Contents. Preface... xvii

Similar documents
Heat Exchanger. The purpose may be either to remove heat from a fluid or to add heat to a fluid.

THE GATE COACH All Rights Reserved 28, Jia Sarai N.Delhi-16, ,-9998

HEAT EXCHANGERS. Heat exchangers are broadly classified based on the following considerations.

Heat and Mass Transfer in Fibrous Materials. Theory and Applications. A.K. Haghi S. Thomas L.A. Pothan ATLANTIC PUBLISHERS & DISTRIBUTORS (P) LTD

PRINCIPLES OF HEATING, VENTILATION AND AIR CONDITIONING with Worked Examples

Evaporation System: Types and Design Aspects

How is the heat transfer?

MASS TRANSFER. Theory and Practice. N. ANANTHARAMAN Professor Department of Chemical Engineering National Institute of Technology Tiruchirappalli

Physical Mechanism of Convection. Conduction and convection are similar in that both mechanisms require the presence of a material medium.

Evaporation is a special case of heat transfer to a boiling liquid.

COOPERATIVE PATENT CLASSIFICATION

Jurnal UMP Social Sciences and Technology Management Vol. 3, Issue. 3,2015

PIPING SYSTEM EQUIPMENTS

Appendix A. Glossary of Common Terms

Heat exchangers are devices that facilitate the exchange of heat between

FS 231: Final Exam (5-6-05) Part A (Closed Book): 60 points

WHAT IS A BOILER? BOILER IS AN EQUIPMENT WHICH PRODUCES STEAM AT THE REQUIRED PRESSURE AND TEMPERATURE. BOILER DESIGN, MANUFACTURE & INSTALLATION ARE

Seyedeh Sepideh Ghaffari 1 & Seyed Ali Jazayeri 2

CONTENTS PHARMACEUTICAL ENGINEERING. rguhs) Iii year 1.1 UNIT PROCESSES Mass/Material Balance Energy Balance... 1.

MECHANICAL SCIENCE Module 2 Heat Exchangers

Heat Recovery Units. Heat Recovery 1

TMCI Padovan Evaporators

REFRIGERATION AND AIR CONDITIONING

Drying rate 1. Section B to C of the curve, known as the constant rate periods, represents removal of unbound water from the product.

As we discussed early in the first chapter that heat can transfer through materials and the surrounding medium whenever temperature gradient exists

Liquid Ring Vacuum Pumps, Compressors and Systems

Techniques of Heat Transfer Enhancement and their Application. Chapter 4. Performance Evaluation Criteria for Two-Phase Heat Exchangers

REFRIGERATION AND AIR CONDITIONING

Alfa Laval Wet Surface Air Coolers (WSAC ) FAQs

CFD ANALYSIS OF DOUBLE PIPE PARALLEL FLOW HEAT EXCHANGER

Module 3: Liquid Fossil Fuel (Petroleum) Lecture 25: Refinery Equipments

Compression of Fins pipe and simple Heat pipe Using CFD

International Reactor Bulletin 1100 Corporation. Standard and Custom Reactors for the Chemical Process Industries

CATALYTIC EMITTER - An old idea in new clothes

AIR CONDITIONING. Carrier Corporation 2002 Cat. No

2. CURRICULUM. Sl. No.

CHAPTER 8 EVAPORATION. The basic factors that affect the rate of evaporation are the:

CL4001 HEAT TRANSFER OPERATIONS

Heat Transfer Equipment Overview Core COPYRIGHT. Types of Heat Exchangers and Their Common Applications in Oil and Gas Processing Facilities

Agitation and Mixing

Chapter 9. Refrigeration and Liquefaction

Efficiency of Application the Condensing Heat Utilizers in the Existing Boiler's Unit in Heat Power Station

All rights reserved, Armando B. Corripio, PhD, PE, Solid Dryer Design Introduction Continuous Dryer Design...

Math. The latent heat of fusion for water is 144 BTU s Per Lb. The latent heat of vaporization for water is 970 Btu s per Lb.

Homework Chapter2. Homework Chapter3

ME 410 MECHANICAL ENGINEERING SYSTEMS LABORATORY MASS & ENERGY BALANCES IN PSYCHROMETRIC PROCESSES EXPERIMENT 3

Heat Transfer Equipments

Efficient Steam System Design

Chapter 5 Heat-transfer Equipment

14 Drying. I Basic relations and definitions. Oldřich Holeček, Martin Kohout

HUMIDITY RELATIONSHIP DETERMINATED IN THE DRYING CEREAL SEED FLUIDIZED BED

Chapter 2.3: Steam System

Mechanical Engineering Department Sheet (1)

Department of Mechanical and Production Engineering Ahsanullah University of Science and Technology (AUST) Lab Manual on ME 4202

Shalaby Institute of Fire Protection Heyrothsberge, Germany.

ENSC 388: Engineering Thermodynamics and Heat Transfer

Steam Trap Presentation for IDEA Distribution Workshop. Presenter: Joe Radle

Drying principles and general considerations

4th IIR International Conference on Thermophysical Properties and Transfer Processes of Refrigerants 2013

Air Conditioning Clinic. Absorption Water Chillers One of the Equipment Series TRG-TRC011-EN

REFRIGERATION CYCLE Principles of Mechanical Refrigeration Level 2: Cycle Analysis

Downstream Processing Prof. Mukesh Doble Department of Biotechnology Indian Institute of Technology, Madras. Lecture - 36 Drying

Fig.: macroscopic kinetic energy is an organized form of energy and is much more useful

Numerical Stability Analysis of a Natural Circulation Steam Generator with a Non-uniform Heating Profile over the tube length

Use this Construction/HVAC Glossary to answer the questions below.

Evaporators. Direct Expansion Flooded Recirculated Over Feed

Fin-Fan Control System

Unit THE NATURE OF HEAT

Improving Indirect Heat Transfer to Solids By Better Mixing

ME 410 MECHA ICAL E GI EERI G SYSTEMS LABORATORY

PHYSICS FORM 5 TRANSFER OF THERMAL ENERGY

Fourth Edition HEAT TRANSFER AND CHANGE OF PHASE

FLUIDIZED BED BOILERS

REFERENCE SYLLABUS. For FOURTH CLASS POWER ENGINEER S. CERTIFICATE of COMPETENCY EXAMINATION. AB-54 Edition 1, Revision 1,

Heat Exchangers. Heat Exchangers 1

Explosion Protection Engineering Principles

CFD Analysis of temperature dissipation from a hollow metallic pipe through circular fins using Ansys 14.5

Evaporation Technology

Chapter 11 HEAT EXCHANGERS

5 Separation Processes

International Association of Certified Practicing Engineers

CHAPTER 6. HEATING PRODUCTION EQUIPMENT AND SYSTEMS

Inverted Bucket Float & Thermostatic Radiator Traps STEAM CONTROL PRODUCTS STEAM TRAPS

Experimental investigation of Hybrid Nanofluid on wickless heat pipe heat exchanger thermal performance

Heat Exchangers. Seminar report. Submitted in partial fulfillment of the requirement for the award of degree Of Mechanical


HEAT PIPES

4th International Conference on Sensors, Measurement and Intelligent Materials (ICSMIM 2015)

GESTRA Information A 1.7

Comfort and health-indoor air quality

Introduction to Heat Exchangers

Shyam Enterprises 9 PACKAGE UNIT

Modern Heat Exchanger - A Review

Heat Transfer: Conduction. Heat Transfer: Conduction

Experimental Study on Compact Heat Pump System for Clothes Drying Using CO 2 as a Refrigerant. Abstract

Hygrometry. The art or science of humidity observation

FLIGHT UNLOADING IN ROTARY SUGAR DRYERS. P.F. BRITTON, P.A. SCHNEIDER and M.E. SHEEHAN. James Cook University

Gandhinagar Institute of Technology Mechanical Engineering (Thermal Engineering) Semester II. Design of Heat Exchange Equipments [ ]

Experimental Study of Direct Contact Condensation of Steam on Water Droplets

Pocket Dilution Cooler

Transcription:

Contents Preface... xvii Chapter 1. Rotary Calcination Kiln: Heat Exchange by Radiation... 1 1.1. General points.................................. 1 1.1.1. Purpose of calcination kilns........................ 1 1.1.2. Specific characteristics of heat transfer................. 1 1.1.3. Gas heating in kilns............................. 1 1.2. Description.................................... 2 1.2.1. Basic principle of the kiln......................... 2 1.2.2. Gas circulation in the kiln......................... 3 1.2.3. Support.................................... 5 1.2.4. Lining..................................... 6 1.2.5. Seals at drum ends............................. 7 1.2.6. Kinematic drive train in calcination kilns................ 7 1.2.7. Feeding a rotary dryer........................... 8 1.2.8. Grain breaking............................... 8 1.2.9. Shaft power of the electric motor.................... 9 1.2.10. Axial transport of products in a bare drum in the absence of gas............................ 11 1.2.11. Determining the angle of progression α................ 12 1.2.12. Expression of time spent in the drum................. 13 1.2.13. Accounting for the presence of gas................... 13 1.2.14. Fill ratio... 15 1.3. Heat transfer by radiation: basic concepts.................. 15 1.3.1. Working hypothesis............................ 15 1.3.2. Key concepts................................ 17 1.3.3. Kirchoff s law for surfaces........................ 18

vi Heat Transfer in the Chemical, Food and Pharmaceutical Industries 1.3.4. Luminance and emitted flow density... 19 1.3.5. Specular reflection and diffuse reflection................ 22 1.3.6. Radiosity of a perfect exchange surface................. 23 1.3.7. Equivalent direct transfer surface.................... 24 1.3.8. Equivalent trajectory and average trajectory through a gas.............................. 25 1.3.9. Emissivity, absorptivity and transmissivity of the gaseous mixture (calculation)....................... 26 1.3.10. Distribution of direct radiation..................... 29 1.3.11. Energy flow density emitted by each wall element..................................... 32 1.3.12. Net flow received by surface Ai... 35 1.3.13. Difference between net received flow and absorbed flow.............................. 35 1.3.14. Net flow for a gray surface surrounding a gray gas............................... 36 1.3.15. Net flow for two surfaces in close proximity................................... 37 1.3.16. Evaluating EDTS. Some simple specific examples.................................. 37 1.4. Heat transfer in rotary calcination kilns................... 39 1.4.1. Transfer mechanism............................ 39 1.4.2. Equivalent direct transfer surface for the bare wall and free surface of the product... 40 1.4.3. Net flow densities received by the wall and the product................................... 42 1.4.4. Regeneration from the wall........................ 44 1.4.5. Expression of additional coefficients for heat transfer................................... 46 1.4.6. Solution to the wall equation....................... 46 1.4.7. Overall thermal power transferred to the product for calcination............................ 49 Chapter 2. Tubular Heat Exchangers and Flat-plate Heat Exchangers... 55 2.1. Description of exchangers........................... 55 2.1.1. Possible configurations.......................... 55 2.1.2. Tube characteristics............................ 56 2.1.3. Shell diameter and tube bundle diameter. Number of tubes............................ 57 2.1.4. Transversal baffles (characteristics)................... 59

Contents vii 2.2. Calculations on the tube side......................... 60 2.2.1. Heat transfer inside the tubes (clear liquid or gas)................................. 60 2.2.2. Heat transfer inside the tubes (liquid-solid dispersion).............................. 63 2.2.3. Pressure loss inside the tubes....................... 66 2.3. Calculations on shell side........................... 67 2.3.1. Gross transfer coefficient, shell side (Bell method)................................. 67 2.3.2. Coefficient correction for leakage.................... 71 2.3.3. Pressure loss due to crossflow current.................. 72 2.3.4. Pressure drop: shell side.......................... 74 2.3.5. Overall heat transfer coefficient..................... 78 2.4. Practical data................................... 79 2.4.1. Usual pressure drop values........................ 79 2.4.2. Computerized exchanger calculations.................. 80 2.4.3. Note: caloric temperature......................... 81 2.5. Plate exchangers................................. 82 2.5.1. Description.................................. 82 2.5.2. Number of transfer units.......................... 83 2.5.3. The pressure loss coefficient....................... 84 2.5.4. Plate grouping and correction coefficient................ 85 2.5.5. Fouling.................................... 86 2.5.6. Construction materials........................... 86 Chapter 3. Finned Tube Exchangers...................... 89 3.1. General points.................................. 89 3.1.1. Purpose of finned tubes.......................... 89 3.1.2. Types of finned tube exchangers..................... 89 3.1.3. Definition of the frontal area... 90 3.2. Technical data.................................. 90 3.2.1. Bundle layout................................ 90 3.2.2. Air cooler header boxes.......................... 90 3.2.3. Finned tube characteristics for air coolers............... 91 3.3. Fin efficiency................................... 93 3.3.1. Preliminaries................................. 93 3.3.2. Temperature range in a fin........................ 94 3.3.3. Calculation of zero- and first-order modified Bessel functions............................. 96 3.3.4. Definition of efficiency... 97 3.3.5. Theoretical efficiency calculation.................... 98 3.3.6. Approximate calculation of efficiency................. 101

viii Heat Transfer in the Chemical, Food and Pharmaceutical Industries 3.4. Other thermal parameters............................ 102 3.4.1. Transfer coefficient: gas side....................... 102 3.4.2. Overall coefficient for bare tubes.................... 103 3.4.3. Output temperatures (pure crossflow current)............. 104 3.4.4. Outlet temperature (pure counterflow current)............. 106 3.4.5. Crossflow current (multiple passes in relation to gas).................................. 106 3.5. Determining geometry............................. 107 3.5.1. Number of rows and frontal surface................... 107 3.5.2. Mathematical functions.......................... 109 3.5.3. Number of tubes per pass......................... 110 3.5.4. Width of tube layers............................ 111 3.5.5. Number of tubes per layer and per pass................. 112 3.6. Simulation and direct calculation....................... 114 3.6.1. Simulation.................................. 114 3.6.2. Direct calculation.............................. 114 3.7. Fans........................................ 116 3.7.1. General points................................ 116 3.7.2. Position.................................... 116 3.7.3. Diameter................................... 117 3.7.4. Number.................................... 118 3.7.5. Fan power.................................. 118 3.8. Implementation of air coolers......................... 119 3.8.1. Regulation.................................. 119 3.8.2. Frost-proofing................................ 120 3.8.3. Air-side fouling............................... 120 Chapter 4. Scraped Surface Heat Exchangers, Spherulation Towers and Solidification on a Moving Surface................................. 123 4.1. General points.................................. 123 4.1.1. Benefits when using viscous products.................. 123 4.1.2. Possible designs and heat transfer.................... 124 4.2. Types of scraped surface heat exchanger... 125 4.2.1. Quasi-gapless mechanisms, almost completely immune to wear........................... 125 4.2.2. Mechanisms with small gap size, subject to wear........... 129 4.2.3. Mechanisms with a wide gap between the blade and the wall.......................... 129 4.3. Spherulation towers............................... 131 4.3.1. Introduction................................. 131 4.3.2. Droplet formation.............................. 132

Contents ix 4.3.3. Practical data................................ 132 4.3.4. Dimensioning................................ 133 4.3.5. Pollution................................... 137 4.4. Continuous solidification on a moving surface.... 137 4.4.1. Principle................................... 137 4.4.2. Elements involved in a calculation.................... 137 Chapter 5. Efficiency of Single-phase Heat Exchangers: Fouling............................. 139 5.1. Number of transfer units and efficiency................... 139 5.1.1. Mean logarithmic temperature difference (MLTD)................................. 139 5.1.2. Number of transfer units (NTU)..................... 142 5.1.3. Efficiency.................................. 143 5.1.4. Applications of the notion of efficiency................. 146 5.1.5. Multipass exchangers and coefficient F.... 150 5.2. Fouling...................................... 152 5.2.1. Heat transfer design............................ 152 5.2.2. Common types of fouling......................... 153 5.2.3. Practical consequences of fouling.................... 154 5.2.4. Typical fouling values........................... 155 5.2.5. Calculation of wall temperatures..................... 155 Chapter 6. Condensers, Traps and Condensate Lines................................... 157 6.1. Surface condensers............................... 157 6.1.1. Structure................................... 157 6.1.2. Assembly................................... 157 6.1.3. Isothermal condensation coefficient of pure vapor.................................... 158 6.1.4. Calculation of a pure vapor condenser................. 161 6.1.5. Heat flow densities for mixed vapors.... 162 6.1.6. Case of condensable vapor in the presence of non-condensable elements........................... 163 6.1.7. Mixture of two condensable vapors................... 164 6.1.8. Evaluation of D am /δ and D AB /δ...................... 166 6.1.9. Evaluation of y Ac and x Ac......................... 167 6.1.10. Coolant flow................................ 168 6.1.11. Calculation of the surface of a condenser..................................... 168

x Heat Transfer in the Chemical, Food and Pharmaceutical Industries 6.2. Overcooling of the condensate........................ 169 6.2.1. General points................................ 169 6.2.2. Transfer coefficient for overcooling................... 169 6.3. Contact condensers............................... 171 6.3.1. General points................................ 171 6.3.2. Calculation of contact condensers.................... 173 6.4. Trap types..................................... 177 6.4.1. Use of condensate traps.......................... 177 6.4.2. Thermostatic bimetallic trap....................... 177 6.4.3. Balanced liquid expansion thermostatic trap.............. 178 6.4.4. Balanced pressure steam trap....................... 178 6.4.5. Inverted bucket steam traps........................ 179 6.4.6. Free-float traps............................... 180 6.4.7. Thermodynamic traps........................... 180 6.5. Trap selection and assembly.......................... 182 6.5.1. Trap installation (classic assembly)................... 182 6.5.2. Direct draining to the atmosphere.................... 183 6.5.3. Bypass to the condensate network.................... 183 6.5.4. Banging in vapor pipes.......................... 183 6.5.5. Flowrate of condensate for drainage in steam pipes.................................... 184 6.5.6. Trap selection................................ 185 6.6. Condensate lines................................. 186 6.6.1. Evacuation and use of condensates................... 186 Chapter 7. Boiling and Heat Transfer... 189 7.1. Stagnant boiling.... 189 7.1.1. Definitions.... 189 7.1.2. Density of heat flowrate through the wall............... 190 7.1.3. Calculation of overheating of the wall................. 191 7.1.4. Drying of the wall............................. 194 7.2. Convective boiling... 196 7.2.1. Heat transfer coefficient.......................... 196 Chapter 8. Thermosiphon Reboilers...................... 201 8.1. Manual method.................................. 201 8.1.1. Operating principle............................. 201 8.1.2. Identifying the level where boiling starts.... 202 8.1.3. Calculation of pressure drops and verification of driving height of liquid in the reservoir or column bottom............................ 205 8.1.4. Verification of heat transfer intensity.................. 211

Contents xi 8.2. Computerized method.............................. 213 8.2.1. Reboiler calculations through simulation................ 213 8.2.2. Reboiler calculation by direct determination.............. 223 8.3. Operational stability of thermosiphon reboilers (breathing)................................. 224 8.3.1. Mechanism of the phenomenon..................... 224 8.3.2. Practical factors affecting boiler stability.... 225 Chapter 9. Concentrating Solutions by Vaporization........... 227 9.1. Introduction.................................... 227 9.1.1. Terminology................................. 227 9.2. Boiling delay.... 228 9.2.1. Definition.................................. 228 9.2.2. Calculating boiling delay... 228 9.3. Multiple-effect evaporation... 233 9.3.1. Ideal specific consumption........................ 233 9.3.2. Specific consumption in practice..................... 234 9.3.3. Possible layouts............................... 234 9.3.4. Liquor preheating.............................. 238 9.3.5. Thermal balance of an effect....................... 239 9.3.6. Material and thermal balances of a multiple effect system (manual method).................... 240 9.3.7. Computerized calculation of the material balance.................................. 241 9.3.8. Computerized calculation of overall thermal balance.............................. 243 9.3.9. Heat losses.................................. 243 9.4. Vapor recompression.............................. 244 9.4.1. Thermocompression of vapor....................... 244 9.4.2. Mechanical vapor recompression (MVR)................ 244 9.5. Description, choice and calculation of evaporators............ 245 9.5.1. Short tube evaporators (sugar refiners)................. 245 9.5.2. Climbing evaporators........................... 246 9.5.3. Forced circulation evaporators...................... 247 9.5.4. Falling film evaporators.......................... 249 9.5.5. Other evaporator types........................... 250 9.5.6. Evaporator calculation........................... 251 9.5.7. Vapor separators.............................. 251 9.5.8. Physical properties used in the calculation of vaporization devices.............................. 251 9.5.9. Order of magnitude of heat transfer coefficients........... 252

xii Heat Transfer in the Chemical, Food and Pharmaceutical Industries Chapter 10. Falling Film Vaporizer (Evaporator).............. 253 10.1. General points................................. 253 10.1.1. Types of falling film evaporator... 253 10.1.2. Performance................................ 254 10.1.3. Advantages of falling film evaporators... 255 10.2. Tube wetting... 256 10.2.1. Minimum linear charge.......................... 256 10.2.2. Maximum linear load........................... 257 10.3. Vapor velocity in the tubes.......................... 258 10.3.1. Rising current for vapor......................... 258 10.3.2. Descending current for vapors..................... 260 10.4. Heat transfer.................................. 260 10.4.1. Partial transfer coefficient: tube side.................. 260 10.4.2. Overall transfer coefficient....................... 263 10.5. Distribution plate................................ 263 10.5.1. Description................................. 263 10.5.2. Computerized calculation........................ 265 10.5.3. Vapor pressure drop along the tubes.................. 267 10.6. Dimensioning an evaporator......................... 267 10.6.1. Tube length (preheating a cold feed).................. 267 10.6.2. Tube length (vaporization part)..................... 268 Chapter 11. Heat Transfer in Stirred Tanks... 271 11.1. Coil transfer................................... 271 11.1.1. General points............................... 271 11.1.2. Definition of the coil.... 271 11.2. Coefficient for the reactor wall... 272 11.2.1. Turbines and paddles........................... 272 11.2.2. Marine propeller.............................. 274 11.2.3. Coil..................................... 274 11.2.4. Double jacket: internal coefficient................... 275 11.3. Viscous fluids: laminar regime....................... 276 11.3.1. Ribbon................................... 276 11.3.2. Anchor................................... 276 11.4. Thermal conditioning of tanks and reservoirs............... 276 11.4.1. Operating principle............................ 276 11.4.2. Heat transfer using a coil......................... 277 11.4.3. Heat transfer via the double jacket wall................ 278 11.4.4. Internal configuration........................... 279 11.4.5. External configuration.......................... 281 11.4.6. Mixed configuration........................... 282

Contents xiii Chapter 12. Cooling or Heating of Simple-form Solids and Plant Products: Blanching..................... 285 12.1. Thermal conditioning of simple-form compact solids.......... 285 12.1.1. Temperature expressions theoretical study............. 285 12.1.2. Auxiliary variables... 290 12.2. Thermal conditioning of simple-form solids: semi-empirical study................................. 290 12.2.1. Introduction................................ 290 12.2.2. Plates and rectangular parallelepipeds................. 291 12.2.3. Finite or infinite cylinders........................ 294 12.2.4. Sphere.................................... 295 12.3. Thermal conditioning and hydrothermal processing........... 297 12.3.1. Roasting plant products......................... 297 12.3.2. Hydrothermal processing of oilseed.................. 298 12.3.3. Drying.................................... 298 12.3.4. Blanching.................................. 299 Chapter 13. Thermal Insulation of Piping: Tracing............ 301 13.1. Thermal insulation............................... 301 13.1.1. Insulation types.............................. 301 13.1.2. Types of insulation material....................... 302 13.1.3. Coefficient for heat loss to the environment............. 303 13.1.4. Heat flow density............................. 304 13.1.5. Temperature of the wall in contact with the atmosphere................................... 305 13.1.6. Calculating the thickness of insulation................ 305 13.2. Pipe tracing................................... 307 13.2.1. Principle.................................. 307 13.2.2. Heat transfer coefficient......................... 307 13.2.3. Practical data................................ 310 Chapter 14. Combustion and Sulfur Dew Point............... 313 14.1. Characteristics of combustion........................ 313 14.1.1. Combustion air.............................. 313 14.1.2. Fuel..................................... 314 14.1.3. Stoichiometric air requirement..................... 314 14.1.4. Smoke generation and smoke composition by volume.............................. 315 14.2. SO 3 content and dew point.......................... 315 14.2.1. Calculation of the partial pressure of sulfur trioxide........ 315 14.2.2. Calculating the sulfur dew point temperature............. 317

xiv Heat Transfer in the Chemical, Food and Pharmaceutical Industries Chapter 15. Heat Supply by Microwave or Infrared Radiation................................. 321 15.1. Microwave heating (theory)......................... 321 15.1.1. Maxwell s equations........................... 321 15.1.2. Energy balance of electromagnetic radiation............. 322 15.1.3. Electric field propagation equation................... 324 15.1.4. Penetration depth in a dielectric layer................. 326 15.1.5. Dielectric conductivity.......................... 328 15.1.6. Wave impedance............................. 330 15.2. Microwave heating (practical)........................ 331 15.2.1. Energy consumption and heating time................. 331 15.2.2. Heating power output: runaway..................... 332 15.2.3. Transmission coefficients between two dielectrics.................................... 334 15.2.4. Electric field in the oven and energy flow density................................ 335 15.2.5. Practical arrangements and use..................... 336 15.3. Infrared drying................................. 337 15.3.1. Radiation production........................... 337 15.3.2. Absorption of radiation.......................... 338 15.3.3. Practical data................................ 340 Chapter 16. Freezing, Deep-freezing and Thawing............ 341 16.1. Introduction................................... 341 16.1.1. Product properties............................. 341 16.2. Industrial freezing apparatus.... 342 16.2.1. The deep-freezing principle.... 342 16.2.2. Batch freezer cabinets... 342 16.2.3. Tunnel freezers... 342 16.2.4. Continuous blast freezers........................ 343 16.2.5. Contact freezing.... 343 16.2.6. Freezing with refrigerant spray.... 343 16.2.7. Deep freezing with refrigerant spray.... 344 16.2.8. Continuous double band freezer... 344 16.2.9. Fluidized or fixed bed freezers... 344 16.2.10. Cooling units............................... 345 16.2.11. Coolant fluids.............................. 345 16.2.12. Thermal balance............................. 346 16.3. Freezing time (Planck s equation).... 346 16.3.1. Case of a plate............................... 346

Contents xv 16.3.2. Case of a sphere.............................. 347 16.3.3. Generalization I.............................. 348 16.3.4. Generalization II.............................. 348 16.3.5. Freezing and thawing times (numerical calculation).............................. 349 16.4. Freezing time: practical method.... 349 16.4.1. Introductory note............................. 349 16.4.2. Definitions of characteristic dimensions................ 349 16.4.3. Cleland et al s. method (1987)..................... 351 16.4.4. Average freezing temperature.... 352 16.4.5. Precooling correction........................... 353 16.5. Thawing..................................... 357 16.5.1. Microwave thawing............................ 357 16.5.2. External heating.............................. 357 16.5.3. Contact heating.............................. 358 16.5.4. Exudation losses.............................. 358 16.5.5. Calculating thawing time........................ 358 Chapter 17. Freeze-drying............................. 359 17.1. General points................................. 359 17.1.1. The freeze-drying principle... 359 17.1.2. Heat supply................................. 360 17.1.3. Freeze-drying: implementation.... 361 17.2. Thermodynamics of freeze-drying... 362 17.2.1. Activity of solvent water in equilibrium with ice... 362 17.2.2. Empirical expression of water activity for prefreezing.... 364 17.2.3. Expression of enthalpies for freeze-drying... 367 17.2.4. Conclusion: the freeze-drying process.... 369 17.3. Migration equations.............................. 370 17.3.1. Free mean path............................... 370 17.3.2. Flow through a tube in the Knudsen regime............. 371 17.3.3. Viscosity of a gas............................. 372 17.3.4. Migration equations............................ 372 17.3.5. Mean pore radius............................. 375 17.3.6. Relationship between instantaneous porosity and water content............................ 376 17.4. Simulation of freeze-drying... 377

xvi Heat Transfer in the Chemical, Food and Pharmaceutical Industries Appendices... 379 Appendix 1. Characteristics of Exchanger Tubes............. 381 Appendix 2. Resistance, Conductance, Diffusance............ 383 Bibliography....................................... 385 Index............................................ 393