COST REDUCTION BY REPLACING STEAM WITH COKE OVEN GAS FOR HOT AIR DRYER UNIT IN THE ELECTROLYTE CLEANING LINE

Similar documents
"A Case Study of Three Drum Parameter Control in Boiler Using Discrete PID Controller Based on Simulation"

UNIVERSITY OF ROCHESTER ENVIRONMENTAL HEALTH & SAFETY

TREATMENT AND CONDITIONING OF DISMANTLED MATERIAL AND OPERATION WASTE IN EWN OVERVIEW. Rohde, Mathias

Experimental Analysis of Open, Simple and Modified Greenhouse Dryers for Drying Potato Flakes under Forced Convection

Sivu 2/8 Rate data Description Suomi Shut off times total 0.0 h/day Weekends with shut off times yes Daytime rate of heat pump Time for daytime rate 5

FUEL TYPE relating to UK deaths from unintentional carbon monoxide poisoning from to

Identification of Aberrant Railroad Wayside WILD and THD Detectors: Using Industry-wide Railroad Data. June 10, 2014

Equipment ATA 12 April 2016

Mechanical System Redesign. Dedicated Outdoor Air System. Design Criteria

Designing and Operating an Energy Efficient Foodservice Facility March 12, 2014 Winnipeg, MB

Laboratory Evaluation of Hybrid and Advanced Water Heaters: Performance Overview in Hot Humid Climate

System Using Exhaust Heat from Residential GHPs

Dehumidification: Energy Efficiency Comparisons

Continuous Commissioning: A Valuable Partner to Retrofit Projects

Cork County Energy Agency

MAYEKAWA MFG. CO., LTD Botan Koto-ku, Tokyo , JAPAN TEL:(81) FAX:(81)

The Ed Roberts Campus Berkeley, CA

Ronald Sigmond 26 Oct 2016 FLAME MONITORING, GAS HANDLING SYSTEMS AND BURNERS

Kimberly Rollins, Professor, Department of Economics, University of Nevada, Reno

IES Whole-Building Energy Model Baseline Energy Model Input/ Output Report. East Liberty Presbyterian Church East Liberty Presbyterian Church

Technical Document Condensing hot water boilers

Energy & Water Savings in Commercial Food Service

Standardization Programme ( ) Building & Construction Standards Committee

A REVIEW ON GREEN TECHNOLOGY IN HVAC

Daikin Altherma Selection Report

Enhance Facility Energy Management at Naval Expeditionary Base Camp Lemonnier, Djibouti. 12 May 2011

COMPRESSORS. Heat recovery. For hot air and hot water applications.

2 Safety valve. 3 Pressure gauge. 4 Thermometer. 8 Ball valves

MASTER PLAN KICK-OFF Open House #1A, April 28, 2015

Australian Indoor Flue Installation Instructions Vertical Termination Flue Kits for Universal H-Series (Forced-Draft) Heaters

Heat Recovery Systems PTG, SWT Series.

Better Buildings By Design 2013 Building the Renewable Energy Ready Home Solar Thermal Lessons Learned and Results

SOUTHEND CARELINE ANNUAL REPORT

Financial Results for First Quarter of Fiscal 2013, ending March 31, August 3, 2012

Performance Evaluation of Eco- Friendly Alternate Refrigerants for VCRS

Heat Pumps and Public Swimming Pools, a Perfect Match

GRAIN STORAGE AERATION PRESENTED BY: BRENT BLOEMENDAAL AERATION EXPERT

Predictive Maintenance BIOMASA FORESTAL

In-Situ Roll Balancing A Revolutionary Method for Improving Dryer Section Performance

Rt 29 Solutions Hydraulic Planning Advisory Panel. September 14, 2017

Thermal equalization is the obvious answer to the situation. But, how is "thermal equalization" achieved?

Economic Analysis of Solar Assisted Chemical Heat Pump Dryer

Company Introduction QUALIFICATION STATEMENT ( 주 ) KMS

AUTOMATION OF BOILERS USING LABVIEW

Heat recovery. Heat recovery. Gas heating 280 up to 54,000 /year. Oil heating 284 up to 54,761 /year. Electrical power consumption

Residential Structure Match or Lighter Ignited Fires

Coker Heaters Performance Improvement. Don Tran LyondellBasell, Houston Refinery & Ashutosh Garg Furnace Improvements Sugar Land, TX

CHART PERUVIAN TECHNICAL STANDARDS

The following table summarizes information from various sources on corn development.

GAS CONDENSING TECHNOLOGY

Sustainable Hot Water: Better Design, Delivery, and Use

Heat recovery systems. For hot air and hot water applications.

Refrigeration and Boil Off Compression Systems for NGL Export Facilities

Strategies for Summer Utility Savings. Residential Environmental Program Series May 15, 2013

Alfalfa Winterkill Winter of

A novel technique for addressing ecological restoration constraints on ex-arable land

Appendix 1 Reference HOB and boiler efficiency

Performance of Solar Water Heating Systems in the United States

Heating and Hot Water

Performance Assessment of Water Cooled Condenser Refrigeration System

Auburn University Basketball Arena:

COMPONENT MAINTENANCE MANUAL INDEX. Aug 2013

Asparagus Response to Water and Nitrogen

Free cooling on RTAF Chiller. Integrated option

Generation gap: How baby boomers and millennials stack up in their perceived and actual electricity use. Report. March 2019 BCH19-217

CombustionONE. Improving and Sustaining the Combustion Asset. Driven by the New Standards. Bulletin 53A90A01-01E-A

Welcome to the. Open House

Boulder County Comprehensive Drilling Plan Surface Owner Meeting. Thursday, Oct. 19, 2017

Roof Runoff Harvesting Benefits for Regional Conditions in Low Density and Medium Density Residential Areas. Leila Talebi 1 and Robert Pitt 2

Single Stream Recycling Background

Site Evaluation. for. Oregon School for the Deaf. 999 Locust Street Northeast Salem, OR BE15178

ENERGY MANAGEMENT IN MILK POWDER PLANTS

DISTRICT HEATING SCHEME FEASIBILITY STUDY FRANKTON FLATS QUEENSTOWN

Hot Water Generation for Commercial and Industrial Applications. Paul Marsden Specification Sales Manager

WLAC Facilities Committee Meeting. May 15, 2017

Energy Efficient Corn Drying. Kenneth Hellevang, Ph.D., P.E. Professor & Extension Engineer

WLAC Facilities Committee Meeting. September 18, 2017

Comparison Blackberry Production Under High Tunnels and Field Conditions. High Tunnels

Practical and Effective Approaches to Residential Ventilation for Production Builders

ProMoss TM Plant-Based Water Treatment Solves Problems in Tobacco Manufacturing Plant Air Washer Systems

Microirrigation of Young Blueberries in Florida 1

Special Topics on Residential HVAC

Cable Dehumidification Systems for Suspension Bridges. Daniel Faust, P.E. AECOM, Inc.

MEASURED PERFORMANCE DATA FOR

LP GAS LEKAGE ALARM. M. G.. D. D. Wickramasinghe 1*, N. Abhayasinghe 2

EL PALOMAR 19 UNITS + HOUSE

Boulder County Comprehensive Drilling Plan Surface Owner Meeting. Thursday, Nov. 2, 2017

Index. Premises Information 2 About This Log Book 3 Service and Maintenance Requirements 4 8. Fire Risk Assessments 9

Keywords biomass boiler, biomass resource, Small scale sewage treatment plant, twin drum type dryer,

Lifestyle Electric Thermal Radiator

Lifestyle Electric Thermal Radiator

Storing excess daytime solar energy to heat greenhouse at night!

COWM300 ABUS CO alarm

Evolution of OptiConcept Entering a

EXPERIMENTAL INVESTIGATION OF WATER COOLER SYSTEM BY USING ECO-FRIENDLY REFRIGERANT (R-134a)

The RPII s radon road shows. Hugh Synnott Scientific Officer Radon Advice Section

North Florida Fertilization Strategies that Promote Healthy Turf

Westinghouse UK AP1000 GENERIC DESIGN ASSESSMENT Resolution Plan for GI-AP1000-IH-01 Internal Fire Safety Case Substantiation.

2010 Fire Log Fire Log. Annual Fire Safety Report

LEASEHOLD YEARLY PROPERTY SCHEDULE

Transcription:

COST REDUCTION BY REPLACING STEAM WITH COKE OVEN GAS FOR HOT AIR DRYER UNIT IN THE ELECTROLYTE CLEANING LINE Manish Kumar Gupta 1, Dr. Archana Nema 2 1 M tech Scholar, Department of Mechanical Engineering, Bansal Institute of Science and Technology, Bhopal (M.P.) 2 Professors, Department of Mechanical Engineering, Bansal Institute of Science and Technology, Bhopal (M.P.) ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - Globally, the manufacturing industries have incredible contribution in the global economic growth and it has wide recognition in the area of poverty alleviation. Development of any country is largely based on its magnitude of industrial growth. Steel industries in India took a leading role in the world after mid-sixties. During the last five decades, the steel industries all over the world made considerable developments in new methods for productivity improvement & cost reduction. The study is based on of the leading steel company in Eastern India. The present paper suggests a modification in the layout of Electrolytic cleaning line with special emphasis on the hot air dryer unit which is used for drying cold rolled steel coils during the electrolytic cleaning process. Presently, steam is used for heating air. Replacing the steam by coke oven gas provides better quality output and less cost to the industry. The research work highlights the cost reduction methodology due to modification in the electrolytic cleaning line. Key Words: Coke Oven Gas (COG), Électrolyte Clearing Line (ECL), Hot Air Dryer Unit (HADU) 1. INTRODUCTION 1.1 Electrolytic Cleaning Line ECL are used for the effective removal of any rolling oil, iron fines or grease remaining on the surface of cold rolled steel strip. The possible efficiency of Electrolytic Cleaning Lines may be very high (much more than 97% for the oil and much more than 95% for the iron fines), depending of the rolling mill operation. This is due to the combination of different processes to clean the strip: spray or dip cleaning, brushes, electro-cleaning section followed by a water rinse built into different stages. [1] Figure 1: Overview of Electrolytic Cleaning Line 1.2 Hot Air dryer Unit At the electrolytic cleaning line Hot air dryer unit is used for removing water from the strip. Strip is dried by hot air. Hot air is generated using steam in heat exchanger. Temperature of steam is controlled through steam control valve by controlling steam flow. Thermocouple with temperature transmitter is provided in duct after heat exchanger which senses the temperature of air and gives signal to steam control valve. 1.3 Coke Oven Gas (COG) Coke Oven Gas is a by-product gas, produced during the carbonization of coking coal in a Coke Oven Battery for the production of coke. [2] This gas is known as Coke Oven Gas (CO gas). In coke oven plant, the evolved gas is removed as raw gas and is treated in a byproduct plant to give a clean fuel CO gas. Condensable and economically valuable component like tar is removed. During the cycle of coking, the gas is produced during majority of the coking period. The composition and rate of evolution of the CO gas changes during the period and the evolution of CO gas is normally complete by the time the coal charge in the battery reaches 700 deg C. The final yield of clean coke oven gas after treatment in the byproduct plant is around 300 N Cum per ton of dry coal. [3] Table 1 below shows the percentage composition of CO gas with it density and calorific value. 2017, IRJET Impact Factor value: 5.181 ISO 9001:2008 Certified Journal Page 1629

Table 1: Typical analysis of CO gas Methane 26.00% Hydrogen 56.00% Hydrocarbons 2.30% Carbon monoxide 8.50% Carbon dioxide 3.00% Oxygen 0.40% Nitrogen 3.30% Density 0.4848 Kg / m3 Calorific value 4300 kcal / m3 3. METHODOLOGY Coke oven gas is a by-product gas from recovery coke oven plant can be utilized in place of steam to generate hot air and eliminate rinse water patches, thus enhancing the quality of product. Since the cost of COG is lesser than that of steam. There may be overall cost reduction in ECL process. Modification in the layout of hot air dryer unit for effectively use of coke oven gas. Fig. 2 shown below is layout of air dryer unit. [5] 2. STUDY OF EXISTING PROCESS (ECL) a) Line is run daily as per material plan. b) Steam is used for heating air in the hot air dryer unit at the pressure of 2.5 bar. c) If steam pressure goes down, temperature drops. d) Hot air dryer unit takes approximately 30 min. to reach 100 to 125 C after which electrolytic cleaning line starts. f) During line running, if steam pressure goes down, line speed decreased (200-280 MPM to 0-100 MPM), or line stops. g) Water carry over problem occurs due to lack of adequate temperature. h) Quality defects occur in finished product due to rinse water sometimes. (Black Patches) i) Due to slow line speed WIP increased and shortage of space. 2.1 Problem Identification The following problems were identified during the process- a) Cost The cost of the steam generation and supply is too high app. 850 Rs/T, which causes high production cost [4] Figure 2: Layout of Hot Air Dryer Unit 3.1 Assembly of new housing and burner New housing is fabricated with 3 mm hot rolled plate, in the shape of a box, having air inlet & outlet and one side window for fitting burner inside. The housing is designed to fit in old assembly without any trouble. All the required dimensions derived from Hot Air Dryer assembly unit drawing. After fitting of new housing, whole assembly is covered by glass wool to prevent from heat loss and accidents. (Fig.3) b) Production Due to low steam pressure many time line stop or go slow (200-280 MPM to 0 MPM), therefore at the end of the day expected production target not achieve, which causes production loss. c) Quality Due to steam pressure low less than 2.5 bar, required temperature for strip drying process not achieve to 100 C, which cause for water contains and some time patches on strip surface. 2.2 Objective of the work To arrange for an alternate facility to reduce the steam consumption and problems associated with cost controlling and Quality improvement Figure 3: Layout of Burner Housing COG burner is fabricated with the Stainless Steel plate of 5 mm thickness, to resist high temperature. This design is prepared for resisting flame from high air flow. CO gas inlet 2017, IRJET Impact Factor value: 5.181 ISO 9001:2008 Certified Journal Page 1630

is from both sides in this design. (Fig.4) The pipe line is fabricated with Stainless steel pipe to prevent from corrosion. This pipe line assembly is provided with many important types of equipment like different types of valves for opening/closing the line (auto actuator butterfly valve for automatic open/close operation, gate valve, ball valve etc), filter unit to prevent from tar and other impurities in coke oven gas. Additional equipment like pressure gauge is connected to check line pressure. Table 2 shown below shows the comparison between costs of production Rs/MT (steam + COG) before and after implementation. The average cost between Sep.14 to Mar. (before implementation) was 354.58 Rs./ MT. But after the implementation between Apr. to Oct. (after implementation) reduced to 85.71 Rs./MT. Table 2: Cost of Production Comparison Before Implementation (Sep. 2014 to Mar. 20) After Implementation (Apr. 20 to Oct. 20) Figure 4: Layout of CO gas Burner 4. DATA COLLECTION COST OF PRODUCTION (Rs./MT) (STEAM + COG) 535.56 81.5 263.5 88.69 416.5 112.65 272 96.38 544 70.53 Annexure 1 contains the data from month of Sep. 2014 to Oct. 20, collected from ECL operation MIS reports. This has consumption of steam and CO gas, cost of steam and CO gas and cost of production in Rs. per MT. Time from Sep. 2014 to Mar. 20 show before modification and the time from Apr. 20 to Oct. 20 shows after Implementation of new modified process of hot air drying unit with coke oven gas. 5. RESULT & ANALYSIS 5.1 Result Fig. 5 shown below clearly shows that the cost of production (Rs / MT) is decreased after the implementation of modified layout of hot air dryer unit in month of Apr 20 seems low than earlier. COST OF PRODUCTION (Rs./MT) (STEAM + COG) 600.00 500.00 400.00 300.00 200.00 100.00 0.00 Sep-14 Oct-14 Nov-14 Dec-14 Jan- Feb- Mar- Apr- May- Jun- Jul- Aug- Sep- Figure 5: Cost of Production per MT Oct- 170 79.52 280.5 70.7 Average Cost 354.58 85.71 5.2 Analysis (after modification) a) HADU takes approximate 5 min. to maintain temperature approximate 100-125 C. b) Line speed maintain to 200-280 MPM c) No Water carry over problem occurs due to proper temperature. d) No Quality defects found in finish products. (Rinse Water Patches) e) Due to standard line speed, less WIP inventory. f) Cost of production is decreased as consumption of steam decreased in the HADU after implementation g) Steam consumption percentage Calculation :-(see annexure 1) During Sep. 14 to march whole ECL process (Dryer Unit + Other process) use steam, so Avg. consumption of Steam before Implementation (May 14 to Feb ) = 31 T After the implementation During Apr. to Oct whole other process (except Dryer Unit) use steam, so Avg. consumption of Steam after Implementation (Apr. to Oct ) = 995 T Avg. steam used only for dryer unit = 2017, IRJET Impact Factor value: 5.181 ISO 9001:2008 Certified Journal Page 1631

(Avg. steam used for Dryer Unit and Other process - Avg. steam used for other process) 31 995 = 536 T 31 T is assumed 100 % steam use in whole process (Dryer Unit + Other process.) Then the percentage of steam used in operation of HADU: = (995 x 100) / 31 = 64 % steam used for other process after implementation So this means 36% steam used only for HADU before implementation which is saved now. [5] GA of hot air dryer assembly, Drawing No. 306213500 A1, sheet 01 of 01, Rev. 00 ANNUXTURE 1 (see below page no. 1633) 6. CONCLUSION From the above data it is concluded that the CO gas is used as substitute for steam as utility.the CO gas provided in this arrangement is much more profitable for the plant s economy. Thus, the above methodology fulfills the targeted objectives. Cost of production per MT is decreased. Following points are noteworthy: To generate hot air, substitution of steam with COG provides one time investment only and is economical. Skilled labor is not required. Semi skilled labor can operate easily which is easily available. To generate hot air, this is the most environment friendly method using by-product gas from coke oven plant. Reduced energy costs, and greater predictability and stability. Efficient and economic heat supply. High efficiency compared to other power generation technology (i.e. steam) Pressure required is considerably low Utilization of exhaust gas while simultaneously harnessing it as an energy source as a substitute to conventional fuels & environmental benefits by greenhouse gas reduction 6.1 Scope for future work CO gas burner ignition is a manual process. In future burner ignition can be automatically controlled. This dryer operation can be handling by single person from operation desk. 7. REFERENCES [1] CMI FEP, Electrolytic Cleaning Line, Operation & Maintenance Manual, Volume 1 of 2, Project 3062 [2] Tirodkar, R.B., Belgaonkar, V.H. Use of chemicals derived from coal in surface coating Industry Chemical Business No.4, April 1991, p.35 [3] International Energy agencies IEA 2007 P 111 [4] ECL operation MIS report 2014- & 20-16 2017, IRJET Impact Factor value: 5.181 ISO 9001:2008 Certified Journal Page 1632

MANAGEMENT INFORMATION SYSTEM OF ECL-2014--16 MONTH Sep-14 Oct-14 Nov-14 Dec-14 Jan- Feb- Mar- (After Implementation) PRODUCTION TARGET (MT) 4000 5000 5000 5000 4000 8000 5000 5000 10000 000 10000 10000 10000 20000 PRODUCTION OUTPUT (MT) 2841 4422 3009 4689 2391 7479 47 5849 8858 10183 8053 8999 11639 11354 PRODUCTION RATE(MT/Hr) 19.23 40.69 21.23 20.61 24.07 41.28 29.77 30.21 29.78 30.17 38.14 43.61 43.63 40.69 DELAY (Hr) TOTAL DELAY 572.26 635.33 579.00 516.51 644.67 491.66 585.34 526 447 382 533 538 400.83 464.99 TOTAL RUNNING 147.74 108.67 141.00 227.49 99.33 180.34 8.66 194 298 338 211 206 319.17 279 TOTAL CALENDAR HOURS 720 744 720 744 744 672 744 720 744 720 744 744 720 744 CONSUMPTION 1789.8 1370.8 00.4 30.2 55.9 1425.6 1047.5 1474.41 1495.8 526.41 885.8 885.83 719.92 STEAM (T) 3 2 8 4 5 2 1 908.32 4259.6 7426.9 4644.4 45398. 7021.7 6138.2 0 0 0 0 0 0 0 6545 COG (m3) 4 8 2 7 4 2 STEAM (T/MT) 0.63 0.31 0.49 0.32 0.64 0.20 0.33 0.09 0.10 0.14 0.11 0.08 0.09 0.08 COG (m3/mt) 0 0 0 0 0.00 0.00 0.00 1.86 1.89 1.86 1.47 0.50 0.50 54.00 COST STEAM (Rs) 2135 116519 127540 130070 127143 132255 44744 75293 121177 75295 61193 89038 77207 1253249 6 7 8 4 0 8 9 0 7 6 2 3 2 COG (Rs) 0 0 0 0 0.00 0.00 0.00 29245 32725 37134. 23222. 22698. 35108. 30691. 9 1 5 7 1 STEAM (Rs/MT) 536 264 417 272 544 170 281 77 85 119 94 68 76 68 COG (Rs/MT) 0 0 0 0 0 0 0.00 5.00 3.69 3.65 2.88 2.52 3.02 2.70 TOTAL COST OF PROD. Rs. 2135 116519 127540 130070 127143 132255 47669 78565 124891 77617 63463 92549 80276 1253249 (STEAM + COG) 6 7 8 4 0 8 4 5 2 8 1 1 3 COST OF PRODUCTION (Rs./MT) (STEAM + COG) (Before Implementation) 535.56 263.5 416.50 272 544 170 280.50 81.5 88.69 122.65 96.38 70.52 79.52 70.70 2017, IRJET Impact Factor value: 5.181 ISO 9001:2008 Certified Journal Page 1633 Apr- May- Jun- Jul- Aug- Sep- Oct-