Evaluation of remote sensing-based active fire datasets in Indonesia

Similar documents
DETECTION AND MONITORING OF ACTIVE FIRES USING REMOTE SENSING TECHNIQUES

Long-term Inventory of Fire Burned Areas and Emissions of North America s Boreal and Temperate Forests

Analysing Threshold Value in Fire Detection Algorithm Using MODIS Data

Recent Developments and Prospects for Innovative Remote Sensing of High-Temperature Events and Vegetation Fire Impacts

Elaine M. Prins* NOAA/NESDIS, Office of Research and Applications, Advanced Satellite Products Branch (ASPB) Madison, WI

Use of new spatially refined satellite remote sensing fire detection data in support of advanced wildfire mapping and modeling

NEAR REAL TIME DETECTION OF BURNED SCAR AREA USING LANDSAT-8 IMAGERIES

SEVIRI/MSG sensor early fire detection performances assessment

A Review of AVHRR-based Active Fire Detection Algorithms: Principles, Limitations, and Recommendations

P1.9 CHARACTERIZING AND UNDERSTANDING THE DIFFERENCES BETWEEN GOES WF_ABBA AND MODIS FIRE PRODUCTS AND IMPLICATIONS FOR DATA ASSIMILATION

A temporal active fire detection algorithm applied to geostationary satellite observations

PARALLEL USE OF SEVIRI LSA SAF FRP AND MPEF FIR PRODUCTS FOR FIRE DETECTION AND MONITORING

[Some] Updates on Research into Fire Radiative Power & Energy

Using VIIRS Direct Readout Capabilities for the Improvement of Mexico's Wild Fire Alert System

GOES-R AWG Land Team: Fire Detection and Characterization

Strategic Research Agenda for. High-Altitude Aircraft and Airship. Remote Sensing Applications

Review of MTG FDHSI Mission Requirements Regarding Fire Applications

I. INTRODUCTION. Index Terms Fires, satellites.

Validation of MODIS Active Fire Detection Products Derived from Two Algorithms

VIIRS FIRE PRODUCTS UPDATE

University of Puerto Rico at Mayagüez Direct Broadcast Polar Orbiter Workshop

Detection and analysis of high-temperature events in the BIRD mission

Forest fire detection based on MODIS satellite imagery, and Comparison of NOAA satellite imagery with fire fighters' information

Space-borne high resolution fire remote sensing in Benin, West Africa

Heat Consumption Assessment of the Domestic Hot Water Systems in the Apartment Buildings

GOFC/GOLD Fire IT Strategic Planning. Day 1 - Break Out Group Discussion

JST-JICA Project Wild Fire and Carbon Management in Peat-Forest in Indonesia

Development of a Canadian Wildland Fire Monitoring Sensor (CWFMS)

S-NPP/VIIRS and Landsat-8/OLI Global Active Fire Data Sets

CROWD-SOURCED REMOTE ASSESSMENTS OF REGIONAL-SCALE POST-DISASTER DAMAGE

Digital soil mapping from legacy data and hyperspectral imagery in CapBon (Tunisia) First results and perspectives.

Supplement of LSA SAF Meteosat FRP products Part 1: Algorithms, product contents, and analysis

FOREST FIRE GROUP Current Status & Planning

Fire Detection and Monitoring

Using Remote sensing technique for estimation of real evapotranspiration

Global Biomass Burning Emissions from a Constellation of Geostationary Satellites for Global Model Forecast Applications

Rapid Prototyping of NASA Next Generation Sensors for the SERVIR System of Fire Detection in Mesoamerica

Fire-Implementation Team (Fire-IT) Update and Future Steps

ESTIMATING OF CONSUMPTIVE USE OF WATER IN BABYLON GOVERNORATE-IRAQ BY USING DIFFERENT METHODS

Fire Detection Using Image Processing

Fire Information for Resource Management System (FIRMS)

The operational MSG SEVIRI fire radiative power products generated at the Land-SAF

Interim evaluation of the New IR Sensor Technology (NIRST) as a wildfire monitoring tool

Estimating Fire Properties by Remote Sensing 1.

Verification and Validation of OOV-TET1 Multispectral Camera Observations within the FireBIRD Project

RAPID FIRE DETECTION IN MEXICO AND CENTRAL AMERICA USING REMOTE SENSING METHODS

Daytime Fire Detection Using Airborne Hyperspectral Data Philip E. Dennison 1 and Dar A. Roberts 2. University of Utah, Salt Lake City, UT 84112, USA

Sentinel Asia Wildfire Monitoring

Fire Detection and Prediction Systems of

The Role of Satellite Observations in Assessing Impacts of Wildfire Occurrence on Respiratory Health of Population

DEMONSTRATION OF A SEMI-OPERATIONAL FIRE RECOGNITION SERVICE USING BIRD MICRO- SATELLITE - DEMOBIRD

FIRE DETECTION AND PARAMETERIZATION WITH MSG-SEVIRI SENSOR

Fire Mapping Chapter. Working Paper

Global fire hotspots detected by NASA satellite to help United Nations

Product data sheet Palas Fidas 200 S

Evaluating Chicago s Urban Heat Island Policy with Remote Sensing. Chris Mackey

Crop Management Details Start from Parameters settings Emergence Planting Seed brand: Settings Parameter settings Hybrid-specific Generic

Soil Moisture Data Assimilation in Process Based Models

Enhancement of a fire detection algorithm by eliminating solar reflection in the mid-ir band: application to AVHRR data

ALBERTA FOREST PROTECTION THERMAL INFRARED PROGRAM

ANALYSIS AND EVALUATION OF NATURE SPACE POTENTIAL IN PERI-URBAN SPACES USING REMOTE SENSING DATA AND GIS


A CASE STUDY OF LANDSCAPE ANALYSIS WITH HIGH-RESOLUTION SATELLITE IMAGERY IN OLEIROS (A CORUÑA, SPAIN)

Acknowledgement: Ralph Prahl, Prahl & Associates, contributed critical review and analysis

Analyzing the Effects of High Water Tables on Evapotranspiration from Uncultivated Land in Colorado s Lower Arkansas River Valley

remote sensing ISSN

Flowering Behaviour of Helichrysum obconicum DC.

IMAGE PROCESSING BASED FIRE DETECTION ANDALERT SYSTEM

Battery Performance Alert

Sentinel Asia. Disaster Management Support System. Wild Fire Working Group

Validating the TET-1 satellite sensing system in detecting and characterizing active fire hotspots

Measuring Couch Motion Accuracy with X-ray Beam Fluence

Land SAF LSA-SAF Evapotranspiration (ET) Product

The Shortwave Reflectance of the Yankee Environmental Systems Hotplate

FIRE DETECTION AND MONITORING USING AVHRRA AND MSG SYSTEMS. Version Tuesday, 1.0, 1530 November Slide: 1

Advanced Fire Information System

Methods of detecting burnt area and estimating emissions Dr. Kevin Tansey

Toronto, Toronto, ON, Canada c State Laboratory of Earth Surface Process and Resource Ecology, Available online: 02 Aug 2011

There are various resources and toolkits available to perform this task.

for family composition, time allocation of people, ownership and specification of home appliances. This paper first presents the simulation procedure

Wildfire Mapping Using FireBIRD Data

Fire Risks of Loviisa NPP During Shutdown States

Results on verification and validation of OOV-TET1 multispectral camera observations within the FireBIRD project

A Forest Fire Warning Method Based on Fire Dangerous Rating Dan Wang 1, a, Lei Xu 1, b*, Yuanyuan Zhou 1, c, Zhifu Gao 1, d

Probe Mark Inspection As Part of Quality and Reliability in Automotive Devices

Satellite Derived Fire Products for Biomass Burning Studies

16.10 Johannes Kaiser HALO Proposal

ISSN: [Agcaoili S. O., 7(3): March, 2018] Impact Factor: 5.164

OBSERVING THE EXPANSION OF THE BUILT-UP AREAS OF REGIONAL CAPTAIL CITIES IN YANGTZE RIVER DELTA BY SATELLITE IMAGES

Improved Fire Scar Mapping for Queensland

A Study on Cooling Rate with Blade and Sound Fire Extinguisher

Benefits of Enhanced Event Analysis in. Mark Miller

Evaluating Low Impact Development Practices for Stormwater Management on an Industrial Site in Mississippi

Overview of the WF_ABBA Global Geostationary Fire Monitoring Program: Current Implementation and Future Plans

Clemens Felsmann 1, Jean Lebrun 2, Vincent Lemort 2 and Aad Wijsman 3 ABSTRACT INTRODUCTION METHODOLOGY

A Study on Improvement of Fire Protection Systems based on Failure Characteristics accodrding to Yearly Variation in Old Commercial Buildings

Battery Performance Alert: A TOOL FOR IMPROVED PATIENT MANAGEMENT FOR DEVICES UNDER BATTERY ADVISORY

THE NORTHSTAR SYSTEM: A NEW ERA IN EARTH OBSERVATION

Irrigating Olives. Janet Caprile UCCE Farm Advisor Alameda & Contra Costa Counties

Study on paddy rice planting area and yield monitoring

Transcription:

INT. J. REMOTE SENSING, 20JANUARY, 2004, VOL. 25, NO. 2, 471 479 Evaluation of remote sensing-based active fire datasets in Indonesia F. STOLLE*{, R. A. DENNIS{, I. KURNIWAN{ and E. F. LAMBIN {Global Forest Watch, World Resources Institute, 10 G Street, NE, Washington DC, 20002, USA {Center for International Forestry Research (CIFOR), P.O. Box 6596 JKPWB, Jakarta 10065, Indonesia Department of Geography, Université catholique de Louvain, Place Louis Pasteur 3, B-1348 Louvain-la-Neuve, Belgium (Received 24 September 2002; in final form 16 July 2003 ) Abstract. Eight different fire datasets for Indonesia were compared with each other and to fine spatial resolution burnscar maps. Results show that each dataset detects different fires. More than two-thirds of the fires detected by one dataset are not detected by any other dataset. None of the datasets detect fires in all test areas. Fire regime, satellite sensor characteristics and fire detection algorithms all influence which fires are detected. Fire datasets were not complementing each other as they all had commission as well as omission errors. 1. Introduction A variety of space-borne sensors are being used to map fires and burnscars on a global scale (Arino and Melinotte 1998, Eva and Lambin 1998, Siegert and Ruecker 2000, Elvidge et al. 2001). Fire detection by satellite is determined by sensor characteristics i.e. spectral bands, data processing chains, detection algorithms, revisit frequency and data acquisition time (Li et al. 2001) and fire characteristics. Fuller and Fulk (2000) found in Kalimantan a correspondence of 77% between the Demilitarized Meteorological Satellite Program Operational Line Scanner (DMSP- OLS) and the Advanced Very High Resolution Radiometer fire data. Fire detection also depends on fire regimes as these result in different spatial and temporal patterns of burning. The objective of this study was to evaluate the ability of coarse spatial resolution data to detect the ground fire effect (area burned) for different fire regimes in Indonesia. Readily available coarse spatial resolution fire datasets were compared with each other and to fine spatial resolution burnscar data. 2. Data Active fire data were obtained from: (i) the AVHRR, with a 1.1 km spatial resolution and at least two acquisitions per day over Indonesia; (ii) the Along Track *Corresponding author; e-mail: fstolle@wri.org International Journal of Remote Sensing ISSN 0143-1161 print/issn 1366-5901 online # 2004 Taylor & Francis Ltd http://www.tandf.co.uk/journals DOI: 10.1080/01431160310001618022

472 F. Stolle et al. Scanning Radiometer (ATSR), with a 1 km spatial resolution and 4-day return interval in Indonesia; (iii) the DMSP-OLS, with a 1 km spatial resolution after processing and 1 day return interval (as two satellites are available over Indonesia); (iv) the Tropical Rainfall Measuring Mission Science Data and Information System (TRDIS-TSDIS), with a 2 km spatial resolution and 1 day return interval and (v) the Moderate Resolution Imaging Spectroradiometer (MODIS), with a 1 km spatial resolution and two acquisitions per day. Three AVHRR active fire datasets exist for Indonesia from 1997 onwards: (i) the European Forest Fire Prevention and Control Project (EU-FFPCP) for Sumatra (http://www.mdp.co.id/ffpcp/, Anderson et al. 1999), (ii) the Japanese Forest Fire Prevention and Management Project (JICA-FFPMP) for Sumatra and Kalimantan (http//ffpmp2.hoops.ne.jp/), and (iii) the German Integrated Forest Fire Management Project (GTZ-IFFM) for Kalimantan (http://www.iffm.or.id/, Siegert and Hoffmann 2000). Each of these datasets is based on a different processing chain and fire detection algorithm. Fires were also detected from ATSR using a high (ATSR-01) and a low (ATSR- 02) temperature threshold, and from optical DMSP data (only available in 1997) based on detection of light sources during night time images (http://web.ngdc. noaa.gov/dmsp/dmsp.html) (Fuller and Fulk 1998). Fire detection from TRDIS (available 1999 2001) was based on brightness temperature after exclusion of bare ground and sun glint pixels (http://tsdis.gsfc.nasa.gov/tsdis/fire/fireintro.html). The MODIS dataset (starting 2001) uses brightness temperatures (http://modis-fire. gsfc.nasa.gov/) to detect fires. Eight active fire datasets (the three AVHRR, the two ATSR, and the TRDIS, DMSP-OLS and MODIS datasets) were used in the intercomparison (table 1). Detailed burnscar maps were produced for six test sites by Applegate et al. (2001) by visual interpretation of Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM), Système Pour l Observation de la Terre (SPOT) multispectral (XS) and European Resource Satellite (ERS) Synthetic Aperture Radar (SAR) data acquired at the end of the burning season from 1997 to 2001. These interpretations were checked by field visits. 3. Method Fire detection was first evaluated for the whole of Sumatra and Kalimantan on an annual basis, and then for 10 km610 km cells every 10 days. Spatio-temporal correspondence between fire datasets was expressed as the number of the same cells that have more than 0 fires in both datasets compared with the total number of cells that have more than 0 fires (in Percentage). The fire datasets were then compared with detailed burnscar maps from 1997 to 2000 (thus excluding the MODIS dataset) over six sites. In 1997, many fires occurred in most sites due to El Niño-induced drought conditions. Fires (and clouds) change rapidly in position and character through the day and sensors are therefore not always expected to detect the same fires. For each site, the number of fires in a 10 km610 km grid cell were correlated with the fraction of the cell area being burnt (in %). Only cells with more than 5% of their area being burnt were used. In a few extreme cases, very hot but small fires could be tallied as errors of commission. The active fire data were at most 1 year more recent than the burnscar maps. The ability of different fire datasets to detect fire under different fire regimes

Table 1. Characteristics of the fire detection chain for the eight datasets. Fire dataset Daytime algorithm Threshold Night-time algorithm Threshold EU-FFPCP contextual (Flasse and Ceccato 1996) varies manually (around 320 K) simple threshold varies manually JICA-FFPMP contextual (Flasse and set to 315 K simple threshold set to 310 K Ceccato 1996) GTZ-IFFM multiple threshold (Arino and Melinotte 1995) varies manually (between 317 and 322 K) multiple threshold (Arino and Melinotte 1995) varies manually (between 303 and 308 K) ATSR-01 none simple threshold set to 312 K ATSR-02 none simple threshold set to 308 K TRDIS multiple threshold set at 320 K and channel 3 4 w20 K multiple threshold set at 315 K and channel 3 4w15 K DMSP-OLS none optical light MODIS simple threshold if w330 K, otherwise contextual contextual threshold set to 320 K simple threshold if w315 K, otherwise contextual contextual threshold set to 315 K Remote Sensing Letters 473

474 F. Stolle et al. was assessed by measuring fire density and initial burnt vegetation cover in all sites. The latter was assessed from a time series of images from the 1970s to the 1990s. 4. Results 4.1. Inter-comparison between fire datasets There is a large difference in the number of fires detected by different datasets (table 2). The daily acquisition, 1 km spatial resolution sensors (AVHRR, DMSP and MODIS) detect more active fires than ATSR with its 4-day acquisition frequency, and TRDIS with its 2 km spatial resolution. The AVHRR-based datasets detected 60% less fires than the DMSP dataset, even though DMSP only detects fires at night. DMSP may be double counting light sources due to spatial resampling (Fuller and Fulk 1998). The difference between datasets in the number of active fires detected is not consistent between years. In 1999, the ATSR-01 dataset detects 4% of the total number of fires it detects from 1997 to 2000, while for JICA-FFPMP it is 12%. ATSR-based datasets revealed a 20 times higher fire occurrence in 1997, a dry year when larger than usual fires took place, compared to 1999, a non-dry year. This increase is only 5 10 times for the other datasets. ATSR datasets thus miss some of the small fires which are more common in non-dry (normal) years. The number of pixels identified more than once as a fire pixel vary from one dataset to the other. These pixels either correspond to long duration burning (e.g. peat fires) or several subpixel fires (e.g. forest clearing by small-holders). For ATSR-based datasets, 88% of the fires are unique in a given pixel, for a given year. This number is 65% for AVHRR-based datasets (table 2). This spurious difference could be misleading when interpreting fire regimes. For Sumatra only, the datasets also show few similarities in detected fires (table 3), but correspondence increases in 1999, a non-dry year. On average, 67% (standard deviation of 26%) of the fires in a dataset were not detected by any other dataset. The same level of dissimilarity is found whether one compares different fire maps for a 10-day period or whether different dates of observation are compared for a given 10 km610 km cell. Differences in overpass time and cloud cover are unlikely to account alone for such discrepancies. 4.2. Fires versus burnscars comparison For each test site, each characterized by a different fire regime, a different fire dataset has the largest correlation coefficient with the burnscar map (table 4). The EU-FFPCP fire dataset is not correlated with burnscars in any of the sites. The Palembang site, for which there is high correlation between fires and burnscars for more than one dataset (table 4), is dominated by large continuous burnt areas (4000 ha on average). These are easily detectable, also on night-time images of ATSR. The other site, Sanggau, with a medium strong correlation between fires and burnscars for two datasets (GTZ-IFFM and JICA-FFPMP), has many small fires associated with complete forest conversion. Indigenous fire management techniques produce high temperature controlled fires of a short duration (ca 6 h), which are extinguished by night. For one site, Danau Sentarum, only the DMSP dataset is correlated with burnscars. This site has many small fires in open swamp vegetation which do not generate much heat but do produce large flames and thus optical light. For three sites, none of the fire datasets correlate with burnscars. For the

Table 2. Number of active fires and percentage of fire pixels for which there is just one fire detection over a year for each dataset. Data concern Sumatra and Kalimantan. Sensor AVHRR ATSR TRDIS DMSP MODIS Dataset EU-FFPCP (only Sumatra) JICA-FFPMP GTZ-IFFM (only Kalimantan) ATSR-01 ATSR-02 TSDIS DMSP-OLS MODIS 1997 Number of fire points 24 011 151 785 88 500 16 107 26 968 268 524 Per cent of unique fire points 71 59 58 82 77 88 1998 Number of fire points 13 730 64 201 55 807 4993 8604 1958 Per cent of unique fire points 56 62 57 91 87 85 1999 Number of fire points 13 705 30 589 9652 843 1348 1214 Per cent of unique fire points 62 81 82 92 88 92 2000 Number of fire points 18 852 600 1030 961 Per cent of unique fire points 58 95 92 91 2001 Number of fire points 714 18 372 Per cent of unique fire points 91 63 Remote Sensing Letters 475

Table 3. Year Cross-table of the percentage of 10 km610 km cells with at least one active fire in a 10-day period for the different fire datasets. The data only concern Sumatra island. Dataset Number of cells with w0 fire points EU-FFPCP JICA-FFPMP ATSR-01 ATSR-02 TRDIS MODIS 1997 EU-FFPCP 5521 x 13.3 1.6 10.3 x x JICA-FFPMP 10 539 0.0 x 0.4 14.8 x x ATSR-01 294 29.3 14.6 x 100 x x ATSR-02 2955 19.2 52.9 9.9 x x x 1998 EU-FFPCP 2800 x 45.8 2.3 3.4 4.0 x JICA-FFPMP 7429 17.3 x 2.0 2.8 2.8 x ATSR-01 218 29.8 66.5 x 100 17.9 x ATSR-02 347 27.4 60.5 62.8 x 13.8 x TRDIS 406 27.8 x 9.6 11.8 x x 1999 EU-FFPCP 3748 x 64.6 4.3 6.2 5.4 x JICA-FFPMP 6415 37.7 x 2.6 3.8 3.6 x ATSR-01 275 58.5 60.7 x 99.6 24.4 x ATSR-02 424 55.2 57.8 64.6 x 19.6 x TRDIS 459 44.0 50.1 14.6 18.1 x x 2000 JICA-FFPMP 3367 x x 0.9 6.6 4.9 0.1 ATSR-01 252 x 11.9 x 7.1 2.4 0.8 ATSR-02 383 x 57.7 4.7 x 18.0 0.3 TRDIS 430 x 38.1 1.4 16.0 x 0.2 MODIS 150 x 2.7 1.3 2.7 0.7 x 2001 TRDIS 208 x x x x x 21.2 MODIS 854 x x x x 5.2 x 476 F. Stolle et al.

Table 4. Correlation coefficients between burnscars (in per cent burnt of 10 km610 km cells) and active fire datasets (from the data of the burnscar map until 1 year before) for cells that have a burnscar area of more than 5% of the cell. Test sites Date of burnscar detection Satellite sensor Path/Row EU-FFPCP JICA-FFPMP GTZ-IFFM ATSR-01 ATSR-02 TRDIS DMSP-OLS Menggala 3 Sept 1999 TM7 123/63 0.02 20.06 n.a. n.a. Sekincau 14 Oct 1997 TM 124/64 20.35 0.13 n.a. 0.06 n.a. 20.03 Sanggau 8 Mar 2000 TM 120/60 n.a. 0.59 0.82 n.a. Danau 11 Jun 1997, SPOT-XS 292/348 n.a. 0.32 n.a. 0.74 Sentarum 12 Jul 1997 292/349 Ketapang Dec 1999 ERS-SAR n.a. 0.00 20.04 n.a. Palembang 1 Jan 1998 TM 124/62 0.47 0.71 n.a. 0.79 0.82 n.a. 0.29 Overall equation y~96xz439 y~18xz267 y~80xz437 y~60xz398 y~6xz276 y~24xz143 Overall correlation (r) 0.58 0.77 0.79 0.82 0.32 0.47 n.a., dataset does not have data at this site;, not enough cells with more than 0 fire points to do correlation, y, burnt area in hectares per cell, x, number of active fires per cell. Remote Sensing Letters 477

478 F. Stolle et al. Ketapang site, with peatland, burnscars may result from fires that took place several years earlier. Actually, correlation between the burnscar map and active fires from ATSR-01, ATSR-02 and JICA datasets increases to, respectively, 0.78, 0.82 and 0.64 when adding 1997, 1998 and 1999 fire data. In general, subpixel fires and post-fire vegetation recovery are unlikely to account alone for the discrepancies between maps of active fires and burnt scars. The JICA-FFPMP dataset shows the highest correlation between active fires and burnt areas compared to the EU-FFPCP and GTZ-IFFM datasets (table 4). Since these three datasets are based on the same sensor, the contextual algorithm (of JICA-FFPMP) performs more accurate in detecting fire effects compared to the other algorithms, which rely on manual adjustments or multiple thresholds. The ATSR datasets, based on simple thresholds, consistently under-represent actual burnscar area (by a factor 80 for ATSR-01) used for the JICA-FFPMP dataset. Totalling all fires from the different datasets for each site does not increase correlation between fire and burnscar data. Actually, commission and omission errors are found for all fire datasets, in varying proportions between datasets and sites. These errors seem to be located randomly. 5. Discussion and conclusions The assessment of fires by low spatial resolution satellite sensors in tropical forested regions is still problematic. Large variations were found in the number and location of fires detected between different datasets over the same region and period. More than two-thirds of the fires detected in one dataset are not represented in any other dataset. The detection of fires is determined by fire regime, sensor characteristics and the fire detection algorithm used. Large continuous burnt areas were well detected by several fire datasets while scattered burning with low fire densities were not, except when large forest areas were completely burnt. Since different types of fire (e.g. surface forest fires, smallholder daytime fires for land preparation in shifting cultivation, fires for land clearing by commercial companies, long duration peat fires) occur simultaneously in Indonesia, an assessment of the total number of fires is difficult and likely to be biased toward certain fire regimes. The existing fire datasets are not complementary and cannot be combined as they all have both omission and commission errors. Datasets based on AVHRR data, with a contextual fire detection algorithm using a low temperature threshold, have the highest correlation with burnt scars in Indonesia. However, in areas with many small fires, a multiple threshold algorithm with varying threshold temperatures gives the highest correlation between active fires and burn scars (as also found by Fuller and Fulk 2001). ATSR-based fire datasets underestimate fires in different fire regimes given the night-time acquisition and 4 days revisit time of this sensor. However, this underestimation is consistent and can therefore be corrected easily using a regression estimator to estimate the total number (but not the location) of fires. In Indonesia, available TSDIS and DMSP fire maps did not correlate with burnscars. MODIS fire maps could not be thoroughly assessed as their date did not coincide with the other datasets.

Remote Sensing Letters 479 Acknowledgments This study was supported in part by ICRAF as part of the Alternatives to Slashand-Burn programme, UNESCO, CIFOR and USFS-RSAC. We also thank EU- FFPCP, JICA-FFPMP and GTZ-IFFM for providing the data. The responsibility is of the authors alone. References ANDERSON, I. P., IMANDA, I. D., and MUHNANDAR, 1999, Vegetation fires in Sumatra, Indonesia: the presentation and distribution of NOAA-derived data. European Union and Ministry of Forestry and Estate Crops, Forest Fire Prevention and Control Project, Palembang, Indonesia. APPLEGATE, G., CHOKKALINGAM, U., and SUYANTO, 2001, Underlying causes and impacts of fires in Southeast-Asia. Final Report, Center for International Forest Research (CIFOR), Bogor, Indonesia. ARINO, O., and MELINOTTE, J. M., 1998, The 1993 Africa fire map. International Journal of Remote Sensing, 19, 2019 2013. ELVIDGE, C. D., HOBSON, V. R., BAUGH, K. E., DIETZ, J. B., SHIMABUKORO, Y. E., KRUG, T., NOVO, E. M. L. M., and ECHAVARRIA, F. R., 2001, DMSP-OLS estimation of tropical forest area impacted by surface fires in Roraima, Brazil: 1995 versus 1998. International Journal of Remote Sensing, 22, 2661 2673. EVA, H., and LAMBIN, E. F., 1998, Burnt area mapping in Central Africa using ATSR data. International Journal of Remote Sensing, 19, 3473 3497. FLASSE, S. P., and CECCATO, P., 1996, A contextual algorithm for AVHRR fire detection. International Journal of Remote Sensing, 17, 419 424. FULLER, D., and FULK, M., 1998, An assessment of fire distribution and impacts during 1997 in Kalimantan, Indonesia. Using satellite remote sensing and Geographical Information Systems. Report WWF, Jakarta, Indonesia. FULLER, D., and FULK, M., 2000, Comparison of NOAA-AVHRR and DMSP-OLS for operational monitoring in Kalimantan, Indonesia. International Journal of Remote Sensing, 21, 181 187. FULLER, D., and FULK, M., 2001, Burned area in Kalimantan, Indonesia, mapped with NOAA-AVHRR and Landsat imagery. International Journal of Remote Sensing, 22, 691 697. LI, Z., KAUFMAN, Y. J., ICHOKU, C., FRASER, R., TRISHCHENKO, A., GIGLIO, L., JIN, J., and YU, X., 2001, A review of AVHRR-based active fire algorithms: principles, limitations, and recommendations. In Global and Regional Vegetation Fire Monitoring from Space, edited by F. J. Ahern, J. G. Goldammer and C. O. Justice (The Hague: SPB Academic Publishers BV), pp. 199 225. SIEGERT, F., and RUECKER, G., 2000, Use of multitemporal ERS-2 SAR images for the identification of burned scars in south-east Asian tropical rainforest. International Journal of Remote Sensing, 21, 831 837. SIEGERT, F., and HOFFMANN, A. A., 2000, The 1998 forest fires in East Kalimantan (Indonesia): a quantitative evaluation using high resolution, multitemporal ERS-2 SAR images and NOAA-AVHRR hotspot data. Remote Sensing of Environment, 72, 64 77.