GEOTHERMAL/WATER SOURCE OUTDOOR SPLIT HEAT PUMP 2 TO 6 TONS DUAL CAPACITY SPECIFICATION CATALOG

Similar documents
NDS Installation Manual

Envision Air Handler Specification Catalog

AIR HANDLER R-410A Refrigerant 2-5 Tons. Submittal Data English Language/IP Units SD1008HN 07/15

SPECIFICATION CATALOG

G Series Geothermal Indoor Split Heat Pump R-410A Refrigerant 2-6 Tons Single Speed 2-6 Tons Dual Capacity

HEAT CONTROLLER, INC. HSS Series 1 1/2 to 5 Tons Indoor Split System Geothermal Heat Pumps

700A11. Geothermal Heat Pump 3-5 ton (variable speed) Submittal Data English Language/IP Units SD2700AN 12/17

Specification Catalog. 5 Series 500RO11. Outdoor Split Geothermal Heat Pump 2-6 ton (dual capacity)

SPECIFICATION CATALOG. Commercial 3 to 6 Ton. Water Source/Geothermal Heat Pump

SPECIFICATION CATALOG. Commercial 10 to 15 Ton. Water Source/Geothermal Heat Pump

Versatec Installation Manual

NAH Series HYDRONIC AIR HANDLER 2 TO 5 TONS. Submittal Data English Language IP/Metric Units SD1028HG1 05/17

Synergy3D Installation Manual

Specification Catalog. 7 Series 700A11. Geothermal heat pump 3-5 ton (variable speed)

RCL Series. RCL Series Low Sill Console Engineering i Guide

INSTALLATION MANUAL AFFORDABLE RENEWABLE CLEAN ASTON SERIES OUTDOOR SPLIT HEATING COOLING HOT WATER.

*20D082-05NN* 20D082-05NN

Synergy3D Installation Manual

SPECIFICATION CATALOG

RC Series. RC Series Engineering Guide. CONSOLE Geothermal/Water Source Heat Pump R-410A Refrigerant Ton Single Speed.

SPECIFICATION CATALOGUE. Premium Variable Speed Forced Air Geothermal Comfort System. TEC-SPC-V-0213v1

TECHNICAL GUIDE DESCRIPTION SPLIT-SYSTEM AIR-COOLED CONDENSING UNITS. HA300, HB360, HB480 & HB thru 50 NOMINAL TONS (50 Hz)

SPECIFICATION CATALOG. Low Sill Console 0.75 to 1.5 Ton. Geothermal/Water Source Heat Pump

SPECIFICATION I ICAT. Commercial 30 Ton. Water Source/Geothermal Heat Pump

Legend Series Installation Manual

5 Series 500R11 Installation Manual

Product Data. Features/Benefits. OMNIZONE 50BRN,BZN Water-Cooled and Remote Air-Cooled Indoor Self-Contained Systems. 5 to 20 Nominal Tons

SPECIFICATION CATALOG. Low Sill Console 0.75 to 1.5 Ton. Geothermal/Water Source Heat Pump

Versatec Specification Catalog

SPECIFICATION CATALOG. Console - 50Hz Commercial 2 to 5 kw. Geothermal/Water Source Heat Pump

LRP14HP/LRP14DF/LRP14AC/LRP14GE/LRP16GE/LRP16HP SERIES UNITS

SPECIFICATION CATALOG. Commercial 0.75 to 6 Tons. Geothermal/Water Source Heat Pump

MHCCW Chilled Water Ceiling Concealed Without Electric Heat 2-Pipe Heat / Cool Fan Coil 18,000 BTUH

Heating and Air Conditioning

SPECIFICATION CATALOG

NAH Series. NAH Series Hydronic Air Handler Installation Manual. Air Handler. Installation Information. Water Piping Connections

Product Data. Features/Benefits. GEMINI 38AKS Commercial Air-Cooled Split Systems 50/60 Hz. 25 to 40 Nominal Tons (82.8 to 127.

MHCCW Chilled Water Ceiling Concealed With 5kW Electric Heat 2-Pipe Heat / Cool Fan Coil 30,000 BTUH

INSTALLATION MANUAL AFFORDABLE RENEWABLE CLEAN ASTON SERIES AIR HANDLER GEOTHERMAL HEAT PUMPS

Envision Commercial Tons Installation Manual

E1 Electrical Fundamentals. # 4 - Symbols and Wiring Diagrams

MHNCCW (4-Pipe) Chilled/Hot Water Ceiling Concealed 208/230V 4-Pipe Heating & Cooling Fan Coil 12,000 BTUH

GT-PW (50YEW) Water-To-Water Series. WATER-TO-WATER PURON SYSTEMS SIZE 010 [10 kw]

TECHNICAL GUIDE SINGLE PIECE VARIABLE SPEED AIR HANDLERS DESCRIPTION FOR USE WITH SPLIT-SYSTEM COOLING & HEAT PUMPS FEATURE MODELS: AVG24 THRU 60*(C)

ENGINEERING SPECIFICATIONS

Product Data. Features/Benefits. 50KQA, KQD Standard and Low Temperature Console Water Source Heat Pumps. 1/2 to 1 1/2 Nominal Tons

ENGINEERING SPECIFICATIONS

SPECIFICATION CATALOG. NSKW Commercial 1.5 to 6 Tons. Water Source/Geothermal Heat Pump

UP TO 17.5 SEER / 13.5 EER / 9.5 HSPF HEAT PUMP ENVIRONMENTALLY BALANCED R- 410A REFRIGERANT 2 THRU 5 TONS SPLIT SYSTEM

General Description. Operation

36,000-62,000 BTUH Nominal Capacity

ASTON SERIES SINGLE HYDRONIC

5 Series 500A11 Installation Manual

Premier Installation Manual

MH1WC4W-06-1-B Chilled/Hot Water 1-Way Cassette Fan Coil

CAS. Product Specifications. COMMERCIAL SPLIT SYSTEMS CONDENSING UNITS R 410A, 6 to 12.5 TONS BUILT TO LAST, EASY TO INSTALL AND SERVICE

GENERAL ELECTRIC AIR HANDLING UNITS DIRECT EXPANSION. ABQ Series ABQ03 thru ABQ TR thru 30 TR 9 kw thru 105 kw

TECHNICAL GUIDE SPLIT-SYSTEM AIR-COOLED EVAPORATOR BLOWER 25, 30, 40 & 50 TON LA300, LB360, 480 & 600 (50 Hz) PROVEN PERFORMANCE GENERAL FEATURING

GUIDE SPECIFICATIONS AQUARIUS ii

INSTALLATION, OPERATION, & MAINTENANCE MANUAL

SPECIFICATION CATALOG. Commercial kW. Geothermal/Water Source Heat Pump 50Hz

Tranquility Console (TRC) Series Submittal Data

TECHNICAL GUIDE. Description SPLIT-SYSTEM AIR-COOLED CONDENSING UNITS YD360, 480 & THRU 50 NOMINAL TONS YTG-B-0811

Tranquility 30 Two-Stage (TT) Series

Envision Series 30 Ton Installation Manual

MAC-120HE-03 Air-Cooled Chiller

N4H4. Product Specifications 14 SEER HEAT PUMP. ENVIRONMENTALLY SOUND R 410A REFRIGERANT 1½ THRU 5 TONS SPLIT SYSTEM 208 / 230 Volt, 1 phase, 60 Hz

GEOTEC GV Series High Efficiency Geothermal/Water Source Packaged Step-Capacity Heat Pump R-410A

SPLIT SYSTEM HEAT PUMP 1½ 5 TON HERITAGE 13 MODELS 2A6H A American Standard Heating & Air Conditioning

Split System Cooling Product Data

COMPACT Commercial 005 to 017 kw

High Ambient / High Efficiency Series. R - 410a. 50Hz. Ducted Split Air Conditioners (5.0 kw kw)

ESP. Variable Speed Heat Pump. Installation and Operation. 3 Ton ESP Ton ESP-60

Product Data. Features/Benefits. OMNIZONE 50BV Remote Air-Cooled and Water-Cooled Indoor Self-Contained Systems and Water Source Heat Pumps

Split System Cooling Product Data

Product Data. Single-Package Horizontally Mounted Water Source Heat Pumps with Electronic

SPLIT SYSTEM COOLING 1½ 5 TON ALLEGIANCE 14 MODELS 4A7A C/30-060B American Standard Heating & Air Conditioning

Split System Cooling Product & Performance Data

MAC-060HE-01-L High Efficiency Air-Cooled Chiller Air-Cooled Chillers for Global Residential and Light Commercial Micro Climates Rev 1.

Split System Heat Pump Product Data

FALCON Rooftop Units ACPSE 50/60Hz Cooling Capacity : 36 to 1388 MBH (11 to 407 kw) Heating Capacity : 40 to 1298 MBH (12 to 380 kw)

CFFWA4P-08-1-U Chilled/Hot Water Universal Mount Fan Coil (4-Pipe) 4-Pipe Heat / Cool Fan Coil 24,000 BTUH

ACNF Series Ceiling-Mount Air Handlers 1½ to 2½ Tons

Compact, Self-Contained unit that offer low installation cost plus dependable performance.

RK SERIES WATER SOURCE HEAT PUMP 0.75 TON - 6 TON

CLW QUAD SERIES 60 TO 140 TON

R4H4. Product Specifications

RESIDENTIAL LINE 2018 PRICE BOOK

TECHNICAL GUIDE DESCRIPTION SPLIT-SYSTEM AIR-COOLED CONDENSING UNITS MODELS: HF-07 FEATURES B-0703

SPECIFICATION CATALOG

Refrigeration/Troubleshooting Manual

MAC-036HE-02-L High Efficiency Air-Cooled Chiller Air-Cooled Chillers for Global Residential and Light Commercial Micro Climates Rev 1.

MAC-048HE-01-L High Efficiency Air-Cooled Chiller Air-Cooled Chillers for Global Residential and Light Commercial Micro Climates Rev 1.

Product Specifications. Vertical Floor Consoles By First Co.

CFFWA4P-16-1-U Chilled/Hot Water Universal Mount Fan Coil (4-Pipe) 4-Pipe Heat / Cool Fan Coil 48,000 BTUH

TECHNICAL SPECIFICATIONS

CFFWA4P-12-1-U Chilled/Hot Water Universal Mount Fan Coil (4-Pipe) 4-Pipe Heat / Cool Fan Coil 36,000 BTUH

WCH5**4. Product Specifications

MAC N-407 Air-Cooled Chiller

1-1/2 THRU 2-1/2 TONS SPLIT SYSTEM FWM Series

Transcription:

GEOTHEMAL/WATE SOUE OUTDOO SPLIT HEAT PUMP TO 6 TONS DUAL APAITY SPEIFIATION ATALOG

Table of ontents Model Nomenclature.... AHI Data... 6- Design Features... 8 NDS Split Features... 9 Physical Data... 9 Electrical Data... 9 Dimensional Data.... 0 Model Nomenclature - Air Handler... Air Handler apatibility... Physical Data - Envision Air Handler... Line Set Sizes... Model Nomenclature - oil... efrigerant ompatibility.... eference alculations... Legend and Notes... Operating Limits... Pressure Drop.... Performance Data... 6- Wiring Schematics.... 6-9 Microprocessor ontrol Features and Operation... 0- Engineering Guide Specifications....

Envision Series outdoor splits are designed for either indoor or outdoor installations, and are connected to an indoor air handler via refrigerant lines and control wiring. NDS units utilize the ozone-safe -0A refrigerant to meet the most stringent EPA requirements now and for many years to come. Easily accessible controls and connections for refrigerant piping and water piping make this unit simple to install in a wide variety of applications. Heavy gauge metal cabinets are coated with durable poly paint for long lasting beauty and protection. For outdoor installations that require an aesthetic touch, an optional decorative rock cover is available in three colors (brown granite, gray granite, and charcoal basalt). Whether the unit is installed indoors or out, the Envision Series split will provide exceptional performance and comfort for many years. And because there is no outdoor blower like ordinary air conditioners or heat pumps, the NDS is whisper quiet. Envision Series units are performance-certified to AHI ISO 6- standards, are ETL Safety listed, and are ENEGYSTA qualified. As a leader in the industry, WaterFurnace is dedicated to innovation, quality and customer satisfaction. In fact, every unit built is exposed to a wide range of quality control procedures throughout the assembly process and is then subjected to a rigorous battery of computerized run tests to certify that it meets or exceeds performance standards for efficiency and safety, and will perform flawlessly at startup. As further affirmation of our quality standards, each unit carries our exclusive Quality Assurance emblem, signed by the final test technician. WaterFurnace International s corporate headquarters and manufacturing facility is located in Fort Wayne, IN. A scenic three-acre pond located in front of the building serves as our geothermal heating and cooling source to comfort-condition our 0,000 square feet of manufacturing and office space. As a pioneer, and now a leader in the industry, the team of WaterFurnace engineers, customer support staff and skilled assembly technicians is dedicated to providing the finest comfort systems available. By choosing or specifying WaterFurnace Envision Series products, you can be assured that your customer is investing in an exceptional comfort system and peace of mind for many years to come. All Envision Series product is safety listed under UL99 thru ETL and performance listed with AHI in accordance with standard 6-. The Envision Series is also Energy Star rated.

Model Nomenclature N D S -6 09 A 8 9 0 0 A Model Type N = Envision ompressor Type D = Dual apacity abinet onfiguration S = Outdoor Split Unit apacity 06 08 09 06 0 oax Options = opper N = upronickel Flow enter A = None B = Flow enter* IntelliStart Options 0 = No IntelliStart = IntelliStart Voltage = 08-0/60/ Vintage A = urrent NOTE: *06-09 uses the F-GL and 060-0 uses the F-GL, the flow center is factory installed. If these flow centers do not meet the flow requirements, select A = None for digit 0.

AHI Data AHI/ASHAE/ISO 6- English (IP) Units Model Flow ate gpm apacity Btuh Water Loop Heat Pump Ground Water Heat Pump Ground Loop Heat Pump ooling Brine EWT 86 F EE Btuh/W Heating Brine EWT 68 F apacity Btuh OP ooling EWT 9 F apacity Btuh EE Btuh/W Heating EWT 0 F apacity Btuh OP ooling Brine Full Load F Part Load 68 F apacity Btuh EE Btuh/W Heating Brine Full Load F Part Load F apacity OP Btuh 06 8 900,000.6 0,00.,800.8,000.6 6,00.0 9,00.9 00 8,00 6.6,000.6,00 8.,00.8,000. 6,00. 08 9 00,000.6 0,00.0,00 0.,00.,000.,00.8 8 800,000 6.6 0,000.,00.0,00.,000.,00. 09 00,900.0 6,800. 0,00 0. 6,00.,00 6.,000.8 00,000 6.,000.,00.8,000. 8,000.9 0,00. 06 6 800 6,00. 6,00.6 6,800 9.,800. 9,00.,00.6 00,900. 9,00. 0,000.9,000.,900. 6,800.9 0 8 800 60,00. 80,600.6 6,900.8 6,00.9 6,00.0 0,00. 6 600 9,00.6 60,00.8,00.8 8,00.0,800 0.0,800.8 ooling capacities based upon 80.6 F DB, 66. F WB entering air temperature //0 Heating capacities based upon 68 F DB, 9 F WB entering air temperature All ratings based upon operation at the lower voltage of dual voltage rated models. efer to the air handler compatibility table for matching air handler. Energy Star ompliance Table Model Ground Water Tier Tier Ground Loop Ground Water Ground Loop 06 Yes Yes Yes Yes 08 Yes Yes Yes Yes 09 Yes Yes Yes Yes 06 Yes Yes Yes Yes 0 Yes Yes Yes Yes //0 Energy Star ating riteria In order for water-source heat pumps to be Energy Star rated they must meet or exceed the minimum efficiency requirements listed below. Please note there are Tier levels that dictate minimum efficiency for water source heat pumps. Only one tier level is active at a given moment. Tier : //009 //00 EE OP losed loop water-to-air.. Open loop water-to-air 6..6 losed loop water-to-water..0 Open loop water-to-water 9.. Tier : //0 //0 EE OP losed loop water-to-air 6.. Open loop water-to-air 8..8 losed loop water-to-water..0 Open loop water-to-water 9.. Tier : //0 No Effective End Date Published EE OP losed loop water-to-air..6 Open loop water-to-air.. losed loop water-to-water 6.. Open loop water-to-water 0.. 6

AHI Data cont. The performance standard AHI/ASHAE/ISO 6- became effective January, 000 and replaces AHI Standards 0,, and 0. This new standard has three major categories: Water Loop (comparable to AI 0), Ground Water (AI ), and Ground Loop (AI 0). Although these standards are similar there are some differences: Unit of Measure: The ooling OP The cooling efficiency is measured in EE (US version measured in Btuh per Watt. The Metric version is measured in a cooling OP (Watt per Watt) similar to the traditional OP measurement. Water onditions Differences Entering water temperatures have changed to reflect the centigrade temperature scale. For instance the water loop heating test is performed with 68 F (0 ) water rounded down from the old 0 F (. ). Air onditions Differences Entering air temperatures have also changed (rounded down) to reflect the centigrade temperature scale. For instance the cooling tests are performed with 80.6 F ( ) dry bulb and 66. F (9 ) wet bulb entering air instead of the traditional 80 F (6. ) DB and 6 F (9. ) WB entering air temperatures. 80.6/66. data may be converted to 80/6 using the entering air correction table. This represents a significantly lower relative humidity than the old 80/6 of 0% and will result in lower latent capacities. Pump orrection alculation Within each model, only one water flow rate is specified for all three groups and pumping Watts are calculated using the following formula. This additional power is added onto the existing power consumption. Pump power correction = (gpm x 0.06) x (Press Drop x 990) / 00 Where gpm is waterflow in gpm and Press Drop is the pressure drop through the unit heat exchanger at rated water flow in feet of head. Blower orrection alculation Blower power is corrected to zero external static pressure using the following equation. The nominal airflow is rated at a specific external static pressure. This effectively reduces the power consumption of the unit and increases cooling capacity but decreases heating capacity. These Watts are significant enough in most cases to increase EE and OPs fairly dramatically over AI 0,, and 0 ratings. Blower orrection = ( x 0.) x (esp x 9) / 00 Where is airflow in and esp is the external static pressure at rated airflow in inches of water gauge. ISO apacity and Efficiency alculations The following equations illustrate cooling calculations: ISO ooling apacity = ooling apacity (Btuh) + (Blower orrection (Watts) x.) ISO EE Efficiency (W/W) = ISO ooling apacity (Btuh) x. / [ Input (Watts) - Blower orrection (Watts) + Pump orrection (Watt)] The following equations illustrate heating calculations: ISO Heating apacity = Heating apacity (Btuh) - (Blower orrection (Watts) x.) ISO OP Efficiency (W/W) = ISO Heating apacity (Btuh) x. / [ Input (Watts) - Blower orrection (Watts) + Pump orrection (Watt)] omparison of Test onditions AI 0 ISO/AHI 6- WLHP AI ISO/AHI 6- GWHP AI 0 onversions: (lps) = FM x 0.; Water Flow (lps) = GPM x 0.06; ESP (Pascals) = ESP (in wg) x 9; Press Drop (Pascals) = Press Drop (ft hd) x 990 ISO/AHI 6- GLHP ooling Entering Air - DB/WB F 80/6 80.6/66. 80/6 80.6/66. 80/6 80.6/66. Entering Water - F 8 86 0/0 9 Fluid Flow ate * ** ** ** ** ** Heating Entering Air - DB/WB F 0 68 0 68 0 68 Entering Water - F 0 68 0/0 0 Fluid Flow ate * ** ** ** ** ** Note *: Flow rate is set by 0 F rise in standard cooling test Note **: Flow rate is specified by the manufacturer Part load entering water conditions not shown. WLHP = Water Loop Heat Pump; GWHP = Ground Water Heat Pump; GLHP = Ground Loop Heat Pump

Design Features Application Flexibility Approved for both indoor and outdoor installation. Safe, efficient operation in a wide range of liquid temperatures ( F to 0 F) and flow rates (as low as. GPM/ton in open loop applications when EWT >0 F). Easily accessible loop pump wiring. Operating Efficiencies AHI 6- rating for heating OPs, cooling EEs and low water flow requirements. High-stability expansion valve delivers optimum refrigerant flow over a wide range of conditions. Efficient opeland Ultratech compressors provide superior comfort levels. Accumulator is on all models for added compressor reliability. Oversized coaxial tube water-to-refrigerant heat exchanger operates at low liquid pressure drops. onvoluted cupronickel water tube functions efficiently at low flow rates, and provides freeze-damage resistance. Service Advantages Easily removable top and cabinet sides. emovable panel for electrical access provides quick access to electrical components. Easily accessible thermal expansion valve. GeoLink, swivel-type water connections will connect to GeoLink loop pump(s) / / fpt for open loop application and factory installed P/T ports. High- and low-pressure service ports in refrigerant circuit. Factory Quality All units are manufactured on an automated testing assembly line. This assembly line features monitoring and assembly processes that lead the industry such as: - omponent verification through bar codes. - Multiple automatic leak and pressure tests. - Performance of a water-based run test measuring both functionality and performance of the unit. - Database management of all run test parameters for service analysis. - Integrated fail safe system that prevents packaging of a failed unit. Heavy-gauge steel cabinets are painted with durable powder coat paint for long lasting beauty and service. All refrigerant brazing is performed in a nitrogen atmosphere. All units are deep evacuated to less than 0 microns prior to refrigerant charging. All joints are helium leak-tested to insure an annual leak rate of less than / ounce. efrigerant suction lines are fully insulated to reduce condensation problems in low temperature operation. Freeze detection switch to automatically turn on loop pump(s) during off cycle when loop temperature is below 0 F. Insulated cabinet using /-inch coated glass fiber. Safety features include high- and low-pressure refrigerant controls to protect the compressor. oaxial heat exchanger is ThermaShield coated Options and Accessories Electronic auto-changeover thermostat with -stage heat/-stage cool and indicator LEDs. losed loop flow center and loop circulating kits. Additional accessory relay. Bramec III, 6x6 modular mounting pad. Decorative rock cover for outdoor use. Available in brown granite, gray granite, salt and pepper, charcoal basalt. IntelliStart compressor soft starter NA encased and uncased coil assemblies 8

NDS Split Features Heavy Gauge Powder oated abinet Front Access Panel Water onnections (not shown) opeland Ultratech ompressor ThermShield oated oaxial Heat Exchanger Insulated efrigerant Lines (shown here uninsulated) efrigerant Line onnections Insulated Access Panels Brass Service Valves Accumulator Molded Handle Physical Data Model 06 08 09 06 0 ompressor ( each) Dual apacity Scroll Factory harge -0A, oz [kg] [.] 6 [.9] 90 [.] 9 [.6] 0 [.9] oax and Water Piping Water onnections Size - Swivel- in [mm] GeoLink Swivel onnectors Brass Service Valve - Liquid Line - in [mm] /8 [9.] / [.] Brass Service Valve - Suction Line - in [mm] /8 [.8] / [9.0] /8 [.] oax and Piping Water Volume - gal [l] 0. [.6]. [.9].6 [6.].6 [6.].6 [6.] Weight - Operating, lb [kg] 89 [86] 6 [0] 0 [] [] 90 [] Weight - Packaged, lb [kg] 09 [9] 6 [6] 0 [] 9 [] 0 [] All units have TXV expansion devices, and / in. [. mm] and / in. [9. mm] electrical knockouts. 0/9/08 Brass service valves are sweat type valves. Electrical Data Model ated Voltage Voltage Min/Max ompressor M LA LA LA* Ext Loop FLA Total Unit FLA Min irc Amp Max Fuse/ HA 06 08-0/60/ 9/ 6.0 0..0 8.0..6.0 08 08-0/60/ 9/ 6.0 6.6 8.0 9.0..0. 0 09 08-0/60/ 9/.0. 96.0.0. 6..9 0 06 08-0/60/ 9/ 0.0.6 8.0.0..0. 60 0 08-0/60/ 9/.. 0.0.0..6.0 60 ated voltage of 08-0/60/. HA circuit breaker in USA only. Min/Max voltage of 9/. All fuses lass K- * With optional IntelliStart // 9

Dimensional Data abinet Dimensions and efrigerant Piping onnections Top View B Front View ear View D E J WATE OUT WATE IN F Suction Line onnection Liquid Line onnection I H Side View G Lineset connections are braze type internally mounted K L Side View A M Model A B D E F G H I J K L M in 6.0.9 6. 9.. 9.0.6 8. 0. 8.9 8..8.0 06 thru 0 [cm] [9.] [60.] [6.8] [.] [8.0] [.8] [.] [0.9] [.] [8.0] [.] [.6] [.8] efer to Physical Dimensions and Piping onnections drawings 0

Model Nomenclature - Air Handler - -6 8-9 0 NAH 06 A 00 0 Model Type Air oil NAH = Envision Series Air Handler = efrigerant H = Hydronic Unit apacity efrigerant Models Nom. FM Motor 0 MBTUH 800 = EM 08-0/60/ 06 MBTUH 9 00 MBTUH 980 Disconnect 06 MBTUH 0 = No breaker installed 0 MBTUH (only on kw & 0kW heaters) 08 MBTUH 6 = Breaker installed 060 MBTUH 60 (only on kw & 0kW heaters) Hydronic Models 06 MBTUH 9 06 MBTUH Electric Heat 08 MBTUH 6 00 = No electric heat 060 MBTUH 60 0 = kw (available on 0-06 only) 0 = 0 kw (available on 00-060 only) Vintage = kw (available on 0-060 only) A = urrent 0 = 0 kw (available on 060 only) NOTE: Kit NAHB must be ordered to field convert the NAH0-060 to bottomflow air discharge. Air Handler ompatibility Air Handler Sizing Selection The Envision Air Handlers are designed for -0A refrigerant and should be matched with Envision Split Series compressor section according to the table below. Air Handler Indoor Split Model (Single) Indoor Split Model (Dual apacity) Outdoor Split Model (Dual apacity) (FM) Electric Heat (kw) NAH0A*** NSZ0-800 NAH06A*** - NDZ06 NDS06 9 NAH00A*** NSZ00 - - 980, 0 NAH06A*** NSZ06 - -, 0 NAH06A*** - NDZ08 NDS08, 0 NAH0A*** NSZ0 - - 0, NAH08A*** NSZ08 - - 6 0, NAH08A*** - NDZ09 NDS09 6 0, NAH060A*** NSZ060 - - 60 0,, 0 NAH060A*** - NDZ06 NDS06 60 0,, 0 NAH060A*** NSZ00 - - 60 0,, 0 NAH060A*** - NDZ0 NDS0 60 0,, 0 6/9/08

Physical Data - Air Handler Air Handler Model Number (efrigerant) NAH0 NAH06 NAH00 NAH06 NAH0 NAH08 NAH060 Air oil Total Face Area, ft [m] Tube outside diameter - in. [mm].8 [0.] /8 [9.] Evaporator Number of rows oil Fins per inch Suction line connection - in. [mm] sweat /8 [.8] /8 [.] Liquid line connection - in. [mm] sweat /8 [9.] efrigerant -0a Nominal cooling capacity - tons [kw].8 [6.]. [.9]. [8.9] [0.]. [.0] [.06] [.8] ondensate drain connection - (FPT) in. [mm] / [9.0] Blower Wheel Size (Dia x W), in. [mm] Blower motor type/speeds x 0 [9 x ] EM variable speed Blower motor output - hp [W] / [] [6] Filter Standard - " [mm] MEV disposable, in. [mm] Electrical characteristics (60hz) 0 x [08 x 6] 08/0 - ph Shipping weight - lbs. [kg] Operating weight - lbs. [kg] [9.] 9 [88.] 0 [99.9] 00 [90.] //08 Line Set Sizes Unit Size Air Handler 0 feet 0 feet 60 feet Suction Liquid Suction Liquid Suction Liquid Factory harge (oz.) *harge Amount with NAH Air Handler (oz.) 06 NAH06 /8 OD /8 OD / OD /8 OD / OD / OD 08 NAH06 / OD /8 OD / OD /8 OD / OD / OD 6 86 09 NAH08 / OD /8 OD /8 OD /8 OD /8 OD / OD 90 06 NAH060 /8 OD / OD /8 OD / OD -/8 OD / OD 9 0 NAH060 /8 OD / OD /8 OD / OD -/8 OD / OD 0 NOTES: * The harge Amount with NAH Air Handler column is based on the charge amount for an NAH Air Handler + /6/0 ompressor Section Split. Additional charge will have to be added accordingly for line set length. After charge is added, adjustments can be made to get appropriate subcooling and superheat. Additional charge for -0A is 0.0 oz. per ft. for /8 in. and.0 oz. per ft. for / in. tube.

Model Nomenclature - oil - N A - 06 8 Model Type N = Envision efrigerant oil NH = Envision Hydronic oil onfiguration A = "A" oil oil abinet = Encased U = Uncased apacity efrigerant Models 06 MBTUH 06 MBTUH 08 MBTUH 060 MBTUH Hydronic Models 060 MBTUH NOTE: All efrigerant oils include TXV. efrigerant oil ompatibility Encased/Uncased oil Indoor Split Model Indoor Split Model Outdoor Split Model ecommended (Single) (Dual apacity) (Dual apacity) (FM) NA06* NSZ0-800 NA06* - NDZ06 NDS06 9 NA06* NSZ00 - - 980 NA06* NSZ06 - - NA06* - NDZ08 NDS08 NA08* NSZ0 - - NA08* NSZ08 - - 6 NA08* - NDZ09 NDS09 6 NA060* NSZ060 - - 60 NA060* - NDZ06 NDS06 60 NA060* NSZ00 - - 60 NA060* - NDZ0 NDS0 60 //08

eference alculations Heating alculations: HE LWT = EWT - GPM x 00 ooling alculations: H LWT = EWT + GPM x 00 H LAT = EAT + FM x.08 TH = H + HW LAT (DB) = EAT (DB) - L = T - S S S/T = T S FM x.08 Legend and Notes ABBEVIATIONS AND DEFINITIONS: FM = airflow, cubic feet/minute EWT = entering water temperature, Fahrenheit GPM = water flow in gallons/minute WPD = water pressure drop, PSI and feet of water EAT = entering air temperature, Fahrenheit (dry bulb/wet bulb) H = air heating capacity, MBTUH T = total cooling capacity, MBTUH S = sensible cooling capacity, MBTUH KW = total power unit input, kilowatts H = total heat of rejection, MBTUH HE = total heat of extraction, MBTUH HW = hot water generator capacity, MBTUH EE = Energy Efficiency atio = BTU output/watt input OP = oefficient of Performance = BTU output/btu input LWT = leaving water temperature, F LAT = leaving air temperature, F TH = total heating capacity, MBTUH L = latent cooling capacity, MBTUH S/T = sensible to total cooling ratio Hot water generator capacity based on 0. GPM flow per nominal unit ton at 90 F entering hot water temperature. Performance Data tables do not include water pumping watts and are based upon % (by volume) methanol antifreeze solution. Multiple Flow ates (for EWT) are shown in the Performance Data tables. The lowest flow rate shown is used for geothermal open loop/well water systems with a minimum 0 F. The second flow rate shown is the minimum geothermal closed loop flow rate. The third flow rate shown is optimum for geothermal closed loop and the suggested flow rate for boiler tower applications. Interpolation between EWT, GPM and FM data is permissible. Extrapolation for heating data down to F is permissible. atalog illustrations cover the general appearance of products at time of publication. We reserve the right to make changes in design and construction at any time without notice. Operating Limits Operating Limits ooling Heating Air Limits Minimum ambient air, DB -0 F [-. ] -0 F [-. ] ated ambient air, DB 80.0 [6. ] 0 F [. ] Maximum ambient air, DB 0 [8.8 ] 8 F [9 ] Water Limits Minimum entering water 0 F [- ] 0 F [-6. ] Normal entering water 0-0 F [0- ] 0-0 F [- to ] Maximum entering water 0 F [9 ] 90 F [ ] Normal water flow. to.0 gpm per ton [.6 to. l/m per kw] NOTES: Minimum/maximum limits are only for start-up conditions, and are meant for bringing the space up to occupancy temperature. Units are not designed to operate at the minimum/maximum conditions on a regular basis. The operating limits are dependent upon three primary factors: ) water temperature, ) return air temperature, and ) ambient temperature. When any of the factors are at the minimum or maximum levels, the other two factors must be at the normal level for proper and reliable unit operation.

Pressure Drop Dual apacity Model 06 full load 06 part load 08 full load 08 part load 09 full load 09 part load 06 full load 06 part load 0 full load 0 part load GPM Pressure Drop (psi) 0 F 0 F 0 F 90 F 0 F.....0 6.8.6... 8....8. 0.0 6.6 6..8. 0.8 0. 0. 0. 0.6.0.8..6..6...0.8 9.8...8.....0.0...9.8. 9...0.8.6.9.6.. 0.9 0.8 0.8 0. 0. 6..6... 8.8.6... 0..9... 6....0.0 9....0.8.9.6...9.... 0.9 0.9 0.8 0.8 0. 8.0.8..6....9.8..0....8 8.8..6...8...0.8 6 6. 6.0.6..8 0 9. 9. 8. 8.0. 6.0 0.9 0.9 0.8 0.8 0.6....0.0....8 8 8..6. 6.6 6...0.8.6....0.. 8 6.0...9.6.8. 6.8 6..9 0...0.9..6..0.8.6 6.0.6..0. 9 6. 6..8..0 /0/06

NDS06 - Performance Data Low Speed (00 FM) EWT F Flow gpm PSI WPD HEATING - EAT 0 F OOLING - EAT 80/6 F FT.0 0.8.9 H LAT kw HE F OP HW T S S/T atio kw H EE HW 0.0.0..0. 8. 00..0. 90.9.0. 00... 8..0..0 0.8.8 0.0.0. 00.0. 9. 9.0.. 00 9..9 0.66 0.6..8-00.. 9. 8..6. 00 9.. 0. 0.9.. -.0.6 8. 00.. 9. 9..6. 00 9..9 0.66 0.. 6.0-00.. 9.6 8..8.6 00 0.0. 0.0 0..9. -.0 0.8.8 0.0.9. 00... 98..00. 00 0.. 0.6 0.6..8-00.6..8 90.6.06.6 00 0..6 0. 0.6..9 -.0. 8. 00.6.. 98.8.0.8 00 0.. 0.66 0.9.. - 00.9..0 9.0.0.6 00 0..6 0. 0.6.8. -.0 0.. 00 6... 00.6..8 00 0..8 0.6 0..0 8. 0.6 00 6.9.. 9... 00 0.9.0 0. 0...8 0. 0.0.8. 00... 0..6.8 00 0..9 0.6 0.69. 0. 0.6 00...8 9... 00.. 0. 0..6 9. 0.6.0..9 00.6.6. 0.6.6.9 00 0.9.9 0.66 0.6.. 0. 00 8.0.. 9.9.60. 00.. 0. 0.0. 0. 0.6.0 0.. 00 8...8 0.6.8.9 00 9.8. 0.68 0.8.6. 0.9 00 9... 9..98.8 00 0.. 0. 0.8..8 0.9 60.0.8. 00 9.6.6.6 06..9.0 00 0.0. 0.68 0...9 0.8 00 0.. 6. 96.6..8 00 0..9 0. 0.8.. 0.9.0..6 00 9.9.8.9 06.9.96. 00 0.. 0.6 0..8 6.9 0. 00 0..6 6. 9.0.6.9 00 0.6.9 0. 0.8. 6. 0.8.0 0..6 00.0..0 08.8.. 00 9.8. 0.69 0.9.0.. 00...6 98..8.0 00 0..9 0. 0.9. 0.9. 0.0..0 00.9..9 0... 00 0.0.8 0.69 0.88.0.. 00.6.6 8.6 99.8.. 00 0.. 0. 0.9.6...0.. 00..9 8...0. 00 0..8 0.68 0.86...0 00.9. 8.9 00..6. 00 0.6. 0. 0.89....0 0..6 00.8.8 8...6. 00 8.. 0..0...6 00.. 9. 0.0.96. 00 9.. 0..0.9.. 80.0..9 00.8. 9..0.. 00 8.9. 0..0. 8.. 00.6.8 0. 0. 6.. 00 9.. 0..0.9 8..6.0.. 00.. 0.0.8.80.6 00 9.. 0.0 0.98. 9.. 00.0.9 0.9 0.0 6.. 00 9.. 0..0.9 9..6.0 0.. 00.. 0.6..99. 00.. 0....0. 00... 0.8 6.8. 00.. 0..6.8.9. 90.0.6. 00.8... 6.0.8 00..6 0..6..9.0 00 6..9.6 0. 6..6 00.6. 0.8.9..9..0.0 6.9 00 6...9 8. 6..9 00..6 0.....9 00...0 0.9 6.9. 00.8. 0..6....0 0.6. 00.0.6.6 00 6.. 0....6.6 00.0.6 0.80.6.6..8.0.9 6.6 00 6.9. 0..8... 00..6 0.9...0..0 0.6. 0.0.. 00.6. 0.9.0 9. 9.. 00.9. 0.8. 0. 9..6.0.8 6. 00.8. 0.8.6 9. 0.. 00.. 0.8.0 0. 0.0..0 0.6. 0.0.. 00.0. 0.8. 9.8 8.. 00.. 0.8. 0. 8...0. 6. 00.. 0.8.6 9. 8..8 00.. 0.86.0 0. 8.. Multiple Flow ates (for EWT) are shown in the table above. The lowest flow rate shown is used for geothermal open loop/well water systems with a minimum 0 F. The second flow rate shown is the minimum geothermal closed loop flow rate. The third flow rate shown is optimum for geothermal closed loop and the suggested flow rate for boiler tower applications. 6

NDS06 - Performance Data High Speed (900 FM) EWT F Flow gpm PSI WPD HEATING - EAT 0 F OOLING - EAT 80/6 F FT H LAT kw HE F OP HW T S S/T atio kw H EE HW.0.. 0 6.0.9 6.6 8.0.8. 00.. 0.9 90.8..0 900 6.0.. 86...8.0.. 0 6.0.8 6. 00 8..6. 9.9.6. 00 6.. 0.66 0.9 9..9-900 8... 89.0.68.0 900 6. 8.8 0. 0.99 9.9 6.9-8.0. 0.8 00 8... 9..68. 00 6.. 0.66 0.9 9. 8.9-900 8..8.6 89..69.0 900 6.8 8.8 0.0 0.9 0. 8. -.0.. 0 6.0. 6. 00.0..8 9.8.06. 00 6.. 0.6.0 9.9 6.0-900.. 6. 9.0.. 900 6.9 9. 0..0 0.6. - 8.0. 0. 00.. 6. 98..08. 00 6.. 0.66 0.99 0.0.0-900.8. 6. 9..6. 900. 9. 0..0 0.8 6. -.0..0 00... 00.0.8.6 00 6..9 0.68.9 0... 900...8 9.8.6. 900 6.8 9. 0...0.. 0 6.0.6 6.0 00.8.9 8. 0..0. 00 6. 8. 0.68. 0..6. 900..9 8.8 9.0.8. 900. 9. 0..... 8.0. 0. 00..6 8. 0.9.0.8 00 6.8 8. 0.6.09 0..6.0 900..60 9. 9...6 900. 9. 0....0..0..9 00..6 9.9 0...0 00 6.0.8 0.68.9 0. 0.. 900 6..6 0.6 96.8.. 900 6. 9. 0...0 9.8. 60 6.0..8 00 6..6.0 0..69. 00 6..9 0.68. 0... 900..66. 98..8.8 900 6.8 9. 0..... 8.0. 9.8 00..69. 0.9.. 00 6..9 0.68.9 0... 900.8.6. 98.6.89.9 900.0 9. 0....9..0..8 00 8...6 0.6.8. 00.6. 0.69. 0..9.8 900 9..69. 00.0.06. 900 6. 9. 0..9..6.9 0 6.0..6 00 9..6. 09..96. 00.8.8 0.69. 0. 9.. 900 0.6.. 0... 900 6. 9. 0... 8.8.8 8.0. 9. 00 0..8. 0.0.99. 00 6..8 0.68. 0.6 9.8. 900... 0.0.. 900 6.6 9. 0..6. 9...0.. 00.0.8.8..98. 00.6. 0..9 0.0.. 900.9.8.9 0.9.6. 900. 8.9 0..6 0... 80 6.0.. 00..8 6.0.9.09.8 00.8. 0..0 0.0 6.. 900..8. 0..9.6 900. 9. 0.. 0. 6.. 8.0.0 9. 00.0.89 6..6..0 00.. 0.0.6 0...9 900.0.8.8 0.0.. 900.6 9. 0.. 0..0..0..6 00..9..6.0. 00. 6.8 0.. 9...8 900.9.88 8. 0.9..9 900.9 8. 0.6.8 0.0..0 90 6.0.. 00..98 8. 6.6.0. 00..0 0..66 9...6 900 6..9 9.9 0..8.0 900. 8. 0.. 9.9..8 8.0.8 8.8 00.8.0 8.9... 00.9.0 0..60 9..9. 900..9 0. 08..6. 900. 8. 0.6.66 9.9.6..0.. 00 6.0.. 00. 6. 0..86 8..0. 900.8.9 0.8.9 9..9. 8.0. 8. 00.6 6. 0..80 8.8.6.0 900.0.9 0.8.86 9....0.0. 0 6.0..9 00 0.. 0.6.06. 0.0.9 900 0.9 6.9 0.8. 8. 9.9. 8.0. 8. 00 0.. 0..00. 0..6 900. 6.9 0.80.06 8. 0..0.0.0. 0 6.0.0. 00 9.0.9 0.9. 6.8 8.. 900 9. 6. 0.8.. 8.. 8.0..9 00 9..9 0.8. 6. 8.6. 900 9. 6. 0.8.0. 8..8 Multiple Flow ates (for EWT) are shown in the table above. The lowest flow rate shown is used for geothermal open loop/well water systems with a minimum 0 F. The second flow rate shown is the minimum geothermal closed loop flow rate. The third flow rate shown is optimum for geothermal closed loop and the suggested flow rate for boiler tower applications.

NDS08 - Performance Data Low Speed (00 FM) EWT F Flow gpm PSI WPD HEATING - EAT 0 F OOLING - EAT 80/6 F FT H LAT kw HE F OP HW T S S/T atio kw H EE HW.0 0.9. 0 6.0..0 8.0.9 6. 900.. 0. 8.9.0. 00 6..0.0 8....0 0.9.0 0 6.0..9 900... 8..8. 900 6.6 6.8 0.6 0. 9. 6. - 00.9.9.8 8.8.. 00. 8.6 0.68 0. 9.8 6.8-8.0.8 6. 900 8..9. 88.8.6. 900.0. 0.6 0. 9.. - 00 9...9 86.8.66. 00.8 9. 0.69 0. 0.. -.0 0.8.9 0 6.0.6.8 900 0..8. 90.9.0. 900. 8.0 0.6 0.9 0.. - 00.0..9 88.6.09. 00 8. 9.9 0.0 0.80.. - 8.0. 6. 900.. 6. 9.0..6 900 8. 8. 0.66 0.8 0.8.9-00.. 6.9 89... 00 8.9 0. 0. 0.80.6 6. -.0 0.8.9 900..0. 9.0.6.6 900 8.6 9. 0.6 0.90.6.8 0.9 00...9 90... 00 9.. 0. 0.9...0 0 6.0.6. 900.. 8.0 9.9.. 900 8.8 9. 0.6 0.88.8.0 0.8 00.9. 8. 9..9. 00 9.6. 0. 0.89.. 0.9 8.0.6 6. 900.. 9.0 9.0.6. 900 9. 9.9 0.68 0.8..8 0.8 00.0.6 9. 9.0.0. 00 0..0 0. 0.88.. 0.9.0 0.8.8 900.. 0.0 96.0.8.8 900. 8.6 0.68.00 0.9.. 00.9. 0.6 9.8.9.6 00 8. 0.6 0..0..6. 60 6.0..6 900 6... 9.0.0.9 900. 8. 0.6 0.98.0 8.. 00 6.9..6 9... 00 8. 0. 0..00.9 8.. 8.0..9 900...8 98.0.09.0 900 8. 9. 0.68 0.9. 9.0. 00.8.. 9..8. 00 8.9. 0. 0.99. 9...0 0.8.8 900 8.0.6. 98.9.. 900. 8.8 0.69..0.8. 00 8.6.6. 9...9 00.8 0.8 0..6.8.0.8 0 6.0.. 900 9...0 00... 900. 8.9 0.69....6 00 9.8.. 96..6.0 00 8..0 0...0.9. 8.0.. 900 0.0.9.6 00.9.. 900.8 9. 0.0.0... 00 0.6.8. 96.9.6. 00 8.6. 0.....6.0 0.. 900 0..9. 0.6.66. 900 6. 8. 0..0 0. 0.. 00..8. 9... 00 6.8 0. 0.6.. 0.. 80 6.0.. 900..8 6.8 0..9.6 900 6. 8.6 0..6 0.6 0.8. 00.6.. 98. 6.09. 00.0 0. 0.6.9..0. 8.0.. 900.6.6. 0.6.9. 900 6. 9.0 0...0..0 00.0.60. 99. 6.0. 00.. 0..8.8...0 0..6 900..6.8 0. 6.0.0 900.. 0..8 9. 6.. 00.6.60 8. 99.6 6.6. 00.8 9. 0..0 0.0 6.. 90 6.0.. 900.0.60 9. 06.0 6.. 900.. 0.. 9..0.9 00..8 9.8 0. 6..8 00. 9. 0.. 0... 8.0.. 900..6 9.6 06. 6.. 900.8.8 0.. 9.6.. 00..6 9.8 0. 6..9 00. 9. 0.. 0...0.0 0..6 00 6.0.. 900..6 0..6 9...8 00. 9. 0.8.6 9.9.. 8.0.. 900.9 8. 0.6.6 9... 00.6 0.0 0.8.66 0..8.9.0 0.. 0 6.0..0 900. 6.6 0.9.8...8 00. 8. 0.8.90 8... 8.0..9 900..0 0.9.8.8.6. 00.0 8.8 0.8.89 8...9.0 0.6. 0 6.0..9 900 0.0 6. 0.8.. 9..9 00 0. 8. 0.88.6.9 9. 6. 8.0.0. 900 0. 6.8 0.8.0. 9.. 00 0.9 8.6 0.89. 8. 9. 6. Multiple Flow ates (for EWT) are shown in the table above. The lowest flow rate shown is used for geothermal open loop/well water systems with a minimum 0 F. The second flow rate shown is the minimum geothermal closed loop flow rate. The third flow rate shown is optimum for geothermal closed loop and the suggested flow rate for boiler tower applications. 8

NDS08 - Performance Data High Speed (0 FM) EWT F Flow gpm PSI WPD HEATING - EAT 0 F OOLING - EAT 80/6 F FT.0..0 H LAT kw HE F OP HW T S S/T atio kw H EE HW 0.0.. 9.0. 8. 00...9 89..06.8 0.9.8. 86.9.0..0..9 0.0.. 00..6 8. 9..6.0 00. 0. 0.9. 9.. - 0 6.. 8. 89..6.8 0 6..8 0.6..8. - 9.0..9 00.9.8 8. 9.9.8. 00.. 0.6. 9.6. - 0 6.8. 9. 89.8.9.8 0 6.8.0 0.68..0. -.0..8 0.0..9 00 9.8.9.0 96..8. 00.8.9 0.6.6.. - 0 0... 9..8. 0.8. 0.6.0.6. - 9.0..6 00 0... 96.8.8. 00 6..8 0.66...0-0..6. 9..89. 0 8. 6. 0.69.6.8.9 -.0.. 00... 98..0.6 00 6.0.8 0.6.9.6 8.8. 0..8. 9.6.0. 0.9. 0.6.0.8 8.8.9 0.0..8 00..0. 99..09.8 00 6.8. 0.6.8.0 0..6 0.. 6. 9.6.6. 0 8.. 0.66.90. 0..8 9.0.. 00...9 00...9 00.. 0.66.6... 0.. 6.9 96... 0 9.. 0.0.8....0..6 00.6.6. 0... 00.. 0.66.0.6.. 0 6..8 8. 9...8 0. 6.0 0.0.... 60.0.0.6 00.. 8.6 0.8.. 00 6..6 0.6.9. 8.8.0 0 8.. 9. 98...9 0 8. 6. 0.69.0. 8.9. 9.0.. 00 8..6 9. 0.6.6. 00 6.9.9 0.68.89. 9..8 0 9.. 0.6 99..9.0 0 8..6 0..98. 9..0.0.. 00 9.0.9 0. 0..0.6 00.6. 0.68...9.6 0 0..9. 99.9.6. 0. 6.9 0... 6.0.8 0.0.9. 00.0.68.8 06..8. 00 6.. 0.6..9.0. 0..68. 0..6. 0 8.. 0.....6 9.0.0 6.9 00.0..8 0...9 00 6.9. 0.69.09..6. 0..0. 0... 0 8.6 8. 0..8 6.0...0.. 00..0. 06.6.0. 00..8 0.69.... 0.9.68.8 0.8.0.8 0. 6. 0..... 80.0.9. 00.9.8. 08..8. 00.. 0.68...0.0 0..8.9 0.6.8.9 0 6. 6.8 0...0.. 9.0.9 6. 00..8. 09.8.6. 00.. 0.69..6..8 0 6..80. 0.6.88. 0.. 0....6..0.0. 00.0.8. 08.8..8 00.. 0..6...0 0.6.8 6. 0.8.8. 0.6.8 0..0.8.. 90.0.8. 00 6.8.9 6...6 6.0 00.. 0.0.6...8 0 8..90 8.6 0.9.90. 0. 6. 0..6.6.. 9.0.8 6. 00 8..99 8.0.. 6. 00.8. 0.0.... 0 9.9.9 0.0 0.0.0. 0.0 6. 0...8.6.9.0.0. 00.0..0 00.. 0..8.9.. 0..9 0.8.90...0 9.0. 6. 00.6. 0..80..6. 0.6. 0.6.8..8.8.0.0. 0.0..9 00 9..9 0.. 0. 9.. 0 0.. 0.80..0 9.6 6. 9.0.6 6.0 00 9.8.6 0..06 0. 9.. 0 0.6.8 0.8.09. 9.9.8.0 0.9. 0.0.6. 00.. 0..8 9.6 8.0 6.8 0 8..9 0.8.8 0. 8.. 9.0..8 00 8.0 0.9 0.. 9.6 8. 6. 0 8.6.0 0.8. 0. 8..0 Multiple Flow ates (for EWT) are shown in the table above. The lowest flow rate shown is used for geothermal open loop/well water systems with a minimum 0 F. The second flow rate shown is the minimum geothermal closed loop flow rate. The third flow rate shown is optimum for geothermal closed loop and the suggested flow rate for boiler tower applications. 9

NDS09 - Performance Data Low Speed (0 FM) EWT F Flow gpm PSI WPD HEATING - EAT 0 F OOLING - EAT 80/6 F FT H LAT kw HE F OP HW T S S/T atio kw H EE HW.0 0.9. 0 8.0.0.6.0..8 0..0. 8.9.. 0.0.08.9 8.8...0 0.9. 0 8.0.9. 0.6.09 8. 90.6.8. 0.0 0.6 0.9.8 9. 9. - 0 6..0 9. 88..6.8 0 6.. 0.6. 0.6 8.9 -.0..6 0 6..0 9.0 9..6. 0. 0. 0.8.0 8.9.9-0.. 9.8 88.6..9 0 6.. 0.6. 0.0 0.8 -.0 0.9.0 0 8.0.9. 0 9..6.9 9.6.9. 0.0. 0.6.0. 8. - 0 0..6.0 90.8.. 0 8. 6. 0.69..9.9 -.0.. 0 0..8.9 9..0.6 0.. 0.60.. 0. - 0..9.8 9..8. 0 8. 6. 0.69.9.6 9. -.0 0.9.0 0 0..6.0 9... 0.8.0 0.6.68...6 0..6.0 9..6. 0 8.9 8. 0...9..6 0 8.0.8. 0.8.. 96...8 0 8.6. 0.6.. 6.. 0.0. 6. 9..0. 0 9.8 8. 0...0 6..6.0.. 0.0. 6. 9...0 0 8.8. 0.6.. 8.. 0... 9..9. 0 0.0 8. 0...9.8..0 0.8.9 0...6 96... 0.6.0 0.6.8. 0.8. 0.. 6.8 9.6..8 0 8.8 8. 0..89. 0.. 60 8.0.8.0 0.9.0 8. 98.9.8. 0 8.. 0.6.6..8.0 0.. 9.6 9.6.8.9 0 9. 8. 0..68....0.0 6.9 0.. 9. 00... 0 8.6. 0.6..8..9 0 8.8.9.0 96.6.96.0 0 9.8 8. 0..9..0..0 0.8.8 0.9. 8.0 98.9.. 0.8. 0.6.99.6 9.0. 0..9 9. 9.6.. 0 9.0 9.6 0.6.09 6. 8.. 0 8.0..9 0 9.0.6 0.9 0..8.9 0 8.. 0.6.8...9 0 0...6 9.8.. 0 9. 9.9 0.6.89.8 0.9..0.9 6. 0 0..9.6 0.8.00 6. 0 8.8.6 0.66.... 0... 99.0..6 0 0.0 0.0 0..9 6...0.0 0.8.8 0 8..8 0.0 00..0 6. 0 6.6. 0.66..0 6.8. 0 9.6..6 9..9.9 0. 8. 0... 6.6. 80 8.0.6.8 0..0. 0..0 6.6 0 6.8. 0.66.0. 8..0 0... 99..9 6. 0.9 8. 0.6.0.0 8.0..0.8 6. 0... 0.0. 6.8 0.6.6 0.6.9. 9.. 0..6. 0.0.6 6. 0 8.8 8.9 0..0.6 9...0 0.. 0 0...9 0..8. 0.. 0.6.8.6.. 0.8.8. 98..6 6.6 0.6 6. 0...0. 6.0 90 8.0.6.6 0... 0... 0.. 0.6.... 0..6. 0..6 6.8 0. 6. 0.....8.0. 6. 0 6... 0..8. 0.. 0.6.6.8 6..9 0 8..9 9.9 0.0.90.0 0 6.6 6. 0... 6...0 0.. 00 8.0.. 0.9. 0.0...0 6.9 0.9. 0.80.6.9.9..0.6 6.0 0.. 0.69...0 6. 0..6 0.9..8.8..0 0..6 0 8.0.. 0 9..8 0..8 9. 0. 8. 0 0..6 0.8.9 0. 0. 9..0..8 0 0.9. 0.. 0.. 8. 0.8 6.0 0.8.8.. 9.0.0 0.. 0 8.0.. 0.. 0.8. 8.0 8.6 0.8 0 8..9 0.89.9 9. 8.6..0..6 0 8.8.6 0..06 9. 9. 0. 0 9.. 0.86. 0. 9.. Multiple Flow ates (for EWT) are shown in the table above. The lowest flow rate shown is used for geothermal open loop/well water systems with a minimum 0 F. The second flow rate shown is the minimum geothermal closed loop flow rate. The third flow rate shown is optimum for geothermal closed loop and the suggested flow rate for boiler tower applications. 0

NDS09 - Performance Data High Speed (0 FM) EWT F Flow gpm PSI WPD HEATING - EAT 0 F OOLING - EAT 80/6 F FT H LAT kw HE F OP HW T S S/T atio kw H EE HW 6.0..0 0 9.0...0.0 9. 0 0... 9.0.8. 0..8. 88.9.9. 6.0..9 0 9.0.. 0.0.8. 9.0.8. 0 6. 8. 0.6.90.8. - 0 6..96 6.0 9... 0 9..8 0.6.0 6.0. -.0.9 8.9 0..90.6 9..60. 0 6.8 8. 0.6.8.0.9-0 6..99 6. 9.9.60. 0 9.. 0.6.9 6.. - 6.0..8 0 9.0.. 0 9.9.00 9. 9..90 6. 0 8.0 0. 0.6.0..9-0..06 0.6 9..9.6 0 0.8.6 0.66. 8..9 -.0. 8. 0 0.6.0 0. 9.9.9 6. 0 8.6 0. 0.6.0.. - 0.0.09. 9..9. 0..6 0.66. 8.. - 6.0.. 0..0. 99..0 6.6 0 8.6.0 0.6.0. 9..9 0... 96.. 6. 0.. 0.6.6 60. 9.. 0 9.0.. 0..6.6 00.. 6.8 0 9.. 0.6...0. 0.6.. 9.. 6. 0.8.9 0.6.6 60..0.9.0.6 8. 0..0. 0.0..0 0 9.. 0.6.6..0. 0 6... 9.9. 6. 0..0 0.6. 60..0.8 6.0..6 0 6.6..6 0.0.. 0 8.. 0.6.66. 8..6 0 8...0 98.. 6.8 0 0.. 0.69.8 9.9 8..8 60 9.0..0 0 8... 0...6 0 8.9. 0.6.. 9.. 0 0.. 8.8 00.0..0 0.. 0.69.6 60. 9.6.6.0. 8. 0 9.8. 8. 0..6.8 0 9..8 0.6.. 0.. 0..6 0.0 00..9. 0.8. 0.68. 60. 0.. 6.0.. 0 0.. 9.0 0.6. 8. 0.8.9 0.6.9. 6.. 0.0. 0.6 0... 0 9.9. 0..0 60. 6.6. 0 9.0..9 0.9.. 06..0 8.6 0 8.8. 0.66. 8... 0.6..8 0.6.66.9 0.0.8 0.0.8 60.8.8..0..9 0..9. 0..6 8.8 0 9.. 0.66.69 8. 8..9 0 6.0.. 0.. 8. 0.6 6. 0.0.9 6. 8.. 6.0.. 0... 06.. 9. 0.8. 0.68. 6...6 0..8. 0.0.6 8.6 0..6 0.. 8.. 6.0 80 9.0.0. 0 6..6.0 08.. 9.6 0.0. 0.6.0... 0 8..60 6.0 0.8. 8.9 0 8.9.9 0.. 9....0..6 0 8..69. 09.8.6 9.9 0..8 0.6.96.6 6.0.9 0 60.0.6.6 0.8.8 9. 0 9.. 0..0 9.8 6.. 6.0.0. 0 6..68.9 08..9 0. 0.0 9.9 0.0.8.6.. 0 8..6 6. 0.9. 9. 0.6. 0..6 6..9. 90 9.0.0. 0 9.9.8 6.8..8 0.8 0. 0. 0.68.9.. 6.6 0 6.9.6 9. 0.0.8 0.0 0 6.0. 0......0.. 0 6.8.8 8.6..6. 0.8 0. 0.68..8.9 6. 0 6.9.80 0.9 08..9 0. 0 6..9 0..9.6. 6.8 6.0.0. 00 9.0.9. 0. 9.6 0.0.6.8.6 8. 0.. 0..0 6..8 8.9.0.. 0.8 9.9 0.0.9.0.9.6 0.. 0..6 6.. 8. 6.0.0. 0 9.0.8. 0 8..6 0..9.8 9.6 0.0 0 9. 0. 0.8.00.9 9.8 0.9.0.9 6.8 0 8.6 8.0 0..9.0 9.9 9. 0 9..0 0.8.9. 0.0 0. 6.0 0.9. 0 9.0..0 0. 6. 0.. 0.6 8.0. 0 6. 9. 0.80.. 8...0.8 6. 0.8 6.9 0.. 0.8 8.. 0 6.6 9. 0.8..6 8.. Multiple Flow ates (for EWT) are shown in the table above. The lowest flow rate shown is used for geothermal open loop/well water systems with a minimum 0 F. The second flow rate shown is the minimum geothermal closed loop flow rate. The third flow rate shown is optimum for geothermal closed loop and the suggested flow rate for boiler tower applications.

NDS06 - Performance Data Low Speed (00 FM) EWT F Flow gpm PSI WPD HEATING - EAT 0 F OOLING - EAT 80/6 F FT H LAT kw HE F OP HW T S S/T atio kw H EE HW 6.0.0. 0 0.0. 6..0..8 0.8.66 6.8 89..8.9 00 6..69. 86..9. 6.0.0. 0 0.0.6 6.0 0 0.0. 0.6 9...9 0.9.0 0.9. 0.8. - 00.0..6 89..8. 00. 0.8 0.6.9.. -.0.0. 0.0.. 9.0.. 0 6.0 6.9 0.9.9 0.8. - 00...6 89.8.9.6 00. 0. 0.6... - 6.0.0. 0 0.0..9 0..8. 96..66. 0.. 0.9.6.6 0. - 00 6..8 6.6 9...8 00 8.. 0.6.6. 9. -.0.8. 0 6..8 6.8 9.0.6. 0..6 0.8..6.0-00..8.8 9..8.9 00 8.. 0.6.6. 0. - 6.0 0.9. 0 9.8.88 0.0 99..0. 0 8. 8.0 0.8.8.6 6..8 00 0.9.88.0 9..6. 00 9.8.8 0.6.9 6. 6..9 0 0.0.. 0 0..9 0. 99.9.0. 0 8. 8. 0.8...8. 00..9. 9..6. 00 0.0. 0.6.8 6...8.0. 0.8 0.6.9.6 00.8..8 0 8. 8. 0.8.. 8.. 00.6.9.6 96..6. 00 0.. 0.6.80 6..9. 6.0 0.9. 0..9. 0.8. 6.0 0 6.. 0.9.0.6.. 00..9. 9.9.0.6 00 8..0 0.6.... 60 0.0.. 0..0. 0.8. 6. 0 6.9. 0.9.96.6.9. 00 6..98 6. 98.6.6. 00 8.. 0.6.0..6..0. 0. 0 6.8.0 6. 0.6.9 6. 0.. 0.9.9.6.. 00..0. 99..6.9 00 8.. 0.6.0... 6.0 0.9.0 0 8..0 8. 06.0.6 6. 0.9.8 0.6.9. 0..6 00 9..0 9. 00..8 6. 00.. 0.66.8. 9.9.8 0 0.0.. 0 0.. 0. 0.6. 6.9 0 6. 8.0 0.6.. 0.8. 00..0 0.9 0..9 6. 00.6. 0.66.. 0..6.0. 0. 0.. 0.9 08..8. 0 6. 8. 0.6..8.. 00..08. 0..9 6. 00.8.6 0.66..6.. 6.0 0.9.0 0.8.6.0 09..89. 0.9 6.8 0.6.8..0.9 00..09. 0.9.0 6.9 00. 9.9 0.66.6. 6.9. 80 0.0.. 0...8..09. 0..0 0.6..8.6.6 00 6.0.. 0.6.. 00.6 0. 0.66.6...0.0. 9.8 0 6....8.08.9 0.. 0.6.8.0 8.0. 00 6.6.6.8 0.9.. 00.9 0. 0.66...9. 6.0 0.8.9 0 6...6.0. 8. 0 0.6. 0.6.9 0.6.9 6.6 00 6.9. 6. 0..6. 00.8 8. 0.6.00..9.0 90 0.0..0 0 60.6.0 9..9. 8.6 0.. 0.6.8 0.8. 6. 00 60.6.8 9. 0.. 8.0 00. 8.6 0.68.9.. 6.6.0. 9. 0 6.0.6 9... 8.8 0..9 0.6.8.0.. 00 60.8. 9.8 0.. 8. 00. 8.8 0.6.90.6. 6. 6.0 0.8.8 00 0.0..8 0 9.. 0.6.6 0.. 8.0 00 0.6 8. 0.0..0. 8.6.0.9 9. 0 9.8 6. 0.66. 0... 00.0 8.8 0.0.9.. 8. 6.0 0.8.8 0 0.0.0.6 0.. 0.69.69 8.0 9.6 0. 00 6.6 6. 0.. 9. 9. 0.9.0.8 8. 0.9. 0.69.6 8. 9.9 9. 00.0. 0.. 9. 0.0 0. 6.0 0.. 0 0.0.9. 0.. 0..9..9. 00. 6.6 0.8. 8.6 8...0.6 8. 0..9 0...8 8..6 00.. 0.8.8 9.0 8..9 Multiple Flow ates (for EWT) are shown in the table above. The lowest flow rate shown is used for geothermal open loop/well water systems with a minimum 0 F. The second flow rate shown is the minimum geothermal closed loop flow rate. The third flow rate shown is optimum for geothermal closed loop and the suggested flow rate for boiler tower applications.

NDS06 - Performance Data High Speed (800 FM) EWT F Flow gpm PSI WPD HEATING - EAT 0 F OOLING - EAT 80/6 F FT H LAT kw HE F OP HW T S S/T atio kw H EE HW 8.0.8. 0.0.8 8.8 6.0 6.. 00 8..68. 9.6.0 6.0 800 9..8 6.0 90..98. 8.0.8. 0.0. 8.6 00..69. 9..0 6. 00.9.0 0.6. 6.8.9-800..9.9 9..8.8 800 8. 0. 0.69. 66.8. - 6.0 6.. 00..9.8 9.6.6 6. 00 8.. 0.6.8 66..6-800.8.9. 9..8.9 800 8.9 0.6 0.69. 6.. - 8.0..0 0.0.6 8. 00 0..9. 0...0 00 60. 8.0 0.6.6 69.. - 800.9..9 96..0 6. 800 6.. 0.68.8 0..6-6.0 6.. 00..0.8 0.8.6. 00 60.8 8. 0.6.6 69.. - 800.. 8. 9.. 6. 800 6.6. 0.68.9.. - 8.0..8 00..0 0. 0..8. 00 6. 8. 0.6..8 9.6. 800.. 0.8 98..8.0 800 6.. 0.6.. 8.8.6 0.0. 8. 00..8.0 0..0.8 00 6.8 8. 0.6.06. 0.. 800 8..9.8 00.0.99. 800 6.0. 0.6.. 9.. 6.0 6.0.8 00 8...8 0.9.0 8.0 00 6. 9. 0.6.00.6 0.8.0 800 9... 00.6.0. 800 6.6. 0.6.9. 9.9. 8.0.6. 00 60..8. 0..06 8. 00 9. 8.0 0.6.... 800 6.0.6 6.8 0.9.08.8 800 6.. 0.6.8... 60.0..8 00 6..6 8. 09..8 8. 00 60. 8. 0.6.0.6 8..9 800 6.8. 9. 0.. 8.0 800 6.9. 0.6..9.. 6.0.8. 00 6.8. 9. 0.0. 9.0 00 60.9 8. 0.6..0 8.8.6 800 66..6 0.8 0.. 8. 800 6.. 0.6.. 8..0 8.0.6.6 00 6..69..6.0 9. 00 60. 8. 0.6..0 6.. 800 68.8.. 0..8 8.8 800 6..6 0.6.99..6. 0.0.. 00 69.8.6.6..0 9.8 00 60.8 8. 0.6.6. 6.6.9 800... 06..8 9.0 800 6.8.0 0.6.90 6. 6.. 6.0.6.9 00.6.8...6 0. 00 6. 9. 0.6.6..0. 800..8 6.8 0..6 9. 800 6.. 0.6.8 6. 6..0 8.0.. 00.0.00 6.9.. 0. 00 6..0 0.6.06 0.6.0 6.6 800..9 8. 08.9.6 9.9 800 8.8 0. 0.68..6.6.0 80.0.. 00..06 8. 6.8.9.0 00.. 0.6.98 0.9. 6. 800..0 60. 09.9. 0. 800 9. 0.6 0.68..9.0 6. 6.0.. 00 8.0. 60.6 8..6. 00.9.8 0.6.9..8. 800 80.0.06 6...6 0. 800 60..0 0.68... 6. 8.0.. 00 80.. 6. 9.8..0 00.. 0.68. 6.0.0 8. 800 8.6.6 6...60. 800. 8. 0..6 0..8 8.8 90.0.0.0 00 8.8.0 6. 0... 00.8 6.0 0.68. 6... 800 8.8.9 6.8..6. 800.0 9. 0.. 0.. 8. 6.0..0 00 8.6. 6.9...8 00. 6. 0.68.9 6.6.. 800 86.8. 68.6.6.6.8 800.6 9. 0.. 0.9. 8.0 8.0.. 00.0.9 6.8 00.. 0.68. 6. 0.9 9.6 800. 8. 0..0 0.9 0. 0. 6.0.0.6 00.8. 0.68.6 6.6. 8.9 800. 8. 0..9..0 9.9 8.0.. 0.0.8 6. 00.. 0..0 6.6 9.0.8 800.8.8 0..8 66. 8.9.8 6.0.8. 00.8. 0..9 6. 9. 0.9 800 8.. 0..9 66. 9.. 8.0..0 0.0. 6. 00..6 0..6 6..9. 800 6.. 0.6.9 6.0.9. 6.0.6 0. 00.6.0 0..6 6. 8.. 800..8 0.6.8 6. 8.. Multiple Flow ates (for EWT) are shown in the table above. The lowest flow rate shown is used for geothermal open loop/well water systems with a minimum 0 F. The second flow rate shown is the minimum geothermal closed loop flow rate. The third flow rate shown is optimum for geothermal closed loop and the suggested flow rate for boiler tower applications.

NDS0 - Performance Data Low Speed (00 FM) EWT F 0 0 0 0 60 0 80 90 00 0 0 Flow gpm PSI WPD HEATING - EAT 0 F OOLING - EAT 80/6 F FT 0.0. 6..0.6 8. 6.0 6..0 H kw HE LAT F OP HW 00.. 0.0 90.8..8 00.0.. 88.0.8. T S S/T atio kw H 0.0.6 6.0.0..9 6.0 6..8 00..9.6 9..0.9 00 9. 0. 0.6.9.6.6-00 6.9.. 90... 00.. 0.68.9. 6.8-00 6..9. 9.. 6. 00 9. 0. 0.6.. 8. - 00 8.. 6. 90.9.8. 00.0. 0.68.8..6-0.0.6 6.0.0..6 6.0 6.. 0.0..8.0.. 6.0 6.0.9 0.0...0.. 6.0.8. 0.0...0.0.0 6.0.6.9 0.0...0.9 6.8 6.0.. 0.0..9.0. 6. 6.0.. 0.0..9.0.6 6.0 6.0.0.6 00..9 9. 9.. 6. 00..0 0.6.9 8. 6. - 00..0. 9..6.8 00. 6.6 0.68.08 60..6-00.8.0 0.9 98..9 6. 00.8.0 0.6.9 8.. - 00... 9...9 00. 6. 0.68.0 60. 6. - 00 6... 00.6.8 6.6 00.6. 0.6. 6..6.0 00 8..9 6. 96..0 6. 00..9 0.69.8 6... 00 6.9..8 0.0.8 6.8 00.. 0.6.9 6...9 00 8.8. 6. 96.6.0 6. 00. 8. 0.69. 6..0.0 00 8..9 6. 0.9.9.0 00.9. 0.6. 6...8 00 0.. 8. 9.. 6. 00. 8. 0.69. 6...9 00..6 9.0 0.0.. 00.0.0 0.6.9 60. 0.9.9 00.6.. 99..0 6. 00.6. 0.0.60 6. 0.6.0 00.9.68 0. 0.0.. 00.. 0.6. 60... 00.0.6.6 99.9. 6.9 00.8. 0.0. 6...9 00... 0.8.6. 00.. 0.6. 60... 00 6..6.8 00.6.. 00..8 0.0. 6..9. 00 6...8 0..0 8.0 00.. 0.6.9 6. 8..0 00 9.0.66 6. 0... 00.. 0..89 6.0 8.. 00 8.9.8.8 08.9. 8. 00.0.9 0.6.0 6. 9..8 00 6..0 8. 0..8. 00. 8. 0..80 6.0 9.. 00 9.9.8 6. 09.6. 8. 00.. 0.6.66 6. 9.6. 00 6..6 9. 0.9.86.9 00.9 8. 0.. 6. 9.6.9 00 6..8.9 0..6 9.0 00 9.. 0.66.0 9.9.9.6 00 6.. 0.6 0..9 8. 00 0.8 6.6 0..9 6..9.9 00 6..9 0.9..8 9. 00 9.. 0.6.0 60.0 6.. 00 66.6.6.8 06..9 8. 00..0 0.. 6.8 6..6 00 6.0.9..0.80 9. 00 0.. 0.6.98 60. 6.8.8 00 6..8. 06.6.6 8.8 00.6. 0..06 6. 6.9. 00 6.6.99.0..8 0.0 00.. 0.68.... 00 6.8.8. 06.9.0 9. 00 6.9. 0.. 8.9..9 00 69.8.0 6.0 6..0 0. 00 6.0. 0.68.8..6 6.9 00..8 9. 09.. 9.6 00..0 0.. 9... 00 0..0 6. 6..0 0.6 00 6.. 0.68..8.0 6. 00..9 9. 09.. 9.9 00.9. 0..0 9... EE HW 00.. 0..8..6 9.0 00.. 0.6.86 8..8 9.8 00.. 0..6..9 8. 00 6.0. 0.6.8 9.0. 9. 0.0.0.6.0.6 6.0 6.0.8. 00 9. 9. 0..6. 9.. 00 0.. 0.80.8. 9.. 00 9.9 9.8 0... 9. 0.6 00.0.8 0.80.. 9..8 0.0.9..0.. 6.0.6 0.6 00 6.6 8.6 0.8.8.0.6. 00 8.0. 0.8.9..9. 00. 9. 0.8...9. 00 8..9 0.8.. 8..6 Multiple Flow ates (for EWT) are shown in the table above. The lowest flow rate shown is used for geothermal open loop/well water systems with a minimum 0 F. The second flow rate shown is the minimum geothermal closed loop flow rate. The third flow rate shown is optimum for geothermal closed loop and the suggested flow rate for boiler tower applications.

NDS0 - Performance Data High Speed (00 FM) EWT F 0 0 0 0 60 0 80 90 00 0 0 Flow gpm PSI WPD HEATING - EAT 0 F OOLING - EAT 80/6 F FT.0.8 8.8.0.8. 8.0 8.6 9.9 H kw HE LAT F OP HW 80.0. 9.9 9.0.. 00.. 0.6 89..0 6.9 T S S/T atio kw H.0. 8..0.. 8.0 8. 8. 80.0. 6. 9.. 8. 80 6. 8.6 0.6..9. - 00.8.8. 9..8. 00 6..0 0.6.6.6. - 80.. 6.6 9.8. 8. 80 6.9 9. 0.6...9-00..6.6 9..8.6 00 6.. 0.6.6..8 -.0.6 8..0.6.9 8.0 8. 8.9.0. 8..0.. 8.0..8.0..9.0..0 8.0...0..6.0.0.6 8.0.0 6..0...0.8. 8.0 6...0.0 6.9.0. 0. 8.0 6..0.0.9 6..0. 0. 8.0 6..6 80 9...6 99.6.9 8.9 80 6.8. 0.6.0 6.. - 00 6..9.9 9.8. 8. 00 6.. 0.6. 8. 0.8-80 60.0.6. 00.0.80 9. 80 66..9 0.6.98 6.. - 00 6..8.6 96..6 8. 00 6.8. 0.66. 8.6. - 80 6.0. 6. 0..8 9.6 80 6.0.8 0.6.68 9.6 8..8 00 6..9 8. 9..8 8.9 00 68. 6. 0.68.9 8.8..0 80 66..86 0.0 0..0 9.9 80 6.. 0.6.6 80.0 8.8. 00 68..0.6 98.9.0 9. 00 69..0 0.68.8 8. 8.0.8 80 6..9.0 0.9.0 0. 80 68.. 0.6. 80. 9.. 00 0.0.0. 99..0 9. 00 69.8. 0.68. 8.6 8.. 80 0.8.08. 0..09 0.8 80 6.8.8 0.6.9 9. 6.8.6 00..8. 00.8. 0.0 00 6. 6. 0.69.6 8. 6..9 80.0. 6. 0.0.0. 80 66.. 0.6.8 9.6.. 00 6.. 8. 0..6 0. 00 6.8 6.8 0.69.0 8. 6.. 80.6..8 0.8.. 80 6..9 0.6. 80..9.0 00 8..0 60.0 0.9. 0. 00 68.6. 0.69.0 8... 80 8..9 60. 09..8. 80 6.8. 0.66. 80...8 00 8.. 6. 0..8. 00 6..0 0.0.6 8.0. 6. 80 8..8 6.8 0.8.6. 80 66.. 0.66.6 8.0.6. 00 8..9 6. 0..9.6 00 6.8. 0.0. 8..0.9 80 8.6. 6..8..9 80 6..6 0.66.9 8. 6.0.0 00 86.. 6. 06..6.9 00 68. 8.0 0.0.6 8.8..6 80 8.. 66..9.6. 80 6.9. 0.68.68 8.9.. 00 88.. 69.0 0... 00 6..9 0..98 8..9.8 80 8..8 6.8.9.. 80 6.6.9 0.68.8 9..9 6.9 00 90.. 0.9 08..6.0 00 6.9 6. 0..8 8... 80 90..9 0...8. 80 6..6 0.68.0 9.6. 6. 00 9..8. 09... 00 6.6 6.9 0..9 8.9.. 80 9.8 6..9 6... 80 8.8 0. 0.69.89..0 9. 00 9.8 6.00. 0..68. 00 60..9 0...8. 9.8 80 9. 6.9.0...8 80 9. 0.8 0.69.9.. 8.6 00 9. 6.0 6.6 0.9.. 00 60.6. 0..0 8.0.9 9. 80 9. 6..9 8.. 6. 80 60..6 0.69. 6..8 8.0 00 00. 6.09 9...8. 00 6.. 0..0 8.. 8.9 EE HW 80.0 0. 0..8.0 0.8 0. 00 8.. 0..6. 0..6 80.6 0.8 0..9.. 9.9 00 8.8.9 0...6 0.6.0.0.8 6..0. 9.9 8.0 6.. 80 0.8. 0.. 69. 9.. 00.9 0.0 0..8.9 8.8. 80..6 0.. 69.9 9.. 00. 0. 0... 9...0. 6..0. 9. 8.0.8. 80 8. 6. 0. 6.06 68.8 8.0.8 00 9. 9.0 0.9 6...6. 80 8. 6. 0..96 69.0 8.. 00 9. 9. 0.9 6...9 6. Multiple Flow ates (for EWT) are shown in the table above. The lowest flow rate shown is used for geothermal open loop/well water systems with a minimum 0 F. The second flow rate shown is the minimum geothermal closed loop flow rate. The third flow rate shown is optimum for geothermal closed loop and the suggested flow rate for boiler tower applications.

Wiring Schematics Dual apacity Split - 08-0/60/ S Loop Pump(s) / HP 08-0/60/ Pump G Heat ecovery Unit Pump L L Gray(9) Yellow (8) Unit 08-0/60/ G un apacitor Blue ed Black omfort Alert Tan (6) L L D SOL + - S - onnection of remo for slave operation. - V Accessory rela - Field installed DPD installation) - DHW pump only in - omfort Alert fault 6 - This Switch allows when OFF and finis second stage reduc compressors and s E-Series or Premie FP ed () ed () Lege NO NO Fused L NO rankcase Heater Black Green /Yellow Orange ( ) Black 0V L Fused L F-0A 0V N NO N Brown () 0V L Facto Facto Field l Field l Option D Vo Intern Quick Wire n omfort Alert Y Y Violet () NOTE SL In SL Out Optional emote Unit Without Loop Pump Yellow (6) Black () White () Violet () Black () OM HI -GND P Y Y W O 6 G LO 8 P Shut Down SL In SL Out Not Used NOTE P Acc om Acc N Acc NO 6 P OM EM Air Flow Settings SW On SW 6 8 9 0 NOT USED OM On SW Test / Norm Loop / Well Fan / omp 6 Inputs / Norm Outputs / Norm 8 Pulse L / onstant L Black () Microprocessor Logic ontrol (D Voltage) OM On Dual/ Single apacity Normal/Finish on nd NOTE 6 No PM / PM Must be On Envision / E Series or Premier Fused L F-0A 0V P6 8 6 0 9 6 P 9 0 8 6 NOT USED Tan Orange Orange Yellow Yellow Blue Blue Black NOTE L omfort Alert V T LP HP FD A - S - - - - - - F and F - FD - HP - LP - V - SW - SW - SW - P L T G Field w Groun elay N.O., Fuse omf omp omp Not U Loop Loop Not U Fuses Freez High P Low P ever Not U DIP P DIP P rank Therm Light elay apac Switch Switc Polari Black Status LED PB SW G Y LED Normal Display Mode Field Selection Dips - # On, #6 On, # On Drain Water Flow FD thermistor (loop< F,well <0 F) Lockout High Press High Pressure Low Press /A Low Pressure / omfort Alert Air Flow Status Microprocessor malfunction* DHW Limit DHW off *Green LED not flashing urrent Fault Status # Off, #6 On, # On FD thermistor (loop < F, well <0 F) High Pressure Low Pressure / omfort Alert Diagnostic Modes Inputs #6 Off, # On Y Y O SL SL Outputs #6 On, # Off Lo apacity ompressor Hi apacity ompressor V FAN Loop Pump Loop Pump Outputs #6 Off, # Off 6

Wiring Schematics cont. Dual apacity Split - 08-0/60/ cont. L Legend Factory Low voltage wiring Factory Line voltage wiring Field low voltage wiring Field line voltage wiring Optional block D Voltage PB traces Internal junction Quick connect terminal Wire nut Field wire lug Ground elay ontacts - N.O., N.. Fuse Notes - onnection of remote unit that does not have a loop pump for slave operation. - V Accessory relay (see SW - for description of operation) - Field installed DPDT dual fuel relay. (equired for dual fuel installation) - DHW pump only in models with hot water generation option. - omfort Alert fault output to Premier ontrol Board 6 - This Switch allows the unit to down stage with the t-stat when OFF and finish on second stage when ON. Finish second stage reduces stage changing in recip dual capacity compressors and should be ON for unzoned Dual ap E-Series or Premier speed units. P 0V - L 0V - L N.O. - DHW Pump -GND LO HI F Logic Board - Physical Layout Fused L N.O. - Loop Pump Microprocessor Fused L Fused L Fused L Fused L SW SW SW Off On Off On Off On 6 6 8 8 9 0 P P 6 8 6 Y Y W O G L Shut Down N.. N.O. - - SL IN om SL Out SL IN SL Out F N.O. 0V - L 0V - L 9 0 6 6 8 8 9 0 6 P A NO om A N A OM P6 P A - S - - - - - - F and F - FD - HP - LP - V - SW - SW - SW - omfort Alert ompressor Solenoid ompressor ontactor Loop Pump elay Loop Pump elay Fuses Freeze Detection sensor High Pressure Switch Low Pressure Switch eversing Valve oil DIP Package 8 Position DIP Package Position omfort Alert Physical Layout POWE Data Port Y Y L P T G rankcase Heater Thermistor Light Emitting Diode - Green elay oil apacitor w/ Bleed esistor Switch-High Pressure Switch-Low Pressure Polarized onnector D Sol ALET TIP omfort Alert Status LED Flash ode Description Green Solid Module Has ed Solid Y Present But ompressor Not unning ode Long un Time ode System Pressure Trip ode Short ycling ode Locked otor Yellow ode Open ircuit ode 6 Open Start ircuit ode Open un ircuit ode 8 Welded ontactor ode 9 Low Voltage 9P88-0 /9/0

Wiring Schematics cont. Dual apacity Split with IntelliStart - 08-0/60/ Loop Pump(s) / HP 08-0/60/ Pump G Pump Gray(9) Yellow (8) Unit 08-0/60/ un apacitor Blue S omfort Alert Tan (6) T T Black D SOL + - S ed PB Pink Blue Black ed Heat ecovery Unit L L NO NO Fused L NO G L FP ed () ed () rankcase Heater Black Green /Yellow Orange ( ) Black 0V L Fused L F-0A 0V N NO N L Brown () 0V L L Leg Fa Fa Fi Fi Op D In Qu W Fi Gr e N. Fu omfort Alert Y Y Violet () NOTE SL In SL Out Optional emote Unit Without Loop Pump Yellow (6) Black () White () Violet () Black () HI -GND P Y Y W O G LO P Shut Down SL In SL Out Not Used NOTE P Acc om Acc N Acc NO 6 8 6 P OM OM EM Air Flow Settings SW On SW 6 8 9 0 NOT USED OM On SW Test / Norm Loop / Well Fan / omp 6 Inputs / Norm Outputs / Norm 8 Pulse L / onstant L Black () Microprocessor Logic ontrol (D Voltage) OM On Dual/ Single apacity Normal/Finish on nd NOTE 6 No PM / PM Must be On Envision / E Series or Premier Fused L F-0A 0V P6 8 6 0 9 6 P 9 0 8 6 NOT USED Tan Orange Orange Yellow Yellow Blue Blue Black NOTE L omfort Alert V T LP HP FD A - S - - - - - - F and F - FP - HP - LP - V - SW - SW - SW - P T G o o o No Lo Lo No Fu Fr Hi Lo e No DI DI r Th Lig e a Sw Sw Po Status LED PB SW G Y LED Normal Display Mode Field Selection Dips - # On, #6 On, # On Drain Water Flow FD thermistor (loop< F,well <0 F) Lockout High Press High Pressure Low Press/A Low Pressure / omfort Alert Air Flow Status Microprocessor malfunction* DHW Limit DHW off *Green LED not flashing urrent Fault Status # Off, #6 On, # On FD thermistor (loop < F, well <0 F) High Pressure Low Pressure / omfort Alert Diagnostic Modes Inputs #6 Off, # On Y Y O SL SL Black Outputs #6 On, # Off Lo apacity ompressor Hi apacity ompressor V FAN Loop Pump Loop Pump Outputs #6 Off, # Off - onnection for slave op - V Access - Field install installation) - DHW pump - omfort Ale 6 - This Switch when OFF second sta compresso Series or P 8

Wiring Schematics cont. Dual apacity Split with IntelliStart - 08-0/60/ cont. PB Pink Blue Black L ed A - S - - - - - - F and F - FP - HP - LP - V - SW - SW - SW - Factory Low voltage wiring Factory Line voltage wiring Field low voltage wiring Field line voltage wiring Optional block D Voltage PB traces Internal junction Quick connect terminal Wire nut Field wire lug Ground elay ontacts - N.O., N.. Fuse un Winding Active Start ommon Legend IntelliStart omfort Alert ompressor Solenoid ompressor ontactor Loop Pump elay Loop Pump elay Fuses Freeze Detection sensor High Pressure Switch Low Pressure Switch eversing Valve oil DIP Package 8 Position DIP Package Position P 0V - L 0V - L N.O. - DHW Pump -GND LO HI F Logic Board - Physical Layout Fused L N.O. - Loop Pump Microprocessor Fused L Fused L Fused L Fused L SW SW SW Off On Off On Off On 6 6 8 8 9 0 P P 6 8 6 Y Y W O G L Shut Down omfort Alert Physical Layout POWE Y Y N.. N.O. - - SL IN om SL Out SL IN SL Out F N.O. 0V - L 0V - L 9 0 6 6 8 8 9 0 6 P A NO om A N A OM P6 P rankcase Heater Data Port L T Thermistor G Light Emitting Diode-Green elay oil apacitor w/ Bleed esistor D Sol ALET TIP P Switch - High Pressure Switch - Low Pressure Polarized onnector omfort Alert Status LED Flash ode Description Green Solid Module Has ed Solid Y Present But ompressor Not unning ode Long un Time ode System Pressure Trip ode Short ycling ode Locked otor Yellow ode Open ircuit ode 6 Open Start ircuit ode Open un ircuit ode 8 Welded ontactor ode 9 Low Voltage Notes - onnection of remote unit that does not have a loop pump for slave operation. - V Accessory relay (see SW - for description of operation) - Field installed DPDT dual fuel relay. (equired for dual fuel installation) - DHW pump only in models with hot water generation option. - omfort Alert fault output to Premier ontrol Board 6 - This Switch allows the unit to down stage with the t-stat when OFF and finish on second stage when ON. Finish second stage reduces stage changing in recip dual capacity compressors and should be ON for unzoned Dual ap E Series or Premier speed units. 9P88-0 /9/0 9

Microprocessor ontrol Features and Operation The NDS control system is a microprocessor-based printed circuit board conveniently located in the unit control box for easy accessibility. The microprocessor control is specifically designed for the Envision Series heat pumps. The microprocessor provides control of the entire unit as well as outputs for status modes, faults, and diagnostics. Low voltage terminal strips provide all necessary terminals for field connections. An LED board is installed for quick diagnostics. The control offers optimal space conditioning. The board accepts traditional VA thermostat inputs. Startup The unit will not operate until all the inputs and safety controls are checked for normal conditions. At first powerup, a four-minute delay is employed before the compressor is energized. omponent Sequencing Delays omponents are sequenced and delayed for optimum space conditioning performance. Accessory elay An accessory relay on the control board allows for field connection of solenoid valves, electronic air cleaners, etc. The accessory relay has a normally open output and a normally closed output. Short ycle Protection The control employs a minimum off time of four minutes to provide for short cycle protection of the compressor. Shutdown Mode A VA common signal to the shutdown input on the control board puts the unit into shutdown mode. ompressor and blower operation are suspended. Safety ontrols The Envision control receives separate signals for a high pressure switch for safety, a low pressure switch to prevent loss of charge damage, and a low suction temperature thermistor for freeze detection. Upon a continuous 0-second measurement of the fault (immediate for high pressure), compressor operation is suspended, the appropriate lockout LED begins flashing. (efer to the Fault etry section.) Testing The Envision control allows service personnel to shorten most timing delays for faster diagnostics. Fault etry All faults are retried twice before finally locking the unit out. An output signal is made available for a fault LED at the thermostat. The fault retry feature is designed to prevent nuisance service calls. Diagnostics The Envision control board allows all inputs and outputs to be displayed on the LEDs for fast and simple control board diagnosis. Heating Operation Heat, st Stage (Y) The blower motor is started on low speed immediately (PS ON), the loop pump is energized seconds after the Y input is received, and the compressor is energized on low capacity 0 seconds after the Y input. The blower is switched to medium speed seconds after Y input (EM only). Heat, nd Stage (Y,Y) Dual apacity Units The second stage compressor will be activated seconds after receiving a Y input as long as the minimum first stage compressor run time of minute has expired. The EM blower changes from medium to high speed seconds after the Y input. The omfort Alert will delay the second stage compressor until seconds after it receives a Y from the board. Heat, rd Stage (Y,Y,W) Dual apacity Units The st stage of resistance heat is energized 0 seconds after W input, and with continuous rd stage demand, the additional stages of resistance heat engage 90 seconds after the first stage. Emergency Heat (W only) The blower is started on high speed, and the first stage of resistance heat is energized 0 seconds after the W input. ontinuing demand will engage the additional stages of resistance heat 90 seconds after the first stage. ooling Operation In all cooling operations, the reversing valve directly tracks the O input. Thus, anytime the O input is present, the reversing valve will be energized. ool, st Stage (Y,O) The blower motor is started immediately, the loop pump(s) is energized seconds after the Y input is received. The compressor will be energized (on low capacity for Dual apacity units) 0 seconds after the Y input. The EM 0

Microprocessor ontrol Features cont. blower will shift from low to medium speed seconds after the Y input (8% of medium speed if in dehumidification mode). Logic Board - Dual apacity ool, nd Stage (Y, Y, O) Single Speed Units The blower changes to high speed (8% of high speed if in dehumidification mode) seconds after the Y input (EM only). ool, nd Stage (Y, Y, O) Dual apacity Units The second stage compressor will be activated seconds after receiving a Y input as long as the minimum first stage compressor run time of minute has expired. The EM blower changes to high speed seconds after the Y input (8% of high speed if in dehumidification mode). The omfort Alert will delay the second stage compressor until seconds after it receives a Y from the board. Blower (G only) The blower starts on low speed (PS ON). egardless of blower input G from thermostat, the blower will remain on low speed for 0 seconds at the end of each heating, cooling or emergency heat cycle. Lockout onditions During lockout mode, the appropriate unit and thermostat lockout LEDs will illuminate. The compressor, loop pump, and accessory outputs are de-energized. The blower will continue to run on low speed. If the thermostat calls for heating, emergency heat operation will occur. omfort Alert lockouts cannot be reset at the thermostat. All other lockout modes can be reset at the thermostat after turning the unit off, then on, which restores normal operation but keeps the unit lockout LED illuminated. Interruption of power to the unit will reset a lockout without a waiting period and clear all lockout LEDs. Dual apacity Operation Logic OPEATION HEATING OOLING STG STG STG STG STG* ompressor-low On Off Off On Off ompressor-hi Off On Off Off On Blower On On On On On Loop Pump On On Off On On eversing Valve Off Off Off On On T-Stat Signal Y Y, Y W Y, O Y, Y, O High Pressure This lockout mode occurs when the normally closed safety switch is opened momentarily (set at 600 PSI). Low Pressure This lockout mode occurs when the normally closed low pressure switch is opened for 0 continuous seconds (set at 0 PSI). A low pressure fault may also be indicated when a omfort Alert lockout has occurred. Freeze Detection (Water Flow) This lockout mode occurs when the freeze detection thermistor temperature is at or below the selected point (well 0 F or loop F) for 0 continuous seconds.

Microprocessor ontrol cont. ompressor Monitoring/omfort Alert The omfort Alert displays abnormal compressor conditions through a unique flash code and communicates the conditions to the heat pump microprocessor control. The heat pump microprocessor will determine which fault to act on and ignore. Fault codes (system pressure), (locked rotor), 6 (open start circuit), and (open run circuit) will result in a lockout. All other fault codes are passive. All compressor alerts are displayed on the module by flashing the yellow Alert LED a specific number of times consecutively followed by a pause, and then repeated. The number of consecutive flashes or Flash ode correlates to a specific abnormal condition. The red TIP LED means there is a thermostat demand signal Y present but the compressor is not running. The green POWE LED means the module has power. Green "POWE" LED - module has power ed "TIP" LED - Thermostat "Y" demand signal is present, but the compressor is not running. omfort Alert Flash odes Yellow "ALET" LED LED Description ause Flash ode Long un Time Not applicable Flash ode System Pressure Trip Not applicable Flash ode Short ycling ompressor run time of less than minutes on consecutive cycles Flash ode Locked otor Four consecutive compressor protector trips indicating compressor won't start Flash ode Open ircuit "Y" thermostat demand signal with no compressor current Flash ode 6 Open Start ircuit "Y" thermostat demand signal with no current in the start circuit Flash ode Open un ircuit "Y" thermostat demand signal with no current in the run circuit Flash ode 8 Welded ontactor urrent detected with no "Y" thermostat demand signal present Flash ode 9 Low Voltage Less than VA detected in control circuit * Flash code number corresponds to a number of LED flashes, followed by a pause and then repeated. * TIP and ALET LEDs flashing at the same time indicates control circuit voltage is too low for operation. * eset ALET flash code by removing VA power from module. * Last ALET flash code is displayed for minute after module is powered on. esetting omfort Alert odes Alert codes can be reset manually by cycling power off and on to the omfort Alert module. Alert codes will reset automatically if conditions return to normal. Flash ode Number LED Description Automatic eset of Alert odes Flash ode Long un Time Not applicable Flash ode System Pressure Trip Not applicable Flash ode Short ycling Four "alert free" on and off cycles to reset automatically Flash ode Locked otor Four "alert free" on and off cycles to reset automatically Flash ode Open ircuit One "alert free" on and off cycles to reset automatically Flash ode 6 Open Start ircuit One "alert free" on and off cycles to reset automatically Flash ode Open un ircuit One "alert free" on and off cycles to reset automatically Flash ode 8 Welded ontactor One "alert free" on and off cycles to reset automatically Flash ode 9 Low Voltage esets when voltage rises above 9 VA * eset ALET flash code by removing VA power from module.