILURES IN RESIDUAL SOIL Neethimappiriya Tharmalingam, Student (Email: neethi_26@yahoo.com) N.W.H. Lakshamana, Student (Email: hansaka8888@yahoo.com) R.D.T.B.

More information

Air Distribution Fan and Outside Air Damper Recycling Control

Air Distribution Fan and Outside Air Damper Recycling Control building science.com 2008 Building Science Press All rights of reproduction in any form reserved. Air Distribution Fan and Outside Air Damper Recycling Control Research Report - 0991 5-July-1999 Armin

More information

On the Architectural Engineering Competences in Architectural Design MSc in Engineering with Specialization in Architecture Kirkegaard, Poul Henning

On the Architectural Engineering Competences in Architectural Design MSc in Engineering with Specialization in Architecture Kirkegaard, Poul Henning Downloaded from vbn.aau.dk on: april 04, 2019 Aalborg Universitet On the Architectural Engineering Competences in Architectural Design MSc in Engineering with Specialization in Architecture Kirkegaard,

More information

INSTITUTE OF TOWN PLANNERS, INDIA TOWN PLANNING EXAMINATION BOARD ASSOCIATESHIP EXAMINATION. ASSIGNMENT: Semester -II Year 2019

INSTITUTE OF TOWN PLANNERS, INDIA TOWN PLANNING EXAMINATION BOARD ASSOCIATESHIP EXAMINATION. ASSIGNMENT: Semester -II Year 2019 SUBJECT: C.2.1. Design of Human Settlements Maximum Marks: 20 1. Describe the link between urban design and urban planning. Explain the role of urban design in town planning. 2. Explain the importance

More information

Understanding total measurement uncertainty in power meters and detectors

Understanding total measurement uncertainty in power meters and detectors Understanding total measurement uncertainty in power meters and detectors Jay Jeong, MKS Instruments. Inc. INTRODUCTION It is important that users of calibrated power meters and detectors understand and

More information

Radon Measurement Survey Report. Krug Elementary School 240 Melrose Avenue Aurora, Illinois Prepared For:

Radon Measurement Survey Report. Krug Elementary School 240 Melrose Avenue Aurora, Illinois Prepared For: Radon Measurement Survey Report Site: 240 Melrose Avenue Aurora, Illinois 60505 Survey Dates: May 1, 2018 thru May 3, 2018 Prepared For: East Aurora School District 131 417 Fifth Street Aurora, Illinois

More information

CCD and CID solid-state detectors

CCD and CID solid-state detectors CCD and CID solid-state detectors Technical Overview 5110 ICP-OES Introduction Many of today s ICP-OES instruments have progressed from traditional photomultiplier tube (PMT) detection systems to solid-state

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 4.72 International Journal of Advance Engineering and Research Development Volume 5, Issue 01, January -2018 e-issn (O): 2348-4470 p-issn (P): 2348-6406 APPLICATION

More information

Ronan Model X96S Series Weighing System

Ronan Model X96S Series Weighing System Ronan Model X96S Series Weighing System For more than 27 years Ronan has provided the process control industry with unsurpassed products in the harshest environments. With a philosophy of designing new

More information

Technical Publication. Monitor Your Pump for Process Efficiency By Jim Delee, Sr. Member Technical Staff, Fluid Components International

Technical Publication. Monitor Your Pump for Process Efficiency By Jim Delee, Sr. Member Technical Staff, Fluid Components International Technical Publication Monitor Your Pump for Process Efficiency By Jim Delee, Sr. Member Technical Staff, Fluid Components International Tech Article Monitor Your Pump For Process Efficiency By Jim DeLee,

More information

Temperature Data Logging

Temperature Data Logging . Temperature Data Logging Making the right choice with a Data Acquisition System There are many ways to make temperature measurements. The simplest method is to insert a temperature probe into a device

More information

INTERNATIONAL STANDARD

INTERNATIONAL STANDARD INTERNATIONAL STANDARD IEC 61514-2 First edition 2004-01 Industrial process control systems Part 2: Methods of evaluating the performance of intelligent valve positioners with pneumatic outputs IEC 2004

More information

a high level of operational reliability), and the designer (in performing probabilistic-based

a high level of operational reliability), and the designer (in performing probabilistic-based By Edward K. Budnick, P.E. INTRODUCTION When automatic fire sprinkler systems, or any fire protection safety features, are included in a fire protection design package, it is assumed that, if needed, they

More information

THE RELIABILITY OF RADON REDUCTION TECHNIQUES. CB Howarth

THE RELIABILITY OF RADON REDUCTION TECHNIQUES. CB Howarth Radon in the Living Environment, 052 THE RELIABILITY OF RADON REDUCTION TECHNIQUES CB Howarth National Radiological Protection Board Chilton, Didcot, Oxon, OX11 0RQ, UK Tel: +44 1235 822796, Fax: +44 1235

More information

INTERNATIONAL STANDARD

INTERNATIONAL STANDARD INTERNATIONAL STANDARD IEC 60335-2-35 Edition 4.1 2006-11 Edition 4:2002 consolidated with amendment 1:2006 Household and similar electrical appliances Safety Part 2-35: Particular requirements for instantaneous

More information

Flexibility, scalability andsecurity

Flexibility, scalability andsecurity THE OF INFORMATION TECHNOLOGY SYSTEMS An Official Publication of BICSI January/February 2014 l Volume 35, Number 1 data center Flexibility, scalability andsecurity plus + The Next Five Years in AV + Measuring

More information

Force Protection Joint Experiment (FPJE) Battlefield Anti-Intrusion System (BAIS) Sensors Data Analysis and Filtering Metrics

Force Protection Joint Experiment (FPJE) Battlefield Anti-Intrusion System (BAIS) Sensors Data Analysis and Filtering Metrics Force Protection Joint Experiment (FPJE) Battlefield Anti-Intrusion System (BAIS) Sensors Data Analysis and Filtering Metrics C.M. Barngrover, R.T. Laird, T.A. Kramer, J.R. Cruickshanks, S.H. Cutler Space

More information

INTERNATIONAL STANDARD

INTERNATIONAL STANDARD INTERNATIONAL STANDARD IEC 60770-3 First edition 2006-04 Transmitters for use in industrial-process control systems Part 3: Methods for performance evaluation of intelligent transmitters IEC 2006 Copyright

More information

Computer Modelling and Simulation of a Smart Water Heater

Computer Modelling and Simulation of a Smart Water Heater Computer Modelling and Simulation of a Smart Water Heater Maria Kathleen Ellul University of Malta ellul_maria@yahoo.com Adrian Muscat University of Malta adrian.muscat@um.edu.mt Abstract A computational

More information