Radiant Heating. Systems

Similar documents
hydronics WHAT S WRONG WITH THIS SCHEMATIC?

- Data Brochure Universal Reset Module 422

Applications and Piping Strategies for Condensing Boilers - Introduction

- Data Brochure Universal Reset Module 423

LOW TEMPERATURE HYDRONIC HEATING FOR COLD CLIMATES TRAVIS SMITH PRESIDENT T AND T MOUNTAIN BUILDERS INC

Best Practices for Condensing Boilers

- Essay Control Functions and Benefits

TOTAL SYSTEM EFFICIENCY: AN INTRODUCTION TO CONDENSING BOILERS. David Grassl PE Mechanical Engineer Principal

Outdoor Reset Control Theory FULL versus PARTIAL reset

Daikin Altherma/Viessmann Integration Notes (used with schematics M1 thru M5)

TOTAL SYSTEM EFFICIENCY: SYSTEM APPLICATIONS & DESIGNS. David Grassl PE Mechanical Engineer Principal

SAMPLE. added benefit of reduced operating costs during low demand periods, such as spring and fall.

The electrical wattage needed by the circulator is:

Application Guide. Vitodens 100-W B1HA/B1KA Residential Boiler

EASY$ TIP SHEETS. Energy Advice Saving Yukoners Money. How hydronic heating systems work

"Best Practices in Modern Hydronic Heating - THE DETAILS

Accomplish Maximum Green Results in Commercial Buildings #

A hydronic system controls comfort by delivering heated or cooled fluid to the conditioned space through pipes.

- Data Brochure Boiler Control 274

Boiler Demand Mix 1 Demand Mix 2 Demand DHW Demand Setpoint Demand

Circulators high efficiency ECM Circulators

Installation & Operation Manual

DHW / Setpoint Demand WWSD Modulation Boiler Output (x10,000 BTU/hr) External Input Signal Offset / Priority Override

BHSAPPMAN 08/00 USA. Applications Manual. Ecomatic / Logamatic Controls. Save These Instructions!

Solar & Hydronic Heating

Medium Mass Boilers. Maxim Power VT

96% AFUE Efficiency CONDENSING RESIDENTIAL GAS BOILERS CONTROL WITH ADVANCED USER FEATURES MODELS FROM 80,000 TO 285,000 BTU/HR

Socialized Efficiency

Hydronic Mechanical Panels

Qualifies for up to $ 1500 Energy Tax Credit! CONDENSING RESIDENTIAL GAS BOILERS CONTROL WITH ALL NEW, ADVANCED USER FEATURES

InDEX. A Technical Journal from Caleffi Hydronic Solutions

Technical Criteria for District Energy Ready Buildings Master Requirement ENG 108 Building Department: ,

Bosch. Gas Condensing Boiler. Applications Manual. 100, 151 Combi Boiler 57, 100, 131, 151 Heating Boiler

prestige Control Application Supplement - Type 5 MCBA WARNING

Combined Space and Water Heating: Making it Work

Method to test HVAC equipment at part load conditions

MAXIMIZING HYDRONIC SYSTEM DESIGN PART III

A Technical Introduction to Cool Thermal Energy Storage Commercial Applications

FREQUENTLY ASKED QUESTIONS

Bristol s Six Principles for Good Solar Hydronic Design SLASH-D: Software for Solar Heating Design

heat interface units A BOILER WITHOUT A FLAME

Hydronic & HVAC Control Systems

95% AFUE Efficiency CONDENSING RESIDENTIAL GAS BOILERS REMOTE CONNECT CAPABLE CONTROL WITH ADVANCED USER FEATURES MODELS FROM 80,000 TO 285,000 BTU/HR

prestige Control Application Supplement - Type 5 MCBA WARNING

WWSD. Power. DHW Demand. Maximum. Supply. Minimum Boiler DHW. Zone 1 / Cooling. Pump / Vlv. System Pump. UnOccupied. of full output NRTL/C LR 58223

Authority - City Engineer Effective August 2, 2011 Amended November 1, 2011, November 1, 2012 and December 11, 2013

Systems and Tanks. 40 H/V 60 H/V 80 V 115 V 139 V Gallon. Applications Sizing System Design

SEISCO APPLICATIONS & DIAGRAMS

Natural geothermal energy

GETTING THE MOST OUT OF HYDRONIC HEATING SYSTEMS

ASPE Seminar Water Heater Piping Strategies Presented by Joe Kalarickal, EIT Regional Sales Manager AERCO International

Outdoor Reset IQ Option Card, p/n

Better Design, Better Control, Better Systems.

The Book of AERMEC NRL Sequence of Operation

Reinventing Energy Efficiency WARMNESS.

Outdoor Reset IQ Option Card, p/n

Air Conditioning Clinic. Absorption Water Chillers One of the Equipment Series TRG-TRC011-EN

Heating Installation Guide published by

B-40/B-41 Modulating Temperature Controller

- Data Brochure Mixing Control 360

Divacondens D Plus Atmospheric condensation wall-mounted boilers, with instant domestic hot water production

By Thomas H. Durkin, P.E., Member ASHRAE, and James B. (Burt) Rishel, P.E., Fellow/Life Member ASHRAE

TOTAL SYSTEM EFFICIENCY: CONTROL STRATEGIES & SYSTEM DISTRIBUTION. David Grassl PE Mechanical Engineer Principal

- Data Brochure Universal Reset Control 364

Heat Transfer Products, Inc. 120 Braley Road East Freetown, MA The first totally integrated multiple boiler management control.

NOVEMBER 2012 THE EUROPEAN EXPERIENCE

union swing check valve spring loaded check valve purging valve pressure relief valve relief valve metered balancing valve

The Universal Reset Control 363 is a microprocessor based control designed to maximize the comfort and efficiency provided by a hydronic

Instruction Sheet. Press & Hold: Item, to view settings, to test. 24 V ±10% 50/60 Hz 3 VA 120 V (ac) 5 A 1/6 hp pilot 240 VA 20 to 260 V (ac) 2 VA

Residential Gas Condensing Boiler Greenstar ZBR16/21/28/35/42-3A... ZWB28/35/42-3A...

- Data Brochure Steam Control 279

ASHRAE JOURNAL ON REHEAT

Reducing the Carbon Footprint of Existing Domestic Heating: A Non-Disruptive Approach

A Review of Hydronic Balancing of Cooling Water Circuit

TRACE 700. Slide 1. Hello, my name is Nick Cavitt and I m a marketing engineer in the C.D.S. group at TRANE.

- Data Brochure Boiler Control 264e

NET ENERGY WATER LOOPS A clear path to net zero energy buildings

Domestic Hot Water production

- Data Brochure Boiler Control 264

- Data Brochure Mixing Control 361

Variable Refrigerant Flow (VRF) Systems

- Data Brochure Boiler Control 268

Get The Edge Over The Competition with The Summit

$42,000. Danfoss Turbocor Compressors Give INTERTECH PLASTICS A RESHORING ADVANTAGE. saved annually

August 15, 2013 Page 1 of 19

- Application A Boiler Control 262 & One Stage Setpoint Control 150. Mechanical Remote Display Module (D1) 040 MODE 1

Fundamentals of Hydronic Design

WARM WATER UNDERFLOOR HEATING SYSTEMS. Guidance Notes

Chapter 2.3: Steam System

Zone. In the. Contractors and technicians may often find themselves. In today s wired world, zoning has evolved from wired to wireless.

Everything you need to know about Radiant Heating but didn t dare ask

- Data Brochure D 260. Boiler Control /09

Caleffi Hydronic Solutions Contact: Rex Gillespie, Director of Marketing Phone: (414)

So far, we have covered the basic concepts of heat transfer and properties.

Aqua Balance. AquaBalance TM CONTROL MODULE QUICK START GUIDE LEGEND

prestige Control Application Supplement - TriMax

SERIES 24. Series 24 Features. Commercial, Forced Draft, Hot Water or Steam Boiler. The right fit for any commercial job

Intelligent Heating for Your Home

Secondary systems used in Europe.

Warmth, efficiency, and total peace of mind.

Transcription:

O p t i m i z i n g t h e P e r f o r m a n c e o f Radiant Heating Systems Minimizing costly mistakes and maximizing a radiant project s performance by focusing on building and system efficiency Radiant heating systems are being used more often in high-performance designs and green buildings. Many designs now utilize condensing boilers and other high-efficiency technologies, which bring their own sets of challenges. This article will examine tried and true methods of minimizing costly mistakes and maximizing performance. Radiant systems are part of a larger field: hydronics. Many of the concepts that will be presented in this article apply to hydronic systems in general. HISTORY OF RADIANT HEATING Radiant heating is smart and safe. It is time tested: Our nearly 5-billion-year-old sun operates as a radiant mass. An open fire is another everyday example of a radiant heater. Perhaps this is why radiant heat is considered the first form of central heating used by humans. The Romans used it to heat their baths. Radiant heating is the predominant form of heating in Europe and is gaining acceptance in the United States. A survey conducted by the Radiant Panel Association determined there was a 37.4-percent increase in radiant-tubing sales in North America in 2004. 1 Radiant systems in the early 1900s used steel and wrought-iron piping imbedded in concrete powered by coal-fired boilers. What a difference 100 years makes. By PETER C. D ANTONIO, PE, CE, LEED AP PCD Engineering Services Inc. Longmont, Colo. RADIANT COMFORT Why is radiant heat so comfortable? Because our bodies are very effective radiators. Roughly 50 percent of a person s heat transfer is through radiation, 30 percent is through convection, and the remaining 20 percent is through evaporation. Comfort also relates to the concept of mean radiant temperature (MRT). MRT is the measure of the combined effects of surface temperatures within a space. MRT is the most important parameter governing human energy balance. As evidence of the importance of radiant-heat exchange to the body s thermal equilibrium, physiologists have discovered that human skin has extraordinarily high absorptivity and emissivity more than almost any other known substance, including matte-black metals. Consequently, humans are highly responsive to changes in MRT. In general, for every 1 F that MRT drops, a person must raise air temperature about 1.4 F to achieve similar comfort conditions. HIGH-PERFORMANCE HEATING SYSTEM Not all radiant systems are created alike. An extremely efficient heating appliance connected to Peter C. D Antonio, PE, CEM, LEED AP, is founder and president of PCD Engineering Services Inc., an award-winning provider of sustainable mechanical/electrical-design, energy-management, and integratedbuilding-system solutions. Additionally, he serves as a board member and committee chair for several professional and community organizations, including the U.S. Green Building Council and the American Society of Heating, Refrigerating and Air-Conditioning Engineers. In September, he will present at HPAC Engineering s third annual Engineering Green Buildings Conference and Expo (www.egbregistration.com). 2 August 2006 HPAC Engineering

an inefficient delivery system does not produce an efficient system. A highperformance heating system is one that maximizes source and system efficiency and minimizes life-cycle cost. It is one that conditions an indoor environment by first reducing the building envelope load, has an energy-performance focus, and includes such important considerations as adding underslab insulation. MAXIMIZING SYSTEM EFFICIENCY Within a radiant system, there are four main points to consider: Supply-water temperature. Temperature differential. Variable-speed pumping. Preventive maintenance. Reducing supply-water temperature generally increases the efficiency of source equipment. Increasing temperature differential also provides an opportunity for increased efficiency. Lowtemperature hot-water heating systems historically have been designed for a 20-F temperature drop. There appears to be no logical explanation for this selection, other than that it is easier to size the pump by dividing the British thermal units by 10,000 to obtain pump flow (British thermal units per hour equals 500 multiplied by gallons per minute multiplied by temperature drop). Or perhaps the 20-F temperature drop was selected to protect against flue-gas condensation in non-condensing boilers. Increased differential affords pumping savings, pipe-size reductions, and higher source efficiency through lower returnwater temperatures. For example, doubling differential from 20 F to 40 F halves the required flow rate. Variablespeed pumping does well to improve load tracking and matching building load to system load while also realizing pump electrical savings. Preventive maintenance serves to maintain performance during the life cycle of a system. MAXIMIZING SOURCE EFFICIENCY One of the benefits of radiant systems is source flexibility. When considering Thermal efficiency 100 98 96 94 92 90 88 86 84 82 80 70 80 90 100 110 120 130 140 150 160 170 180 FIGURE 1. Full- and part-load efficiencies. heating sources, consider solar and wasteheat opportunities first. Geothermal systems also are a good choice, offering coefficients of performance of around 3.5. They may prove to be worthwhile applications, especially if a cooling load also is present. As far as heating sources go, boilers make up the lion s share. Condensing boilers often are a practical choice because they recover additional heat from condensing flue gas, boosting Isolation valves FIGURE 2. Series-piped boiler arrangement. Return-water temperature (F) 25 percent input 50 percent input 100 percent input efficiency into the range of 88 to 99 percent. Surprisingly, a condensing boiler is one of the most misapplied elements of modern hydronic systems. A typical efficiency curve for a condensing boiler is shown in Figure 1. This tells a few things about how to maximize a condensing boiler s operating efficiency. The first thing to note is that unless return water can be provided to a boiler at 130 F or, preferably, well below, a Boiler pump Flow check valves HPAC Engineering August 2006 3

boiler is not realizing its full potential. Second, the efficiency curve shows that a boiler operates significantly better at part load than at full load. A control strategy that exploits the efficiency curve should be applied. So how can 90 percent plus average seasonal efficiency be achieved? By allowing a boiler to condense water vapor in flue gas under operating conditions, modulating boiler input at partialload conditions to reduce cycling losses, and designing a system to take advantage of boiler and controls technology. BOILER PIPING Let s look at how a piping system complements high-efficiency operation. In Figure 2, the series-piped boilers have individual pumps, check valves, and closely spaced boiler tees, all effective elements that prevent unwanted flow through unfired boilers. However, the series arrangement prevents return water from entering each boiler at the lowest temperature. A more appropriate solution is to pipe the boilers in parallel as shown in Figure 3. The goal with boiler piping is to provide parallel-piped, independent flow. SYSTEM PIPING Figure 4 shows three heating circuits, one above the primary heating loop, a second level with the primary loop, and a third below the primary loop. A common misconception is that heat rises. A more correct description is that heat travels to cold areas. If unchecked, a convective loop will form, which can cause load sources, such as radiators, to become heat emitters when a load does not exist on the system and the respective pump is off. This phenomenon, known as thermosiphoning or ghost flow, has other undesirable consequences, such as nuisance tripping of a pressure and temperature valve. To remedy this situation, all heat emitters located at or above a primary loop should be protected with flow checks, swing-loaded check valves, or return-side thermal traps to keep the heat where it is wanted. Supply and FIGURE 3. Parallel-piped boiler arrangement. Fast-fill valve Mitigates undesired thermal migration FIGURE 4. Three heating circuits. Primary loop (baseboard) Purging valves (typical) (radiant in-floor) (panel radiators) 4 August 2006 HPAC Engineering

Incorrect placement of supply-temperature sensor Boiler piping Outdoor-air reset controller (baseboard) Correct placement of supply-temperature sensor Domestic-water-rated heat exchanger Bronze pump Domestic-hot-water storage tank FIGURE 5. Correct and incorrect supply-temperature-sensor placement. return connection tees should be piped as close together as possible (maximum four times the diameter of primary pipe) to create a near-zero pressure drop between tees. This discourages water from flowing into a circuit during offcycle operation. SYSTEM CONTROLS Figure 5 shows a boiler supply sensor improperly located on boiler manifold piping. Boiler pumps normally operate only when a call for heating exists. In this sensor placement, when boiler-manifold temperature is satisfied, boiler circulators are off, but a load still may exist in the distribution system. In this case, residual boiler-manifold heat gets trapped and will not get to the distribution system. Also, with an improperly placed sensor, boilers will not fire when heat is needed in the system. A boiler supply sensor should be placed in a position of constant flow to maximize use of boiler heat into the system and to ensure heat is delivered to a load when required. The supply-water-temperature-reset control strategy illustrated in Figure 6 can be applied to primary or secondary heating loops. It goes a long way toward reducing energy consumption and cost. Supply-water-temperature reset also serves to better track building load, resulting in reduced boiler heat loss because of equipment cycling. High-efficiency condensing boilers typically are most efficient when operating with the coldest returnwater temperature possible (Figure 1). When employing supply-water reset, determine the lowest supply temperature that will satisfy minimum boiler-returnwater temperature. Non-condensing boilers typically have a minimum returnwater temperature to prevent flue-gas condensation and premature failure caused by corrosion. With multiple-boiler systems, a boilersequencing strategy should take advantage of the efficiency profile of the equipment. A condensing modulating boiler typically achieves its highest efficiency at low part load. Multiple boilers should be controlled to modulate up and down in concert to meet space loads. Boilers also attain their highest efficiencies when running continuously. Boiler sizes should be selected and controlled with this in mind. When discussing loads, consideration should be given to on/off vs. modulating control. Variable-flow radiant systems have existed in Europe for decades and are gaining in popularity in the United States. They involve the use of inexpensive, modulating thermostatic mixing valves, which offer individualized zone Supply-water temperature (F) 205 190 175 160 145 130 115 100 85 70 55 40 Boiler-water temperature with boiler-reset control Noncondensing boiler Condensing boiler Supply temperature to distribution system with mixing reset control 80 70 60 50 40 30 20 10 0-10-20-30 Outdoor temperature (F) FIGURE 6. Supply-water-temperaturereset control strategy. HPAC Engineering August 2006 5

Differential bypass Mixing assembly T T T Non-electric modulating thermostatic valves Boiler FIGURE 7. Variable-flow radiant system. control and better system controllability (Figure 7). These typically are paired with a pressure-actuated bypass valve. Variable-volume, fractional-horsepower circulators with either an integral differential-pressure controller or differentialtemperature controller have entered the North American market, offering the additional advantage of pumping energy savings. These circulators already are in use in Europe. Eventually, these will replace the differential-pressure bypass valves often used today. MULTIPLE-LOAD SYSTEMS Radiant-heating systems often are one part of a multiple-load hydronic system, which, for example, may incorporate baseboard convectors operating at 180 F, panel radiators requiring 160 F, and radiant tubing peaking at 120 F. Multiple-load hydronic systems offer many benefits, including increased duty cycle yielding higher seasonal efficiency, load diversity, lower installation and system maintenance costs, and reduced space requirements. Guidelines for addressing these systems include: Use a single centralized power plant to reduce maintenance costs, build in system reliability and redundancy, and downsize the total connected source load required. Use multiple boilers when wide load range exists (high intermittent demand for domestic hot water [DHW]). This will ensure maximum efficiency. Employ series primary loops when water-supply temperatures of secondary loads vary. This allows for expanded temperature differentials. Pipe loads requiring the highest primary-water temperatures at the beginning of a loop. Temperatures decrease as loads travel around the loop, back to the boiler taps (Figure 4). Use parallel primary-secondary or split-primary piping when the watersupply temperatures of secondary circuits are similar (Figure 5). Minimize water temperatures and maximize temperature differential whenever possible. Minimize piping heat loss by connecting the indirect DHW tank as parallel circuits. DOMESTIC WATER Most modern controls operate on a fixed boiler-supply set point for DHW. When a call for DHW exists, boiler supply temperature ramps up to 190 F to recharge the tank. This is fine for applications with a low percentage of domestic-water load and for those in which domestic-water priority is an appropriate boiler-sizing strategy to reduce system cost. For applications with a significant domestic-water load, consider a dedicated boiler, or install a brazed-plate heat exchanger between the boiler and indirect tank to increase heatexchange surface area, reduce water temperature of water returning to the boiler, and increase system efficiency (Figure 5). Radiant systems are an ever-growing element of modern hydronic systems and offer many benefits, including increased thermal comfort and indoor environmental quality, controllability (zoning), energy efficiency, aesthetics, and sourceheating flexibility. A high-performance radiant system is one that maximizes thermal and wire-to-water efficiency to satisfy building load over the life cycle of the equipment. REFERENCE 1) Sweet, J. (2006, Jan. 8). State of the Radiant Industry. Reeves Journal. Retrieved June 26, 2006, from http:// www.reevesjournal.com/cda/articles/ Cover_Story/c032c1c879ba8010Vgn VCM100000f932a8c0 Coming in September: HPAC Engineering s third annual Engineering Green Buildings Conference and Expo. To learn more, go to www.egbregistration.com. 6 August 2006 HPAC Engineering