Somatic embryogenesis and plant regeneration from immature seeds of Magnolia obovata Thunberg

Size: px
Start display at page:

Download "Somatic embryogenesis and plant regeneration from immature seeds of Magnolia obovata Thunberg"

Transcription

1 Plant Biotechnol Rep (2007) 1: DOI /s ORIGINAL ARTICLE Somatic embryogenesis and plant regeneration from immature seeds of Magnolia obovata Thunberg Yong Wook Kim Æ So Young Park Æ In Sun Park Æ Heung Kyu Moon Received: 3 August 2007 / Accepted: 17 September 2007 / Published online: 30 October 2007 Ó Korean Society for Plant Biotechnology and Springer 2007 Abstract We have tested plantlet formation by somatic embryogenesis using immature seeds of Magnolia obovata. Seed collection date appeared to be critical for embryogenic cell induction. The optimal collection date was 3 4 weeks postanthesis. The embryogenic cells proliferated, formed somatic embryos, and were subsequently converted into normal plantlets under optimized culture conditions. Somatic embryo formation from the embryogenic calli was better on sucrose medium than on glucose medium. The optimum level of sucrose appeared to be 3% with an average of 28 somatic embryos per plate. About 25% of somatic embryos were converted into normal plantlets in 1/ 2 MS medium containing gibberellic acid (GA 3 ). During somatic embryo germination, secondary embryogenesis was frequently observed in the lower part of the hypocotyl or radicle ends of germinating somatic embryos. Finally, about 85% of converted plantlets survived in an artificial soil mixture, were transferred to a nursery, and have grown normally. Keywords Japanese cucumber tree Immature zygotic embryos Plant conversion Y. W. Kim S. Y. Park H. K. Moon (&) Biotechnology Division, Korea Forest Research Institute, Suwon , South Korea jesusmhk@hanmail.net I. S. Park United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwai-Cho, Fuchu-Shi, Tokyo , Japan Introduction Magnolia obovata is native to Japan and was introduced to Korea around the 1920s. The trees are deciduous, with gray bark, and grow up to 30 m. The tree has been planted as a garden tree because of its beautiful shape. The tree seeds ripen in September to October and most plants have been propagated from seedlings (Kim 1994). Magnolia species can be propagated by seeds, rooted cuttings, layering, grafting, and budding. Because magnolias have been the object of intense horticultural interest for centuries, methods for breeding and vegetative propagation of this group are well developed and have been well described (Merkle 1999 and papers cited therein). Micropropagation of Magnolia spp. is not sufficiently successful, however. A preliminary study of micropropagation of M. grandifolia using shoot-tip cuttings failed to produce plantlets (Tobe 1990). The first successful in-vitro propagation was achieved in M. x soulangiana (Maene and Debergh 1985; Kamenicka 1996). They found that exvitro rooting was improved by addition of water or water supplemented with IBA or sucrose to the cultures seven days before transplanting to peat potting mix. Kamenicka (1998) also tested the effect of various carbohydrate treatments on in-vitro shoot growth and rooting of the saucer magnolia. On the other hand, several results have suggested Magnolia spp. can be propagated by somatic embryogenesis using immature seeds. Intensive research has been done by Merkle s group and several papers have been published (Merkle and Watson-Pauley 1993, 1994; Merkle and Wiecko 1990; Merkle 1999). However, there has been no report of micropropagation of Magnolia obovata until now. This study was conducted to develop a micropropagation technique for the species using somatic embryogenesis.

2 238 Plant Biotechnol Rep (2007) 1: Materials and methods Explants and surface disinfection In 2003, developing fruits (aggregates of follicles) were collected, at about 10-day intervals, from 3 to 7 weeks postanthesis, from three trees growing on the campus of Seoul National University, Suwon, Korea. Individual seeds were dissected from the aggregates using a surgical knife and disinfested using the sequence: 70% ethanol, 30 s; 2% sodium hypochlorite 10 min; rinsing four times with sterile distilled water. Seeds were bisected longitudinally with a scalpel and the halves were placed cut, surface downward, on 25 ml semisolid callus induction medium (Table 1) in Petri dishes (87 15 mm). During explanting, no zygotic embryos could be observed inside the seeds under a dissecting microscope and endosperm, if present, was still in the liquid stage. Petri dishes were sealed with Parafilm and incubated in the dark at 25 ± 1 C. Explants were transferred to fresh medium 3 days later, then subcultured at monthly intervals. Callus and embryogenic callus induction To induce callus or embryogenic callus formation in initial cultures we prepared a callus-inducing medium consisting of MS medium (Murashige and Skoog 1962) that contained 3% sucrose (Sigma S5390, Grade I), 0.3% gelrite (Aldrich, USA), and which was supplemented with 1.0 mg L 1 2,4- D (2,4-dichlorophenoxyacetic acid), either alone or in combination with 0.01 mg L 1 TDZ (thidiazuron) or 1.0 g L-glutamine (Table 1). Glutamine was added after filter sterilization. The medium was adjusted to ph 5.8 with 0.1 mol L 1 NaOH or HCl before addition of gelrite. After autoclaving at 1.05 kg cm 2 and 121 C for 20 min, 25 ml medium was poured into each Petri dish (87 15 mm). The distribution of explants was five segments with five or Table 1 Normal callus induction, embryogenic callus induction, and zygotic embryo germination by the different culture dates and using different plant-growth regulators in Magnolia obovata Date of culture Medium and PGRs a (mg L 1 ) No. of explants cultured Normal callus induction (%) Embryogenic callus induction (%) Zygotic embryo germination (%) June 11 (1) MS + 2,4-D (2) MS + 2,4-D L-glutamine 1 g L (3) MS + 2,4-D TDZ (4) MS + 2,4-D TDZ L-glutamine 1 g L June 17 (1) MS + 2,4-D (2) MS + 2,4-D L-glutamine 1 g L (3) MS + 2,4-D TDZ (4) MS + 2,4-D TDZ L-glutamine 1 g L June 30 (1) MS + 2,4-D (2) MS + 2,4-D L-glutamine 1 g L (3) MS + 2,4-D TDZ (4) MS + 2,4-D TDZ L-glutamine 1 g L July 11 (1) MS + 2,4-D (2) MS + 2,4-D L-glutamine 1 g L (3) MS + 2,4-D TDZ (4) MS + 2,4-D TDZ L-glutamine 1 g L July 18 (1) MS + 2,4-D (2) MS + 2,4-D L-glutamine 1 g L (3) MS + 2,4-D TDZ (4) MS + 2,4-D TDZ L-glutamine 1 g L July 28 (1) MS + 2,4-D (2) MS + 2,4-D L-glutamine 1 g L (3) MS + 2,4-D TDZ (4) MS + 2,4-D TDZ L-glutamine 1 g L All culture medium contained 3% added sucrose and was gelled with 0.3% gelrite

3 Plant Biotechnol Rep (2007) 1: more replicates, depending on seed-collection date (Table 1). Following this inoculation, the cultures were maintained in a standard tissue culture room at 25 ± 1 C in darkness. After 6 weeks of culture PEDC (pre-embryogenic determined cell)-type somatic embryos were observed in some explants (Fig. 1a). To induce pre-embryogenic mass (PEMs), these somatic embryos were sliced about 1 mm thick using a surgical knife and sub-cultured in embryoinduction medium (EIM; MS medium with 1.0 mg L 1 2,4- D, 3% sucrose, and 0.3% gelrite). After 4 weeks in culture a friable aggregation of PEMs, yellow in color, was obtained (Fig. 1c). These PEMs were sub-cultured and proliferated on fresh EIM, in darkness, at 3-week culture intervals. Induction of somatic embryos Somatic embryos were induced from embryogenic calli on 1/2 MS medium supplemented with either sucrose (0, 1.0, 3.0, or 5.0%) or glucose (1.0, 2.0, 3.0, or 5.0%), which was gelled with 0.3% gelrite (Table 2). For plating, about 0.5 g embryogenic calli was placed in 100-mL Erlenmeyer flasks containing 30 ml 1/2 MS liquid medium supplemented with 2% sucrose without phytohormones. The cultures were agitated on a gyratory shaker at 120 rpm. One day later they were filtered with a cell-dissociation sieve (40 mesh, Sigma S0770); the floating matter was discarded and the cells were plated on to EIM after vacuum suction on filter paper. About 0.15 g of liquid medium containing cells was dispensed on each plate. Periodically, developing somatic embryos were examined under a dissecting microscope and the total number of early cotyledonary stage embryos was counted during 4 weeks of culture. Germination of somatic embryos and plantlet conversion Mature somatic embryos showing early cotyledonary stages with greening were transferred to 1/2 MS medium containing one of two different gelling agents (0.8% agar or 0.3% gelrite) to induce embryo germination and plantlet conversion. To promote embryo germination, 1.0 mg L 1 GA 3 was added to the medium (Figs. 2, 3). On the other hand, the frequency of secondary somatic embryo Fig. 1 Somatic embryogenesis and plant production via immature zygotic embryo cultures of Magnolia obovata. a PEDC-type somatic embryos induced from primary cultures ( 10); b Germinated zygotic embryo from explant without callus formation in primary culture medium ( 9); c Embryogenic callus (PEMs) showing friable texture and pale yellow color ( 10); d Normally induced somatic embryos at globular to torpedo stage ( 10); e Advanced somatic embryos from (d) at different stages of development ( 15); f Matured somatic embryos at early-cotyledonary stage ( 8); g Greened somatic embryos from (f), ready for germination ( 8); h Converted plantlets after germination (arrows show the secondary somatic embryos formed in lower part of the hypocotyls or root ends); i Field grown two-year-old plants derived from somatic embryos of M. obovata

4 240 Plant Biotechnol Rep (2007) 1: Table 2 Effect of sucrose and glucose on somatic embryo induction from embryogenic callus of Magnolia obovata Treatment (%) Sucrose ± ± ± 3.9 Glucose ± ± ± ± 1.9 No. of cotyledonary stage somatic embryo per plate The culture medium used was half-strength MS medium with different levels of sucrose or glucose Mean ± standard deviation % of normal conversion Fig. 2 Effect of medium on normal somatic embryo conversion. Medium 1 is 1/2 MS with 1.0 mg L 1 GA 3 and 0.8% agar. Medium 2 is 1/2 MS with 1.0 mg L 1 GA 3 and 0.3% gelrite % of secondary somatic embryo formation Fig. 3 Effect of medium on secondary somatic embryo formation. Medium 1 is 1/2 MS with 1.0 mg L 1 GA 3 and 0.8% agar. Medium 2 is 1/2 MS with 1.0 mg L 1 GA 3 and 0.3% gelrite formation was examined during the germination stage. Normally converted plantlets were transferred to plastic rectangular boxes ( cm) containing a mixture of artificial soil (peatmoss vermiculite perlite, 1:1:1) and cultivated in a greenhouse as described our earlier report (Moon et al. 2006). 2 Results and discussion Culture initiation and PEMs induction After three days of culture, most explants became brown and excreted dark compounds, probably phenolic compounds, into the medium. It was, therefore, necessary to sub-culture the cultures into fresh medium of the same composition. Generally, callus induction response was very poor, irrespective of seed-collection date. Non-embryogenic callus or embryogenic callus formation was not distinctly different among the four media (Table 1). Callus formation capable of embryogenesis was observed only when the seed-collection date was 11 or 17 June, otherwise either formation of non-embryogenic callus or direct germination of zygotic embryos was observed for most explants (Table 1; Fig. 1b). The two dates were approximately three to four weeks postanthesis and this appeared to be the time-window for induction of somatic embryogenesis in M. obovata (Table 1). The embryogenic callus was friable and yellow in color, contained globular stage embryos (Fig. 1c), and could be maintained in MS medium supplemented with 1.0 mg L 1 2,4-D, in darkness, by regular subculture. A similar result was also observed for M. virginiana (Merkle 1999). Otherwise, directly formed somatic embryos from explants were also observed in initial culture medium irrespective of treatments (Fig. 1a). These embryos appeared to be PEDC-type somatic embryos showing abnormality, and did not regenerate into plantlets via the normal embryo development process (data not shown). However, interestingly, about 10% of these embryos could form friable embryogenic callus when re-cultured on MS medium with 1.0 mg L 1 2,4-D. Therefore, this culture technique can be used as an alternative to induce embryogenic callus formation in M. obovata. Several previous results have shown that embryogenic callus formation, and its maintenance, for Magnolia species appears to differ greatly among species (Merkle 1999). Merkle (1999) concluded that 2,4-D treatment was necessary for PEM formation and proliferation in M. cordata, M. fraseri, and M. pyramidata, whereas the embryogenic callus of M. virginiana and M. macrophyllaas could be maintained in hormone-free medium for several years. In the current study, embryogenic callus of M. obovata needed 2,4-D to maintain embryogenic capacity, because the calli turned brown and died gradually in hormone-free medium. Somatic embryo induction When embryogenic cell suspensions were plated on EIM, globular-stage somatic embryos began to form after

5 Plant Biotechnol Rep (2007) 1: weeks of culture. Although most somatic embryos were observed within 3 weeks, irrespective of treatments, the numbers of somatic embryos differed among treatments (Table 2). Generally, sucrose was more effective than glucose for somatic embryo induction. The highest number of SEs was induced at the 3% level. Because these SEs formed at different times, they grew with different developmental stages (Fig. 1e). Sucrose is one of the most important carbon sources, and it has been used frequently in plant tissue culture work (Fuentes et al. 2000). In somatic embryogenesis it has been also used as a carbon and energy source, and at high concentrations it enhanced somatic embryo induction frequency caused by osmotic stress (Iraqi and Tremblay 2001). According to our recent work, somatic embryo germination and conversion was also greatly affected by various osmoticums and better results were obtained after sucrose treatment (Kim et al. 2005). In the current study it is difficult to reach a firm conclusion, because we compared two carbon sources only; nevertheless, sucrose appeared to be better for somatic embryo induction in M. obovata. In most somatic embryogenesis studies of several Magnolia species sucrose has been used more frequently (Merkle 1999). Germination and plantlet conversion Embryo germination was defined as embryos showing hypocotyl elongation and root development, whereas plantlet conversion was considered as embryos showing normally developed cotyledons and epicotyls after germination. Using early-cotyledonary-stage SEs, embryo germination was performed on 1/2 MS medium with 1.0 mg L 1 GA 3 and two different gelling agents (Fig. 2). There was no difference between embryo germination and conversion in the two different gelling agents the conversion rate was 25 and 23% in 0.8% agar and 0.3% gelrite, respectively. In a similar result, about 25% conversion rate was reported for sweetbay magnolia (Merkle and Wiecko 1990). On the other hand, less than 10% conversion rate of somatic embryos was reported for Fraser magnolia and yellow cucumber tree (Merkle and Wiecko 1990). These results suggest that somatic embryo germination and conversion in Magnolia species is still not efficient. It appeared that the lower conversion rate of SEs was caused by morphological abnormality of SEs, including single-cotyledon embryos (horn type), fused cotyledons, and/or embryos with root only. Similar results have been reported for many woody plant species (Merkle 1997; Kim et al. 2005; Moon et al. 2005, 2006). It is, therefore, necessary to develop more efficient techniques to improve the conversion rate for M. obovata. On the other hand, about Fig. 4 Normally grown 4-year-old plants derived from somatic embryos of Magnolia obovata 60% of germinating embryos formed secondary somatic embryos at the lower portion of the hypocotyl or root ends (Fig. 1h). These secondary somatic embryos were slightly more abundant in gelrite medium (Fig. 3). Similar results were also observed for radicle ends of the sweet magnolia (Merkle and Wiecko 1990). These secondary somatic embryos, which are capable of successive embryogenesis under optimized culture conditions, are being studied to establish repetitive somatic embryogenesis in M. obovata. In conclusion, we have produced plantlets via somatic embryogenesis using immature seeds of M. ovobata. Although the frequency of embryogenic callus formation was very low, the calli were proliferated easily by successive sub-culture on to fresh medium. One difficulty was abnormal shapes of somatic embryos, which resulted in poor germination and conversion to plantlets. Therefore, more study in this area is needed. Fortunately, the converted plantlets survived well (about 85%) in potting mixture and have grown (mean height ± 26.8 cm) normally for up to four years without morphological abnormalities (Fig. 4). The results suggest this technique may be applicable to micropropagation of M. obovata. Acknowledgments This work was supported in part by grant No. FG from the Korea Forest Research Institute. References Fuentes SRL, Calheiros MBP, Manetti-Filho J, Vieira LGE (2000) The effects of silver nitrate and different carbohydrate sources on somatic embryogenesis in Coffea canephora. Plant Cell Tissue Organ Cult 60:5 13 Iraqi D, Tremblay FM (2001) The role of sucrose during maturation of black spruce (Picea mariana) and white spruce (Picea glauca) somatic embryos. Physiol Plant 111: Kamenicka A (1996) Rooting of Magnolia x soulanglana microcuttings. Biologia 51:

6 242 Plant Biotechnol Rep (2007) 1: Kamenicka A (1998) Influence of selected carbohydrates on rhizogenesis of shoots saucer magnolia in vitro. Acta Physiol Plant 20: Kim TW (1994) The woody plants of Korea in color. Kyo-Hak Pub, Seoul, p 643 Kim JA, Moon HK, Kim YW (2005) Effect of growth regulators and osmoticums on somatic embryogenesis and plants regeneration in Aralia elata cultivar Zaoh. Korean J Plant Biotechnol 32: Maene L, Debergh P (1985) Liquid medium additions to established tissue cultures to improve elongation and rooting in vivo. Plant Cell Tissue Organ Cult 5:23 33 Merkle SA (1997) Somatic embryogenesis in ornamentals. In: Geneve RL, Preece JE, Merkle SA (eds) Biotechnology of ornamental plants. CAB International, Wallingford, pp Merkle SA (1999) Somatic embryogenesis in Magnolia spp. In: Jain SM, Gupta PPK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 4. Kluwer, Netherlands, pp Merkle SA, Watson-Pauley BA (1993) Regeneration of big-leaf magnolia by somatic embryogenesis. Hortic Sci 28: Merkle SA, Watson-Pauley BA (1994) Ex vitro conversion of pyramid magnolia somatic embryos. Hortic Sci 29: Merkle SA, Wiecko AT (1990) Somatic embryogenesis in three magnolia species. J Am Soc Hortic Sci 115: Moon HK, Kim YW, Lee JS, Choi YE (2005) Micropropagation of Kalopanax pictus tree via somatic embryogenesis. In Vitro Cell Dev Biol Plant 41: Moon HK, Kim JA, Park SY, Kim YW, Kang HD (2006) Somatic embryogenesis and plantlet formation from a rare and endangered tree species, Oplopanax elatus. J Plant Biol 49: Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue. Physiol Plant 15: Tobe JD (1990) In vitro growth of Magnolia grandiflora L. cv. Bracken s Brown Beauty. Magnolia 26:4 8

Plantlet Regeneration via Somatic Embryogenesis in Four Species of Crocus

Plantlet Regeneration via Somatic Embryogenesis in Four Species of Crocus Plantlet Regeneration via Somatic Embryogenesis in Four Species of Crocus Roya Karamian Department of Biology, Faculty of Science Bu-Ali Sina University Hamadan Iran Keywords: meristems, micropropagation,

More information

SOMATIC EMBRYOGENESIS OF DREPANOSTACHYUM FALCATUM AN IMPORTANT HILL BAMBOO-A RAPID MEANS OF MICROPROPAGATION

SOMATIC EMBRYOGENESIS OF DREPANOSTACHYUM FALCATUM AN IMPORTANT HILL BAMBOO-A RAPID MEANS OF MICROPROPAGATION SOMATIC EMBRYOGENESIS OF DREPANOSTACHYUM FALCATUM AN IMPORTANT HILL BAMBOO-A RAPID MEANS OF MICROPROPAGATION I.D.Arya, R. Sharma & Sarita Arya Forest Genetics & Tree Propagation Division, Arid Forest Research

More information

Plant Regeneration via Organogenesis and Somatic Embryogenesis

Plant Regeneration via Organogenesis and Somatic Embryogenesis 18 Plant Biotechnology: Practical Manual 2 Plant Regeneration via Organogenesis and Somatic Embryogenesis 2.1 BACKGROUND AND BASICS One can achieve plant regeneration in a test tube by using suitable culture

More information

CHAPTER 2. IN VITRO REGENERATION OF Gerbera jamesonii Bolus Ex. Hook f. Previous research has proven that Gerbera jamesonii could successfully be

CHAPTER 2. IN VITRO REGENERATION OF Gerbera jamesonii Bolus Ex. Hook f. Previous research has proven that Gerbera jamesonii could successfully be CHAPTER 2 IN VITRO REGENERATION OF Gerbera jamesonii Bolus Ex. Hook f. 2.1 EXPERIMENTAL AIMS Previous research has proven that Gerbera jamesonii could successfully be propagated in vitro. Different types

More information

In Vitro Microcorm Formation in Saffron (Crocus sativus L.)

In Vitro Microcorm Formation in Saffron (Crocus sativus L.) In Vitro Microcorm Formation in Saffron (Crocus sativus L.) W. Raja, G. Zaffer, S.A. Wani Division of Plant Breeding & Genetics Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir

More information

Keywords: Agarwood, satalum, resin, micropropagation, tok

Keywords: Agarwood, satalum, resin, micropropagation, tok Application of Tissue Culture Techniques in Woody Species Conservation, Improvement and Development in Vietnam: Agarwood (Aquilaria crassna Pierre ex LeComte) via tip Culture Tran Van Minh Institute of

More information

Utilization of Embryogenic Cell Cultures for the Mass Production of Bulblets in Lilies

Utilization of Embryogenic Cell Cultures for the Mass Production of Bulblets in Lilies Utilization of Embryogenic Cell Cultures for the Mass Production of Bulblets in Lilies Sun Ki Kim and Byung Joon Ahn College of Bioresources Science Dankook University Cheonan 330-714 Korea Keywords: Oriental

More information

MICROPROPAGATION OF JATROPHA CURCAS (L.)

MICROPROPAGATION OF JATROPHA CURCAS (L.) Indian J. Agric. Res., 43 (4) : 269-273, 2009 AGRICULTURAL RESEARCH COMMUNICATION CENTRE www.arccjournals.com / indianjournals.com MICROPROPAGATION OF JATROPHA CURCAS (L.) B.R. Ranwah, D.K. Gupta and M.A.

More information

Plant regeneration through direct shoot bud formation from leaf cultures of Paphiopedilum orchids

Plant regeneration through direct shoot bud formation from leaf cultures of Paphiopedilum orchids Plant Cell, Tissue and Organ Culture 76: 11 15, 2004. 2003 Kluwer Academic Publishers. Printed in the Netherlands. 11 Plant regeneration through direct shoot bud formation from leaf cultures of Paphiopedilum

More information

Figure 6. The type of oil palm explants used in these experiments. A. Leaf explant, B. Zygotic embryos explant, and C. Female flower explant

Figure 6. The type of oil palm explants used in these experiments. A. Leaf explant, B. Zygotic embryos explant, and C. Female flower explant 22 MATERIALS AND METHODS Location and Time This work was carried out in the Laboratory of Plant Biotechnology and Tissue Culture, Faculty of Agriculture, Bogor Agricultural University. It was started from

More information

Adult Plants and Juvenile Seedlings of Persimmon (Diospyros kaki L.)

Adult Plants and Juvenile Seedlings of Persimmon (Diospyros kaki L.) J. Japan. Soc. Hort. Sci. 63(3) : 537-541. 1994. Comparison of Growth Rooting Characteristics of Micropropagated Adult Plants Juvenile Seedlings of Persimmon (Diospyros kaki L.) Ryutaro Tao, Jun Ito Akira

More information

SOMATIC EMBRYOGENESIS AND REGENERATION OF PLANTLET IN SAFFRON, CROCUS SATIVUS L.

SOMATIC EMBRYOGENESIS AND REGENERATION OF PLANTLET IN SAFFRON, CROCUS SATIVUS L. J. Sci. I. R. Iran Vol. 11, No. 3, Summer 2000 SOMATIC EMBRYOGENESIS AND REGENERATION OF PLANTLET IN SAFFRON, CROCUS SATIVUS L. H. Ebrahimzadeh 1*, R. Karamian 2 and M. R. Noori-Daloii 3 1 Department of

More information

AVOCADO CALLUS AND BUD CULTURE

AVOCADO CALLUS AND BUD CULTURE Proc. Fla. State Hort. Soc. 96:181-182. 1983. AVOCADO CALLUS AND BUD CULTURE M. J. Young University of Florida, IF AS, Fruit Crops Department, Gainesville, FL 32611 Additional index words, tissue culture,

More information

IPC TECHNICAL PAPER SERIES NUMBER 263

IPC TECHNICAL PAPER SERIES NUMBER 263 THE INSTITUTE OF PAPER CHEMISTRY, APPLETON, WISCONSIN IPC TECHNICAL PAPER SERIES NUMBER 263 FACTORS INFLUENCING THE INITIATION OF SOMATIC EMBRYOGENESIS IN PINUS STROBUS L. S. R. WANN, M. R. BECWAR, L.

More information

Callus induction and somatic embryogenesis of Phalaenopsis

Callus induction and somatic embryogenesis of Phalaenopsis Plant Cell Reports (1998) 17: 446 450 Springer-Verlag 1998 Y. Ishii T. Takamura M. Goi M. Tanaka Callus induction and somatic embryogenesis of Phalaenopsis Received: 11 June 1997 / Revision received: 6

More information

Title: Development of Micropropagation and Acclimation Protocols for the Commercialization of a New Bonsai Ornamaental Tree for the California Market.

Title: Development of Micropropagation and Acclimation Protocols for the Commercialization of a New Bonsai Ornamaental Tree for the California Market. Title: Development of Micropropagation and Acclimation Protocols for the Commercialization of a New Bonsai Ornamaental Tree for the California Market. Authors: Dan E. Parfitt 1, Helen M. Chan 2, and Ali

More information

Investigation of Plant Growth Regulators Effects on Callus Induction and Shoot Regeneration of Bunium persicum (Boiss.) B. Fedtsch.

Investigation of Plant Growth Regulators Effects on Callus Induction and Shoot Regeneration of Bunium persicum (Boiss.) B. Fedtsch. J. Agr. Sci. Tech. (2009) Vol. 11: 481-486 Investigation of Plant Growth Regulators Effects on Callus Induction and Shoot Regeneration of Bunium persicum (Boiss.) B. Fedtsch. M. Valizadeh 1, and S. K.

More information

Agrobacterium-mediated Rice Transformation from Mature Seeds

Agrobacterium-mediated Rice Transformation from Mature Seeds Agrobacterium-mediated Rice Transformation from Mature Seeds Kimberly Nelson-Vasilchik, Joel Hague, and Albert Kausch The Plant Biotechnology Laboratory University of Rhode Island 530 Liberty Lane West

More information

MICROPROPAGATION OF RICE (ORYZA SATIVA L. CV SWAT-II) THROUGH SOMATIC EMBRYOGENESIS

MICROPROPAGATION OF RICE (ORYZA SATIVA L. CV SWAT-II) THROUGH SOMATIC EMBRYOGENESIS Pak. J. Bot., 37(2): 237-242, 2005. MICROPROPAGATION OF RICE (ORYZA SATIVA L. CV SWAT-II) THROUGH SOMATIC EMBRYOGENESIS IHSAN ILAHI, SHAZIA BANO, MUSARRAT JABEEN AND FAZAL RAHIM Department of Botany, University

More information

HIGHLY-EFFICIENT SOMATIC EMBRYOGENESIS FROM CELL SUSPENSION CULTURES OF PHALAENOPSIS ORCHIDS BY ADJUSTING CARBOHYDRATE SOURCES

HIGHLY-EFFICIENT SOMATIC EMBRYOGENESIS FROM CELL SUSPENSION CULTURES OF PHALAENOPSIS ORCHIDS BY ADJUSTING CARBOHYDRATE SOURCES In Vitro Cell. Dev. Biol. Plant 39:635 639, November December 2003 q 2003 Society for In Vitro Biology 1054-5476/03 $18.00+0.00 DOI: 10.1079/IVP2003466 HIGHLY-EFFICIENT SOMATIC EMBRYOGENESIS FROM CELL

More information

Summary and conclusion

Summary and conclusion Summary and conclusion 6.1 Chemical sterilization of Explants Surface sterilization of explants collected from mature trees is necessary before initiation of any in vitro culture. In the present study

More information

Received : Accepted:

Received : Accepted: Ancient Science of Life Vol : XXVI (1) July, August, September 2004 Conservation of an endemic medicinal plant, Berberis tinctoria Lesch. In Nilgiris through micro propagation S.Paulsamy, S. Padmavathi

More information

In vitro propagation of Musa sp (Banana)

In vitro propagation of Musa sp (Banana) ISSN: 2319-7706 Volume 3 Number 7 (2014) pp. 399-404 http://www.ijcmas.com Original Research Article In vitro propagation of Musa sp (Banana) M.Anbazhagan *, B. Balachandran and K. Arumugam Department

More information

Effect of Genotype, Explant Type and Culture Medium on Shoot Regeneration in Tomato (Lycopersicon esculentum Mill.) in vitro

Effect of Genotype, Explant Type and Culture Medium on Shoot Regeneration in Tomato (Lycopersicon esculentum Mill.) in vitro 435 Bulgarian Journal of Agricultural Science, 12 (2006), 435-439 National Centre for Agrarian Sciences Effect of Genotype, Explant Type and Culture Medium on Shoot Regeneration in Tomato (Lycopersicon

More information

American-Eurasian Journal of Sustainable Agriculture, 6(4): , 2012 ISSN Somatic Embryogenesis and Plantlet Regeneration in Amla

American-Eurasian Journal of Sustainable Agriculture, 6(4): , 2012 ISSN Somatic Embryogenesis and Plantlet Regeneration in Amla American-Eurasian Journal of Sustainable Agriculture, 6(4): 417-421, 212 ISSN 1995-748 417 ORIGINAL ARTICLE Somatic Embryogenesis and Plantlet Regeneration in Amla L. Al-Sabah, C. Sudhersan and S. Jibi

More information

Original Papers Plant Tissue Culture Letters, 11(3), (1994) INouE**, Koji NoMuRA***, Seiko TAKAHASHi**, OsHIMA* and Kiyoshi MASUDA**

Original Papers Plant Tissue Culture Letters, 11(3), (1994) INouE**, Koji NoMuRA***, Seiko TAKAHASHi**, OsHIMA* and Kiyoshi MASUDA** Original Papers Plant Tissue Culture Letters, 11(3), 184-190 (1994) An Efficient Procedure for Plant Regeneration from Long-term-cultured Callus Tissue of Hybrid Poplar (Populus sieboldii Miq. X Populus

More information

IN VITRO SHOOT MULTIPLICATION AND CALLUS INDUCTION IN GLADIOLUS HYBRIDUS HORT.

IN VITRO SHOOT MULTIPLICATION AND CALLUS INDUCTION IN GLADIOLUS HYBRIDUS HORT. Pak. J. Bot., 40(2): 517-522, 2008. IN VITRO SHOOT MULTIPLICATION AND CALLUS INDUCTION IN GLADIOLUS HYBRIDUS HORT. FAHEEM AFTAB, MEMOONA ALAM AND HUMERA AFRASIAB Department of Botany, University of the

More information

A micropropagation system for Eucalyptus dunnii Eucalyptus sp

A micropropagation system for Eucalyptus dunnii Eucalyptus sp A micropropagation system for Eucalyptus dunnii Eucalyptus sp M. Fantini Jr., M.E. Cortezzi Graça To cite this version: M. Fantini Jr., M.E. Cortezzi Graça. A micropropagation system for Eucalyptus dunnii

More information

MICROPROPAGATION OF CHRYSANTHEMUM (CHRYSANTHEMUM MORIFOLIUM) USING SHOOT TIP AS EXPLANT

MICROPROPAGATION OF CHRYSANTHEMUM (CHRYSANTHEMUM MORIFOLIUM) USING SHOOT TIP AS EXPLANT MICROPROPAGATION OF CHRYSANTHEMUM (CHRYSANTHEMUM MORIFOLIUM) USING SHOOT TIP AS EXPLANT R. Nalini Department of Biotechnology, Adhiparasakthi Agricultural College (Affiliated to TNAU) G. B. Nagar, Kalavai,

More information

Gregor Mendel Foundation Proceedings 2007:

Gregor Mendel Foundation Proceedings 2007: Gregor Mendel Foundation Proceedings 2007: 54-61. Effect of the explants from different aged mother plant on callus induction and direct regeneration in jatropha(jatropha curcas L.) Pranesh K. J 1, Gururaja

More information

TISSUE CULTURE AND EX-VITRO ACCLIMATION OF RHODODENDRON sp.

TISSUE CULTURE AND EX-VITRO ACCLIMATION OF RHODODENDRON sp. Buletin USAMV-CN, 64/2007 (-) ISSN 1454-232 TISSUE CULTURE AND EX-VITRO ACCLIMATION OF RHODODENDRON sp. Clapa Doina, Al. Fira Fruit Research Station Cluj, 5 Horticultorilor Str. Horticultorilor nr.5, 400457

More information

National Science Foundation Plant Genome Cereal Plant Transformation Workshop Albert Kausch University of Rhode Island

National Science Foundation Plant Genome Cereal Plant Transformation Workshop Albert Kausch University of Rhode Island National Science Foundation Plant Genome Cereal Plant Transformation Workshop Albert Kausch University of Rhode Island Rice Transformation NSF Plant Transformation Workshop Albert Kausch University of

More information

IN VITRO BUD CULTURE OF KINNOW TREE

IN VITRO BUD CULTURE OF KINNOW TREE Pak. J. Bot., 38(3): 597-601, 2006. IN VITRO BUD CULTURE OF KINNOW TREE Nuclear Institute for Agriculture Biology (NIAB), Faisalabad. Abstract Tissues from field grown trees have contamination problems

More information

Plant regeneration of Anthurium andreanum cv Rubrun

Plant regeneration of Anthurium andreanum cv Rubrun Electronic Journal of Biotechnology ISSN: 0717-3458 Vol.7 No.3, Issue of December 15, 2004 2004 by Pontificia Universidad Católica de Valparaíso -- Chile Received June 4, 2004 / Accepted November 9, 2004

More information

STUDIES ON DATE PALM IN TISSUE CULTURE

STUDIES ON DATE PALM IN TISSUE CULTURE STUDIES ON DATE PALM IN TISSUE CULTURE By GEHAN MOHAMED YOUSRY SALAMA B.Sc. Agric. Sci. (Horticulture), Fac. Agric., Ain Shams Univ., 1990 M.Sc. Agric. Sci. (Ornamental Horticulture), Fac. Agric., Cairo

More information

Regeneration potential of seedling explants of chilli (Capsicum annuum)

Regeneration potential of seedling explants of chilli (Capsicum annuum) African Journal of Biotechnology Vol. 8 (4), pp. 591-596, 18 February, 2009 Available online at http://www.academicjournals.org/ajb ISSN 1684 5315 2009 Academic Journals Full Length Research Paper Regeneration

More information

Effect of Cytokinins on Multiple Shoot Regeneration from Leaf Derived Callus of Inula

Effect of Cytokinins on Multiple Shoot Regeneration from Leaf Derived Callus of Inula Plant Tissue Cult. & Biotech. 27(2): 189 194, 2017 (December) PTC&B Effect of Cytokinins on Multiple Shoot Regeneration from Leaf Derived Callus of Inula royleana DC. Samar Amin*, Zahoor A Kaloo and Seema

More information

The application of leafy explant micropropagation protocol in enhancing the multiplication ef ciency of Alstroemeria

The application of leafy explant micropropagation protocol in enhancing the multiplication ef ciency of Alstroemeria Scientia Horticulturae 85 (2000) 307±318 The application of leafy explant micropropagation protocol in enhancing the multiplication ef ciency of Alstroemeria Hsueh-Shih Lin 1, Marjo J. De Jeu *, Evert

More information

MICROPHOPAGATION OF DATE PALM (PHOENIX TISSUE CULTURE TECHNIQUE

MICROPHOPAGATION OF DATE PALM (PHOENIX TISSUE CULTURE TECHNIQUE Annals of Arid Zone 28 (1&2): 137-141, 1989 MICROPHOPAGATION OF DATE PALM (PHOENIX DACTYLIFERA L.) CV KHADRA WY USING TISSUE CULTURE TECHNIQUE N.L. KACKAR, K.R. SOLANKI AND S.P. JOSHI Central Arid Zone

More information

MASS PRODUCTION OF A RARE AND ENDANGERED SPECIES, ASTRAGALUS MEMBRANACEUS VAR. ALPINUS NAKAI, THROUGH AXILLARY BUD CULTURE AND IN VIVO ROOTING TEST

MASS PRODUCTION OF A RARE AND ENDANGERED SPECIES, ASTRAGALUS MEMBRANACEUS VAR. ALPINUS NAKAI, THROUGH AXILLARY BUD CULTURE AND IN VIVO ROOTING TEST MASS PRDUCTIN F A RARE AND ENDANGERED SPECIES, ASTRAGALUS MEMBRANACEUS VAR. ALPINUS NAKAI, THRUGH AXILLARY BUD CULTURE AND IN VIV RTING TEST Hyo-Jeong Kim, 1 Young-Je Kang, Seog-Gu Son 2, Hyung-Soon Choi,

More information

In Vitro Regeneration of Parthenocarpic Cucumber (Cucumis sativus L.)

In Vitro Regeneration of Parthenocarpic Cucumber (Cucumis sativus L.) International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 6 Number 7 (2017) pp. 1711-1720 Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2017.607.206

More information

Micropropagation of Sterile and Non-Flowering Nicotiana Lines

Micropropagation of Sterile and Non-Flowering Nicotiana Lines 2008 The Japan Mendel Society Cytologia 73(1): 9 13, 2008 Micropropagation of Sterile and Non-Flowering Nicotiana Lines Sarala K.*, Rao R. V. S., Murthy T. G. K. and Satyavani J. V. R. Central Tobacco

More information

Environmental and Genotypic Effects on the Growth Rate. of in Vitro Cassava Plantlet

Environmental and Genotypic Effects on the Growth Rate. of in Vitro Cassava Plantlet 1 Environmental and Genotypic Effects on the Growth Rate of in Vitro Cassava Plantlet By Sunday E. Aladele National Centre for Genetic Resources and Biotechnology, Ibadan, Nigeria Abstract Two cassava

More information

Researches regarding bitter melon (Momordica charantia) in vitro regeneration

Researches regarding bitter melon (Momordica charantia) in vitro regeneration Volume 14(3), 75-8, 21 JOURNAL of Horticulture, Forestry and Biotechnology Researches regarding bitter melon (Momordica charantia) in vitro regeneration Franţ Alexandra 1*, Botău Dorica 1 1 Banat s University

More information

IN VITRO SHOOT TIP CULTURE OF COTTON (GOSSYPIUM HIRSUTUM)

IN VITRO SHOOT TIP CULTURE OF COTTON (GOSSYPIUM HIRSUTUM) Pak. J. Bot., 36(4): 817-823, 2004. IN VITRO SHOOT TIP CULTURE OF COTTON (GOSSYPIUM HIRSUTUM) BUSHRA RASHID *, TAYYAB HUSNAIN AND SHEIKH RIAZUDDIN Centre for Applied Molecular Biology, 87-West Canal Bank

More information

International Journal of Pharma and Bio Sciences DIRECT REGENERATION FROM EMBRYO CULTURES OF LYCOPERSICON ESCULENTUM MILL CV PUSA RUBY ABSTRACT

International Journal of Pharma and Bio Sciences DIRECT REGENERATION FROM EMBRYO CULTURES OF LYCOPERSICON ESCULENTUM MILL CV PUSA RUBY ABSTRACT Research Article Plant science International Journal of Pharma and Bio Sciences ISSN 0975-6299 DIRECT REGENERATION FROM EMBRYO CULTURES OF LYCOPERSICON ESCULENTUM MILL CV PUSA RUBY P. KARUNAKAR RAO Department

More information

2. What are the advantages and disadvantages of plant tissue culture?

2. What are the advantages and disadvantages of plant tissue culture? UNIT VI - PLANT TECHNOLOGIES Lesson 2: Plant Tissue Culture Competency/Objective: Explain the process of tissue culture. Study Questions References 1. What is plant tissue culture? 2. What are the advantages

More information

EFFECTIVE CALLUS INDUCTION AND PLANT REGENERATION IN BRASSICA NAPUS (L.) VAR DGS-1

EFFECTIVE CALLUS INDUCTION AND PLANT REGENERATION IN BRASSICA NAPUS (L.) VAR DGS-1 Journal of Cell and Tissue Research Vol. 12(2) 3229-3234 (2012) ISSN: 0974-0910 (Available online at www.tcrjournals.com) Original Article EFFECTIVE CALLUS INDUCTION AND PLANT REGENERATION IN BRASSICA

More information

In Vitro Regeneration of Papaya (Carica papaya L.) Variety Surya

In Vitro Regeneration of Papaya (Carica papaya L.) Variety Surya Available online at www.ijpab.com DOI: http://dx.doi.org/10.18782/2320-7051.6269 ISSN: 2320 7051 Int. J. Pure App. Biosci. 6 (4): 456-461 (2018) Research Article In Vitro Regeneration of Papaya (Carica

More information

International Journal of Pharma and Bio Sciences RAPID IN VITRO PROPAGATION TECHNIQUE FOR SUGARCANE VARIETY 018

International Journal of Pharma and Bio Sciences RAPID IN VITRO PROPAGATION TECHNIQUE FOR SUGARCANE VARIETY 018 International Journal of Pharma and Bio Sciences RESEARCH ARTICLE BIOTECHNOLOGY RAPID IN VITRO PROPAGATION TECHNIQUE FOR SUGARCANE VARIETY 018 SATPAL SINGH BISHT*, AJIT KUMAR ROUTRAY & ROJITA MISHRA Department

More information

An efficient protocol for somatic embryogenesis of garlic (Allium sativum L.) using root tip as explant

An efficient protocol for somatic embryogenesis of garlic (Allium sativum L.) using root tip as explant J. Bangladesh Agril. Univ. 12(1): 1 6, 2014 ISSN 1810-3030 An efficient protocol for somatic embryogenesis of garlic (Allium sativum L.) using root tip as explant M. N. Hassan 1*, M. S. Haque 2, M. M.

More information

Efficient micropropagation of Vanilla planifolia Andr. under influence of thidiazuron, zeatin and coconut milk

Efficient micropropagation of Vanilla planifolia Andr. under influence of thidiazuron, zeatin and coconut milk Indian Journal of Biotechnology Vol 3, January 2004, pp. 113-118 Efficient micropropagation of Vanilla planifolia Andr. under influence of thidiazuron, zeatin and coconut milk P Giridhar and G A Ravishankar*

More information

H. E. Sommer, H. Y. Wetzstein and N. Lee

H. E. Sommer, H. Y. Wetzstein and N. Lee TISSUE CULTURE OF SWEETGUM (LIQUIDAMBAR STYRACIFLUA L.) H. E. Sommer, H. Y. Wetzstein and N. Lee Abstract.--An improved method for the tissue culture propagation of sweetgum (Liquidambar styraciflua L.)

More information

PLANT REGENERATION FROM PROTOCORM-DERIVED CALLUS OF CYPRIPEDIUM FORMOSANUM

PLANT REGENERATION FROM PROTOCORM-DERIVED CALLUS OF CYPRIPEDIUM FORMOSANUM In Vitro Cell. Dev. Biol. Plant 39:475 479, September October 2003 q 2003 Society for In Vitro Biology 1054-5476/03 $18.00+0.00 DOI: 10.1079/IVP2003450 PLANT REGENERATION FROM PROTOCORM-DERIVED CALLUS

More information

In Vitro Formation of Gerbera (Gerbera hybrida Hort.) Plantlets through Excised Scape Cultures

In Vitro Formation of Gerbera (Gerbera hybrida Hort.) Plantlets through Excised Scape Cultures J. Japan. Soc. Hort. Sci. 52(1) : 45-50. 1983. In Vitro Formation of Gerbera (Gerbera hybrida Hort.) Plantlets through Excised Scape Cultures Chien-young CHU and Min-chang HUANG Department of Horticulture,

More information

In vitro regeneration performance of Corchorus olitorius

In vitro regeneration performance of Corchorus olitorius J. Bangladesh Agril. Univ. 8(1): 1 6, 2010 ISSN 1810-3030 In vitro regeneration performance of Corchorus olitorius M. Hoque 1, K. M Nasiruddin 2, G. K. M. N. Haque 3 and G. C. Biswas 4 1 Dept. of Agronomy

More information

EFFICIENT PLANT REGENERATION FROM EMBRYOGENIC CELL SUSPENSION CULTURE OF TWO DEEPWATER RICE (ORYZA SATIVA L.) VARIETIES

EFFICIENT PLANT REGENERATION FROM EMBRYOGENIC CELL SUSPENSION CULTURE OF TWO DEEPWATER RICE (ORYZA SATIVA L.) VARIETIES The Chittagong Univ. J. B. Sci.,Vol. 5(1 &2):91-103, 2010. EFFICIENT PLANT REGENERATION FROM EMBRYOGENIC CELL SUSPENSION CULTURE OF TWO DEEPWATER RICE (ORYZA SATIVA L.) VARIETIES L. KHALEDA AND M. AL-FORKAN

More information

In vitro propagation of Phaleonopsis hybrid Little gem by culturing apical part and axillary bud of flower stalk

In vitro propagation of Phaleonopsis hybrid Little gem by culturing apical part and axillary bud of flower stalk J Plant Biotechnol (2016) 43:438 443 DOI:https://doi.org/10.5010/JPB.2016.43.4.438 ISSN 1229-2818 (Print) ISSN 2384-1397 (Online) Research Article In vitro propagation of Phaleonopsis hybrid Little gem

More information

In vitro Conservation of Rose Coloured Leadwort: Effect of Mannitol on Growth of Plantlets

In vitro Conservation of Rose Coloured Leadwort: Effect of Mannitol on Growth of Plantlets Kasetsart J. (Nat. Sci.) 38 : 97-12 (24) In vitro Conservation of Rose Coloured Leadwort: Effect of Mannitol on Growth of Plantlets Rommanee Charoensub and Salak Phansiri ABSTRACT In vitro study of manitol

More information

EFFECT OF BENZYLAMINO PURINE AND NAPHTHALENE ACETIC ACID ON CALLUS AND PROTOCORM FORMATION OF DENDROBIUM CV. BANYAT PINK

EFFECT OF BENZYLAMINO PURINE AND NAPHTHALENE ACETIC ACID ON CALLUS AND PROTOCORM FORMATION OF DENDROBIUM CV. BANYAT PINK Journal of Cell and Tissue Research Vol. 13(3) 3977-3981 (2013) (Available online at www.tcrjournals.com) ISSN: 0973-0028; E-ISSN: 0974-0910 Original Article EFFECT OF BENZYLAMINO PURINE AND NAPHTHALENE

More information

Micropropagation Scheme of Curcuma alismatifolia Gagnep.

Micropropagation Scheme of Curcuma alismatifolia Gagnep. Micropropagation Scheme of Curcuma alismatifolia Gagnep. N. Toppoonyanont, S. Chongsang, S. Chujan, S. Somsueb and P. Nuamjaroen Department of Biology, Faculty of Science, Maejo University Chiang Mai 50290

More information

Micropropagation of Selected Trees of Arbutus unedo L. through Axillary Shoot Proliferation and Somatic Embryogenesis

Micropropagation of Selected Trees of Arbutus unedo L. through Axillary Shoot Proliferation and Somatic Embryogenesis Micropropagation of Selected Trees of Arbutus unedo L. through Axillary Shoot Proliferation and Somatic Embryogenesis F. Gomes CERNAS, Dep. Florestal Escola Sup. Agrária de Coimbra Bencanta, 3040-316,

More information

Plant Tissue Culture. Dr. Alain Lemansour UAE University Date Palm Development Research Unit Dept.

Plant Tissue Culture. Dr. Alain Lemansour UAE University Date Palm Development Research Unit Dept. Plant Tissue Culture By Dr. Alain Lemansour UAE University Date Palm Development Research Unit Dept. What is it? Tissue culture is the term used for the process of growing cells artificially in the laboratory

More information

In vitro clonal propagation of the neem tree (Azadirachta indica A. Juss.)

In vitro clonal propagation of the neem tree (Azadirachta indica A. Juss.) African Journal of Biotechnology Vol. 7 (4), pp. 386-391, 19 February, 2008 Available online at http://www.academicjournals.org/ajb ISSN 1684 5315 2008 Academic Journals Full Length Research Paper In vitro

More information

Influence of Genotype Source on the In Vitro Regeneration Ability of Malaysian Chilli Varieties

Influence of Genotype Source on the In Vitro Regeneration Ability of Malaysian Chilli Varieties Influence of Genotype Source on the In Vitro Regeneration Ability of Malaysian Chilli Varieties ALIZAH Z. * & ZAMRI Z. 1 Malaysian Agriculture Research and Development Institute Serdang, PO Box 12301,

More information

In vitro REGENERATION OF MUNGBEAN (Vigna radiata L.) FROM DIFFERENT EXPLANTS

In vitro REGENERATION OF MUNGBEAN (Vigna radiata L.) FROM DIFFERENT EXPLANTS Progress. Agric. 19(2) : 13-19, 2008 ISSN 1017-8139 In vitro REGENERATION OF MUNGBEAN (Vigna radiata L.) FROM DIFFERENT EXPLANTS M. K. Khatun, M. S. Haque, S. Islam and K. M. Nasiruddin Department of Biotechnology,

More information

Chapter 4. In vitro callus multiplication, regeneration and microcorm induction in Amorphophallus paeoniifolius

Chapter 4. In vitro callus multiplication, regeneration and microcorm induction in Amorphophallus paeoniifolius Chapter 4 70 Chapter 4 In vitro callus multiplication, regeneration and microcorm induction in Amorphophallus paeoniifolius 4.1 Introduction The high incidence of mosaic disease, corm dormancy and non-availability

More information

Micropropagation of Chlorophytum borivilliens through direct organogenesis

Micropropagation of Chlorophytum borivilliens through direct organogenesis Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research, 2010, 1 (2): 41-46 ISSN: 0976-8610 CODEN (USA): AASRFC Micropropagation of Chlorophytum borivilliens through direct

More information

FACILE PLANT REGENERATION FROM TOMATO LEAVES INDUCED WITH SPECTINOMYCIN

FACILE PLANT REGENERATION FROM TOMATO LEAVES INDUCED WITH SPECTINOMYCIN Pak. J. Bot., 38(4): 947-952, 2006. FACILE PLANT REGENERATION FROM TOMATO LEAVES INDUCED WITH SPECTINOMYCIN MUHAMMAD SARWAR KHAN *, MUHAMMAD USMAN AND MUHAMMAD ILYAS LILLA National Institute for Biotechnology

More information

RAPID PROPAGATION OF PHALAENOPSIS FROM FLORAL STALK-DERIVED LEAVES

RAPID PROPAGATION OF PHALAENOPSIS FROM FLORAL STALK-DERIVED LEAVES In Vitro Cell. Dev. Biol. Plant 38:168 172, March April 2002 q 2002 Society for In Vitro Biology 1054-5476/02 $10.00+0.00 DOI: 10.1079/IVP2001274 RAPID PROPAGATION OF PHALAENOPSIS FROM FLORAL STALK-DERIVED

More information

Effect of BA NAA and 2,4-D on Micropropagation of Jiaogulan (Gynostemma pentaphyllum Makino)

Effect of BA NAA and 2,4-D on Micropropagation of Jiaogulan (Gynostemma pentaphyllum Makino) 2012 International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies. International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies http://tuengr.com,

More information

Organogenic plant regeneration via callus induction in chickpea (Cicer arietinum L.) Role of genotypes, growth regulators and explants

Organogenic plant regeneration via callus induction in chickpea (Cicer arietinum L.) Role of genotypes, growth regulators and explants Indian Journal of Biotechnology Vol. 4, April 2005, pp. 251-256 Organogenic plant regeneration via callus induction in chickpea (Cicer arietinum L.) Role of genotypes, growth regulators and explants Anju

More information

TISSUE CULTURE II. Organogenesis. PlSc 300 LAB Learn tissue culture techniques that promote organ formation.

TISSUE CULTURE II. Organogenesis. PlSc 300 LAB Learn tissue culture techniques that promote organ formation. 76 TISSUE CULTURE II Organogenesis PlSc 300 LAB 11 REFERENCE: Text: 663 666; 706 712; 717 718. OBJECTIVES: 1. Learn tissue culture techniques that promote organ formation. 2. Practice making leaf and shoot

More information

Development of a suitable plant regeneration protocol of cotton cultivar variety in comparison to non cultivar Coker

Development of a suitable plant regeneration protocol of cotton cultivar variety in comparison to non cultivar Coker IOSR Journal of Biotechnology and Biochemistry (IOSR-JBB) ISSN: 2455-264X, Volume 2, Issue 5 (Jul. Aug. 2016), PP 14-20 Development of a suitable plant regeneration protocol of cotton cultivar variety

More information

Plant regeneration of natural tetraploid Trifolium pratense L

Plant regeneration of natural tetraploid Trifolium pratense L Biol Res 41: 25-31, 2008 BR 25 Plant regeneration of natural tetraploid Trifolium pratense L HATICE ÇÖLGEÇEN 1 and M CIHAT TOKER 2 1 Zonguldak Karaelmas University, Faculty of Arts and Science, Department

More information

IN VITRO PROPAGATION OF EGYPTIAN DATE PALM: 11-DIRECT AND INDIRECT SHOOT PROLIFERATION FROM SHOOT-TIP EXPLANTS OF Phoenix dactylifera L. CV. ZAGHLOOL.

IN VITRO PROPAGATION OF EGYPTIAN DATE PALM: 11-DIRECT AND INDIRECT SHOOT PROLIFERATION FROM SHOOT-TIP EXPLANTS OF Phoenix dactylifera L. CV. ZAGHLOOL. IN VITRO PROPAGATION OF EGYPTIAN DATE PALM: 11-DIRECT AND INDIRECT SHOOT PROLIFERATION FROM SHOOT-TIP EXPLANTS OF Phoenix dactylifera L. CV. ZAGHLOOL. Shawky A. Bekheet and Mahmoud M. Saker Plant Cell

More information

In vitro propagation of Coscinium fenestratum (Gaertn.) Colebr. (Menispermaceae) - an endangered medicinal plant

In vitro propagation of Coscinium fenestratum (Gaertn.) Colebr. (Menispermaceae) - an endangered medicinal plant J.Natn.Sci.Foundation Sri Lanka 2010 38 (4): 219-223 RESEARCH ARTICLE In vitro propagation of Coscinium fenestratum (Gaertn.) Colebr. (Menispermaceae) - an endangered medicinal plant W.T.P.S.K. Senarath

More information

In vitro propagation and whole plant regeneration from callus in Datura (Datura stramonium. L)

In vitro propagation and whole plant regeneration from callus in Datura (Datura stramonium. L) African Journal of Biotechnology Vol. 10(3), pp. 442-448, 17 January, 2011 Available online at http://www.academicjournals.org/ajb DOI: 10.5897/AJB09.1968 ISSN 1684 5315 2011 Academic Journals Full Length

More information

In vitro callus induction, regeneration and micropropagation of Solanum lycopersicum

In vitro callus induction, regeneration and micropropagation of Solanum lycopersicum ISSN: 2319-7706 Volume 2 Number 12 (2013) pp. 192-197 http://www.ijcmas.com Original Research Article In vitro callus induction, regeneration and micropropagation of Solanum lycopersicum Indrani Chandra*,

More information

In vitro propagation of Santalum album L.

In vitro propagation of Santalum album L. J.Natn.Sci.Foundation Sri Lanka 2015 43 (3):265-272 DOI: http://dx.doi.org/10.4038/jnsfsr.v43i3.7954 RESEARCH ARTICLE In vitro propagation of Santalum album L. M.K.P. Peeris and W.T.P.S.K. Senarath * Department

More information

Factors affecting bulblet growth of Lilium sp. in vitro and in vivo

Factors affecting bulblet growth of Lilium sp. in vitro and in vivo POJ 10(05):263-268 (2017) doi: 10.21475/poj.10.05.17.pne872 ISSN:1836-3644 Factors affecting bulblet growth of Lilium sp. in vitro and in vivo Md. Saiful Islam 1*, Md. Zohurul Kadir Roni 1, and Kazuhiko

More information

EFFECT OF DIFFERENT CULTURAL CONDITIONS ON MICROPROPAGATION OF ROSE (ROSA INDICA L.)

EFFECT OF DIFFERENT CULTURAL CONDITIONS ON MICROPROPAGATION OF ROSE (ROSA INDICA L.) Pak. J. Bot., 41(6): 2877-2882, 2009. EFFECT OF DIFFERENT CULTURAL CONDITIONS ON MICROPROPAGATION OF ROSE (ROSA INDICA L.) ASAD SHABBIR 1, NOSHEEN HAMEED 1 AMIR ALI 2 AND RUKHSANA BAJWA 1 1 Institute of

More information

VETIVER PROPAGATION. Nurseries and Large Scale Propagation. Dr Paul Truong Veticon Consulting Brisbane, Australia

VETIVER PROPAGATION. Nurseries and Large Scale Propagation. Dr Paul Truong Veticon Consulting Brisbane, Australia VETIVER PROPAGATION Nurseries and Large Scale Propagation Dr Paul Truong Veticon Consulting Brisbane, Australia 1. INTRODUCTION The Vetiver Network promotes the use of sterile vetiver cultivar to avoid

More information

SOMATIC EMBRYOGENESIS IN STRAWBERRY (FRAGARIA ANANASSA) VAR. CAMAROSA

SOMATIC EMBRYOGENESIS IN STRAWBERRY (FRAGARIA ANANASSA) VAR. CAMAROSA G.J.B.B., VOL.6 (2) 17: 39-313 ISSN 2278 913 SOMATIC EMBRYOGENESIS IN STRAWBERRY (FRAGARIA ANANASSA) VAR. CAMAROSA Swapnil Gorakh Waghmare*, Komal Ramchandra Pawar, Ramling Haribhau Tabe, Abhijeet Shivajirao

More information

In Vitro Flowering and Shoot Multiplication from Nodal Explants of Ceropegia bulbosa Roxb. var. bulbosa

In Vitro Flowering and Shoot Multiplication from Nodal Explants of Ceropegia bulbosa Roxb. var. bulbosa Taiwania, 48(2): 106-111 In Vitro Flowering and Shoot Multiplication from Nodal Explants of Ceropegia bulbosa Roxb. var. bulbosa S. John Britto (1, 2), E. Natarajan (1) and D. I. Arockiasamy (1) (Manuscript

More information

1977) LAM: REGENERATION OF PLANTLETS 575

1977) LAM: REGENERATION OF PLANTLETS 575 1977) LAM: REGENERATION OF PLANTLETS 575 REGENERATION OF PLANTLETS FROM SINGLE POTATOES Shue-Lock Lam CELLS IN Abstract Regeneration of plantlets from isolated single cells of potato tubers can be achieved

More information

In vitro Propagation of Euphorbia pulcherrima Willd. Through Somatic Embryogenesis

In vitro Propagation of Euphorbia pulcherrima Willd. Through Somatic Embryogenesis Plant Tissue Cult. 13(1) : 31-36, 2003 (June) PTC In vitro Propagation of Euphorbia pulcherrima Willd. Through Somatic Embryogenesis Yogesh T. Jasrai *, K. N. Thaker and M. C. D'Souza Department of Botany,

More information

Appendix Ex vitro performance of peanut plants from TDZ-pretreated seeds

Appendix Ex vitro performance of peanut plants from TDZ-pretreated seeds Appendix Ex vitro performance of peanut plants from TDZ-pretreated seeds INTRODUCTION Plant growth regulators (PGRs) are known to influence plant growth and development at very low concentrations (Jules

More information

Short report: An in vitro method to rescue embryos of horseradish (Armoracia

Short report: An in vitro method to rescue embryos of horseradish (Armoracia Short report: An in vitro method to rescue embryos of horseradish (Armoracia rusticana), a reputedly sterile plant By M. OZGUR¹, A. M. SHEHATA², R. M. SKIRVIN², M. A. NORTON², R. M. S. MULWA², M. UCHANSKI²,

More information

Rapid in vitro regeneration of Gerbera jamesonii (H. Bolus ex Hook. f.) from different explants

Rapid in vitro regeneration of Gerbera jamesonii (H. Bolus ex Hook. f.) from different explants Indian Journal of Biotechnology Vol 3, October 2004, pp 584-588 Rapid in vitro regeneration of Gerbera jamesonii (H. Bolus ex Hook. f.) from different explants Purnima Tyagi and S L Kothari* Botany Department,

More information

ORGANOGENESIS IN CHRYSANTHEMUM MORIFOLIUM RAMAT (CULTIVAR ROMICA ) CALLUS CULTURES SMARANDA VÂNTU

ORGANOGENESIS IN CHRYSANTHEMUM MORIFOLIUM RAMAT (CULTIVAR ROMICA ) CALLUS CULTURES SMARANDA VÂNTU Analele ştiinţifice ale Universităţii Al. I. Cuza Iaşi Tomul LII, s. II a. Biologie vegetală, 006 ORGANOGENESIS IN CHRYSANTHEMUM MORIFOLIUM RAMAT (CULTIVAR ROMICA ) CALLUS CULTURES SMARANDA VÂNTU Abstract:

More information

Genetic and non genetic factors affecting callus induction and regeneration in sugarcane Sobhakumari V.P 1, Sreedivya M.J. 2 and Sanu Mary Abraham 3

Genetic and non genetic factors affecting callus induction and regeneration in sugarcane Sobhakumari V.P 1, Sreedivya M.J. 2 and Sanu Mary Abraham 3 Gregor Mendel Foundation Journal : -; 00. Genetic and non genetic factors affecting callus induction and regeneration in sugarcane Sobhakumari V.P, Sreedivya M.J. and Sanu Mary Abraham Tissue Culture Laboratory,

More information

Micro propagation of sugarcane (Saccharum officinarum L.) through auxiliary buds

Micro propagation of sugarcane (Saccharum officinarum L.) through auxiliary buds Micro propagation of sugarcane (Saccharum officinarum L.) through auxiliary buds P S \Varakagoda, S Subasinghe, D L C Kumari and T S Neththikumara Department of Crop Science, Faculty of Agriculture, University

More information

An efficient protocol for clonal micropropagation of Mentha piperita L. (Pipperment)

An efficient protocol for clonal micropropagation of Mentha piperita L. (Pipperment) Available online at www.pelagiaresearchlibrary.com Asian Journal of Plant Science and Research, 2012, 2 (4):518523 ISSN : 22497412 CODEN (USA): AJPSKY An efficient protocol for clonal micropropagation

More information

Rapid Micropropagation and Callus Induction of Catharanthus roseus in Vitro Using Different Explants

Rapid Micropropagation and Callus Induction of Catharanthus roseus in Vitro Using Different Explants World Journal of Agricultural Sciences 7 (6): 699-704, 2011 ISSN 1817-3047 IDOSI Publications, 2011 Rapid Micropropagation and Callus Induction of Catharanthus roseus in Vitro Using Different Explants

More information

IN VITRO GROWTH AND DEVELOPMENT OF DENDROBIUM HYBRID ORCHID. H. KHATUN 1, M. M. KHATUN 2, M. S. BISWAS 3 M. R. KABIR 4 AND M. AL-AMIN 5 Abstract

IN VITRO GROWTH AND DEVELOPMENT OF DENDROBIUM HYBRID ORCHID. H. KHATUN 1, M. M. KHATUN 2, M. S. BISWAS 3 M. R. KABIR 4 AND M. AL-AMIN 5 Abstract ISSN 0258-7122 Bangladesh J. Agril. Res. 35(3) : 507-514, September 2010 IN VITRO GROWTH AND DEVELOPMENT OF DENDROBIUM HYBRID ORCHID H. KHATUN 1, M. M. KHATUN 2, M. S. BISWAS 3 M. R. KABIR 4 AND M. AL-AMIN

More information

Low-Cost Alternatives for Conventional Tissue Culture Media

Low-Cost Alternatives for Conventional Tissue Culture Media International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 7 Number 04 (2018) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2018.704.288

More information

Chapter 21. Micropropagation of Cordyline terminalis. Tui Ray, Prasenjit Saha, and Satyesh C. Roy. Abstract. 1. Introduction

Chapter 21. Micropropagation of Cordyline terminalis. Tui Ray, Prasenjit Saha, and Satyesh C. Roy. Abstract. 1. Introduction Chapter 21 Micropropagation of Cordyline terminalis Tui Ray, Prasenjit Saha, and Satyesh C. Roy Abstract This protocol describes an ef fi cient and rapid method for large-scale multiplication of Cordyline

More information

Ef cient plant regeneration from multiple shoots formed in the leaf-derived callus of Lavandula vera, using the ``open culture system''

Ef cient plant regeneration from multiple shoots formed in the leaf-derived callus of Lavandula vera, using the ``open culture system'' Scientia Horticulturae 86 (2000) 81±88 Ef cient plant regeneration from multiple shoots formed in the leaf-derived callus of Lavandula vera, using the ``open culture system'' M. Tsuro, M. Koda, M. Inoue

More information

IN VITRO MUTATION STUDIES IN PAPAYA (CARICA PAPAYA L.)

IN VITRO MUTATION STUDIES IN PAPAYA (CARICA PAPAYA L.) IN VITRO MUTATION STUDIES IN PAPAYA (CARICA PAPAYA L.) *M. Mahadevamma 1, Leela Sahijram 2, Vasanth Kumari and T.H. Shankarappa 1 P.G. Centre, UHS Campus, G. K. V. K. Post, Bangalore-65 2 Division of Biotechnology,

More information