ччччччччч Keywords: Air handling units, energy consumption.

Similar documents
For an ideal gas mixture, Dalton s law states that the sum of the partial pressures of the individual components is equal to the total pressure.

ME Mechanical Engineering Systems Laboratory. Experiment 3 - Mass and Energy Balances in Psychrometric Processes

Feasibility of Controlling Heat and Enthalpy Wheel Effectiveness to Achieve Optimal Closed DOAS Operation

Desiccant Cooling with Solar Energy

ME 410 MECHANICAL ENGINEERING SYSTEMS LABORATORY MASS & ENERGY BALANCES IN PSYCHROMETRIC PROCESSES EXPERIMENT 3

INTRODUCTION OF HYBRID VENTILATION SYSTEMS OF DWELLING BUILDINGS IN LATVIA

ME 410 MECHA ICAL E GI EERI G SYSTEMS LABORATORY

Available online at Energy Procedia 6 (2011) MEDGREEN 2011-LB

Chapter 14, Problem 27.

METHODS FOR ANALYZING THE ENERGY EFFICIENCY AND COST EFFECTIVENESS OF EVAPORATIVE COOLING AIR CONDITIONING

Week 4. Gas-vapor mixtures Air conditioning processes. ME 300 Thermodynamics II 1

Department of Mechanical Engineering ME 322 Mechanical Engineering Thermodynamics

CE311 Fall 2016 Mid-Term Exam 1

Available online at ScienceDirect. Energy Procedia 52 (2014 ) Vishal Vadabhat, Rangan Banerjee

s. Properties for R134a are as follows : Saturated R-134a Superheated R-134a

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road AUTONOMOUS QUESTION BANK (DESCRIPTIVE) UNIT I

Psychrometrics. Outline. Psychrometrics. What is psychrometrics? Psychrometrics in daily life and food industry Psychrometric chart

ω = (1) Kirby S. Chapman Ph.D.

TECHNICAL NOTE ON EVAPORATIVE COOLING. Renato Lazzarin, President of the IIR s Commission E1

COMPARING AIR COOLER RATINGS PART 1: Not All Rating Methods are Created Equal

Scientific Principals and Analytical Model. Charcoal Cooler. Lisa Crofoot MECH 425, Queens University

Comparison Simulation between Ventilation and Recirculation of Solar Desiccant Cooling System by TRNSYS in Hot and Humid Area

FAST AND ROBUST BUILDING SIMULATION SOFTWARE. Chilled Beam Performance: 1 Shelly Street, Sydney

UNIT 1 AIR CONDITIONING 1. Write the various psychometric processes? Explain any four processes with neat sketches?

S.A. Klein and G.F. Nellis Cambridge University Press, 2011

Heat pump and energy recovery systems

Chapter 14 GAS VAPOR MIXTURES AND AIR-CONDITIONING

Redesign of Bennett Hall HVAC System

CE311 Fall 2016 Mid-Term Exam 1

Thermodynamics II Chapter 6 Mixtures & Psychrometry

PERFORMANCE OF SOLID DESICCANT COOLING WITH SOLAR ENERGY IN HOT AND HUMID CLIMATE

AND AIR-CONDITIONING. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University

Section 4 of 6 DOAS Core Technologies

SIMULATION ANALYSIS OF BUILDING HUMIDITY CONTROL AND ENERGY CONSUMPTION FOR DIFFERENT SYSTEM CONFIGURATIONS USA

CARRIER edesign SUITE NEWS. Interpreting High (Low) Peak Design Airflow Sizing Results for HVAC. Equipment Selection.

Optimizing Electric Humidifier Operation with an Air Side Economizer

Desiccant Cooling Analysis Simulation software, energy, cost and environmental analysis of desiccant cooling system

VENTILATION SYSTEM WITH GROUND HEAT EXCHANGER

Psychrometrics: The Science of Moisture in Air. Presented by Tom Peterson, CEO and Founder. Climate by Design International

Reducing energy consumption of airconditioning systems in moderate climates by applying indirect evaporative cooling

Clemens Felsmann 1, Jean Lebrun 2, Vincent Lemort 2 and Aad Wijsman 3 ABSTRACT INTRODUCTION METHODOLOGY

Article Energy Saving Benefits of Adiabatic Humidification in the Air Conditioning Systems of Semiconductor Cleanrooms

Effect of Operating Parameters on the Performance of Direct Evaporative Cooler

Hawaii Energy and Environmental Technologies (HEET) Initiative

Impacts of Optimized Cold & Hot Deck Reset Schedules on Dual Duct VAV Systems - Theory and Model Simulation

Adding More Fan Power Can Be a Good Thing

4th International Conference on Sensors, Measurement and Intelligent Materials (ICSMIM 2015)

SIMULATION ANALYSIS ON THE FRESH AIR HANDLING UNIT WITH LIQUID DESICCANT TOTAL HEAT RECOVERY

Impact of Multi-Stage Liquid Desiccant Dehumidification in a Desiccant and Evaporative Cooling-Assisted Air Conditioning System

Active desiccant integration with packaged rooftop HVAC equipment

R07. Answer any FIVE Questions All Questions carry equal marks *****

Shortcut Model for Predicting Refrigeration Cycle Performance

EXPERIMENTAL STUDY OF AIR FLOW RATE EFFECTS ON HUMIDIFICATION PARAMETERS WITH PREHEATING AND DEHUMIDIFICATION PROCESS CHANGING

Summary Comparison of Simulation Program Features

Review on Waste Heat Recovery Techniques in Air Conditioning Application

14 Drying. I Basic relations and definitions. Oldřich Holeček, Martin Kohout

Institute of Aeronautical Engineering (Autonomous) Dundigal, Hyderabad B.Tech (III II SEM) MECHANICAL ENGINEERING

Achieving Dry Outside Air in an Energy-Efficient Manner

ISSN Vol.08,Issue.21, November-2016, Pages:

seasons in regions with hot, humid climates. For this reason, a dehumidification system with a radiant panel system needs to be developed. In a former

HVAC 101. The Basics of Heating, Ventilation and Air Conditioning

PERFORMANCE EVALUATION OF TWO STAGE AIR COOLER IN DIFFERENT SPEED

AR/IA/UP 241 Lecture 5: Psychrometrics

Development of a Psychrometric Test Chamber. Michael J. Swedish. Associate Professor Mechanical Engineering Department Milwaukee School of Engineering

Analysis of Energy Consumption for Biomass Drying Process

Temperature. In the HVAC area, we talk about two kinds of temperatures.

Dynamic performance of a novel dew point air conditioning for the UK buildings

UNIT-III PSYCHROMETRY. Though there are many psychometric terms, yet the following are important from the subject point of view :

Humidity Control & Psychrometrics

Evaporative Cooling Applicability in the Middle East

Design Procedure for a Liquid Dessicant and Evaporative Cooling Assisted 100% Outdoor Air System

Performance Rating of Commercial and Industrial Unitary Air-Conditioning Condensing Units

New Software for Simulation of Drying and Evaporation Systems

HVAC Fundamentals & Refrigeration Cycle

All rights reserved, Armando B. Corripio, PhD, PE, Solid Dryer Design Introduction Continuous Dryer Design...

Efficient energy recovery in AHU. DOHA, Qatar Timo Schreck Enventus AB, Sweden

Performance Optimization of the Evaporative Condenser Design

Energy Recovery Ventilation

Feasibility of a Liquid Desiccant Application in an Evaporative. Cooling Assisted 100% Outdoor Air System

A660 Air Conditioning Laboratory Unit

K.F. Fong *, C.K. Lee, T.T. Chow

Recent Advances in Energy, Environment and Economic Development

GRAPSI_DRAW DIGITAL PSYCHROMETRIC CHART

Comfort and health-indoor air quality

Oxyvap Evaporative Cooling Applications

PINNACLE SERIES DEDICATED OUTDOOR AIR SYSTEM ENERGY EFFICIENT DEHUMIDIFICATION

Field Test of Combined Desiccant-Evaporator Cycle Providing Lower Dew Points and Enhanced Dehumidification

AHRI 920 Performance Rating and Comparisons of DX-DOAS Unit Efficiency

Energy Consumption Reduction of AHU using Heat Pipe as Dehumidifier

Numerical Study on Improvement of COP of Vapour Compression Refrigeration System

Evaluation of a dynamic model for a cold climate counter flow air to air heat exchanger

Dhulapally, Secunderabad Subject: REFRIGERATION AND AIR CONDITIONING QUESTION BANK

MODELLING AND OPTIMIZATION OF DIRECT EXPANSION AIR CONDITIONING SYSTEM FOR COMMERCIAL BUILDING ENERGY SAVING

Experimental investigation of Hybrid Nanofluid on wickless heat pipe heat exchanger thermal performance

Thermo-physical properties found on most psychrometric charts

Mechanical Engineering Laboratory

Thermodynamics: Homework A Set 7 Jennifer West (2004)

2013 Guideline for Specifying the Thermal Performance of Cool Storage Equipment. AHRI Guideline T (I-P)

Desiccant Evaporative Cooling

PRINCIPLES OF HEATING, VENTILATION AND AIR CONDITIONING with Worked Examples

Transcription:

ISSN 47-7329 CONSTRUCTION SCIENCE BŪVZINĀTNE 27-8 DEVELOPMENT OF AIR HANDLING UNITS ENERGY CONSUMPTION CALCULATION PROGRAM GAISA APSTRĀDES IEKĀRTAS ENERĢIJAS PATĒRIŅA APRĒĶINA PROGRAMMAS IZVEIDE Andris Krūmiņš, Ph.D. student, Institute of Heat, Gas and Water technology, Riga Technical University Azenes St 6, Riga LV-48, Latvia Phone: + 37 7559; Fax + 37 76298 E-mail:andrisk@lafivents.lv Egils Dzelzitis, Professor, Institute of Heat, Gas and Water technology, Riga Technical University Azenes St 6, Riga LV-48, Latvia Phone: + 37 7659; Fax + 37 7659 E-mail: egils.dz@lafipa.lv ччччччччч Arturs Lešinskis, Associated professor, Institute of Heat, Gas and Water technology, Riga Technical University Azenes St 6, Riga LV-48, Latvia Phone: + 37 7627787; Fax + 37 76298 E-mail: arturs@lafivents.lv Keywords: Air handling units, energy consumption. Summary Energy consumption of HVAC systems in modern buildings is increasing very significantly. Ventilation and cooling system consumes /3 of total building s energy consumption []. Combination of air handling units optimal technical characteristics with good control system can minimize costs and energy demand. Research of the air handling units optimal technical characteristics requires understanding of indoor climate energy and moisture gains, quantity of moist air to be supplied considering a fast changing of outside air parameters. Introduction This paper reports on energy calculation program development for the air handling units. The air handling units energy consumption depends on thermodynamic properties of moist air. The program is developed for the energy consumption calculation of air handling units with heat recovery sections (both temperature and humidity recovery), recirculation section (adiabatic mixing of two 5

most air streams), heating section, cooling /dehumidification section, humidification section, supply and exhaust fans. The program calculates heat and electrical energy consumption of an air handling unit per year according to known (or measured) exhaust air temperature and humidity and variable outside air temperature and humidity. Methods The program is written in Matlab programming language with graphical user interface and plotting functions of results. Every hour from 876 h per year the program calculates the necessary heating / cooling dehumidification / humidification power according to the air mass, exhaust, supply, the outside air parameters and air handling units configuration. Electrical power of fans for the air distribution is calculated according to the air mass, fans efficiency, air ducts resistance. The energy consumption is calculated as a sum of heating, cooling and electrical energy demand per hour. Climate inlatvia Latvia is located in the moderate climatic zone. Its temperature, moist climate is created by the Atlantic air masses and influenced by the Baltic sea and the gulf of Riga. The outside air very rarely corresponds to the necessary supply air parameters (see Figure ). The rest of the time the air should be heated, cooled, humidified or dehumidified to achieve the necessary air temperature and humidity in premises. 52

Figure. Average meterological year of Latvia The energy calculations of the air handling units is based on Latvia s average meteorogical year, which was developed [2] according to National renewable energy Labaratory s [8] principles. Each dot in Figure (temperature, absolute, relative air humidity) corresponds to one hour of the average year. POWER CALCULATIONS OF AIR HANDLING UNIT 3 Known parameters of the outside and exhaust air are: air volume m / h ; barometric pressure (,325 kpa), temperature C, relative humidity %. Before calculations of power it is necessary to calculate the air parameters according to [3]: water vapor saturation pressure kpa; water vapor pressure kpa, absolute humidity kg / kg, the specific volume of air m 3 / kg, mass of air kg / s, enthalpy kj / kg, dew point temperature C, wet bulb temperature C. All these parameters are necessary for calculation of energy consumption. Power calculation of air heating: Q= m ( h ) da 2 h, kw () where Q necessary heating power, kw; enthalpy of air after heating kj / kg ; m da - mass of air, kg / s ; h 2 - kj / kg. h - enthalpy of air before heating Power calculation of air cooling: Q= mda h h ), kw (2) ( 2 where Q the necessary cooling power, kw; m da - the mass of air, kg / s ; h 2 - the enthalpy of air after cooling kj / kg ; h - the enthalpy of air before cooling kj / kg. Air parameters calculation of two air streams adiabatic mixing: mda h + mda2h2 = mda3h3, (3) m da+ mda2 = mda3, (4) m W + m W m, (5) where masses of air da da da2 2 = da3w3 m and m da2 are mixed together, W absolute humidity of air g/kg. Heat recovery: Heat recovery depends on the heat recovery efficiency (temperature and humidity) and mass flow differences between Time, h the supply / exhaust air. Assuming T equal mass flows, temperature and humidity after heat recovery can be calculated: t =η temp ( t t + t, C (6) 3 2 ) where t 3 - the supply air temperature t - the outside air temperature equipment. C ; t 2 - the exhaust air temperature C ; C, ηtemp - the temperature efficiency of heat recovery W =η hum ( W W T+ W, kg/kg (7) 3 2 ) 53

where W 3 - the supply air absolute humidity kg/kg; W2 - the exhaust air absolute humidity kg/kg; W - the outside air absolute humidity kg/kg, η hum - the humidity efficiency of heat recovery equipment. Humidification section: The energy calculations program calculates steam humidifier section (temperature is constant). The necessary humidification can be calculated as: WP = m ( W ) da, kg/kg (8) 3 3 W where WP 3 - the necessary supply air absolute humidity kg/kg; W 3 - the supply air absolute humidity kg/kg; W - the outside air absolute humidity kg/kg. Steam humidifiers consumes electrical energy, usually according to the steam humidifiers technical data to evaporate kg humidity requires.75 kw of electrical power. Calculation of supply / exhaust fans electrical power: Fans electrical energy power depends on air ducts resistance, fans efficiency and air volume. The fans electrical power can be calculated as: p q P= v, kw ηv η m ηt where P the necessary electrical power of fan kw ; p - pressure rise in fan Pa, η v - fan s efficiency coefficient; η m - motor efficiency coefficient; ηt - transmission efficiency coefficient, q v - air volume 3 m / s Supply air volume, temperature and humidity parameters calculation of air handling unit. (9) The quantity of supply air and its parameters are calculated as a necessity to remove given amounts of energy and water from the space to achieve the necessary temperature and relative humidity. The condition line of supply air: h h h qs +Σ mwhw = = ) 2 (, kj/kg W2 W W Σmw qs +Σ( mwhw ) mda =, kg/s h h where s 2 q - the net sum of all sensible heat gain arising from transfer through boundaries and from sources within the space, kw; Σ mw - the net sum of all rates of moisture gain arising from the transfer through boundaries and from the sources within the space, kg / s ; h w - the specific enthalpy of the added water vapor kj/kg. The minimum quantity of supply air shall correspond to the norms of air exchange per hour. Practical calculations of air handling unit () () The air handling unit with rotary heat exchanger, water heating coil, water cooling coil and the second water heating coil is analyzed as a practical example of energy consumption calculation program. 54

Figure 2. Air handling unit configuration for energy consumption calculation Air handling unit data are according to Table. Table Air handling unit specification Electrical power of supply / exhaust fans, kw 9.6 / 7.8 Total pressure supply / exhaust fans, Pa 225 / 932 Air volume of supply / exhaust fans, m 3 / h 8 / 8 Temperature / humidity efficiency of rotating heat exchanger.74 /.64 Nominal heating power of heating coil, kw 5 Nominal cooling power of cooling coil, kw 9 Nominal heating power of second heating coil, kw 75 Several assumptions have been made for calculation and analyze of the air handling unit s energy consumption: a) the air handling unit is working all year (876h); b) fans operates on nominal speed; h c) the condition line is 6,2 kj/g; W d) for achieving room s temperature 23 C, 8 g/kg absolute humidity (45% relative humidity) at exhaust air parameters 26.2 C and 8.8 g/kg absolute humidity (exhaust air parameters are not changing during a year), supply air parameters should be 2 C and 7. g/kg absolute humidity according to the air handling unit s air volume, see in Table. e) air distribution effect on room s temperature is not considered; f) air is dehumidified to cooling coil temperature 9.3 C. 55

Figure 3. Air handling process analyze to achieve the necessary supply temperature Practical calculations showed that the air should be heated, if the outside temperature is lower than 2 C (Fig. 3). Supply air temperature after rotating heat exchanger Rotating heat exchanger is activated, when the outside temperature is lower than 2 C and the absolute humidity is lower than 7. g/kg. The air handling unit s rotating heat exchanger is equipped with frequency converter, which allows to limit the supply air temperature and humidity (2 C, 7. g/kg). The rotating heat exchanger is operating also in summer, when the outside air temperature is higher than exhaust air temperature and the outside air humidity is higher than exhaust air humidity. The air handling unit s energy consumption is calculated without the work of rotating heat exchanger in summer and with work of rotating heat exchanger in summer regime. Figure 4 shows supply air parameters after the rotating heat exchanger. Each dot in Figure 4 corresponds to hour. 56

RESULTS Figure 4. Supply air temperature after heat recovery According to the supply air temperature and humidity after the heat recovery, the supply air is heated, cooled or dehumidified. Figure 5. Power calculations for every hour according to necessary supply air parameters. Program calculates total energy consumption of air handling unit per year. 57

Table 2.Energy consumption of air handling unit Energy consumption of heating coil, kwh 24 56 Energy consumption of cooling coil, kwh 73 342 Energy consumption of second heating coil, kwh 59 28 Electrical energy consumption of fans, kwh 5 985 Electrical energy consumption of rotating heat exchanger (motor power 272 W, operating hours 272h per year), kwh Electrical consumption of control system (2W), kwh 75 The rotating heat exchanger in summer regime works just 3h per year. The calculation was done without the work of rotating heat exchanger in summer regime. In this case, cooling power increases for 78kWh (.%), heating power with the second heating coil increases for kwh (.7%). CONCLUSION Figure 6.The supply air parameters after air handling The air handling units power consumption calculation program is a the first step for the development of good control system for the air handling unit. The graphical analyze of the processes gives information about the necessity of temperature, humidity sensors and their location places. The power calculations of the air handling unit s heating and cooling coils show the necessary power requirements for different regimes, and the supply air parameters can be calculated when there is a luck of heating / cooling power. Known necessary parameters of the supply air and the use of the energy calculation program allow to choose the correct configuration of the air handling unit. The supply air parameters and its effect on the air handling unit s configuration and control system should be investigated more. 58

REFERENCES. Arthur. D. Little. 999. Energy consumption characteristics of commercial building HVAC systems. Volume 2: Thermal distribution, Auxiliary equipment, and ventilation. Cambridge. 2. ASHRAE. 992. ANSI/ASHRAE Standard 55-992, Thermal Environmental Conditions for Human Occupancy, Atlanta: American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc. 3. ASHRAE 997. Handbook of Fundamentals, SI Edition, American Society of Heating, Refrigerating and Air conditioning Engineers. 4. Banyard C. P., Martin A. J. 998. Library of system control strategies, Berkshire. 5. Clark DR, Hurley CW, Hill CR. Dynamic models for HVAC system components. ASHRAE Trans 985;9():737 5. 6. Elmahdy AH, Mitalas GP. Simple model for cooling and dehumidifying coils for use in calculating energy requirements for buildings. ASHRAE Trans 977;83 Part 2:3 7. 7. John MacQueen. 997. The modeling and simulation of energy management control systems. Doctoral thesis, University of Strathclyde, Glasgow, UK. 8. National Renewable Energy Labaratory 995. User s manual for Typical Meteorological Years, NREL/SP-464-7668. 9. MATLAB, The MathWorks, Inc., 999.. Simonson, C.J., D.L. Ciepliski and R.W. Besant. 999. Determining the performance of energy wheels: Part I and Part II. ASHRAE Transactions 5():74-.. Tiax LLC. 22.Energy consumption characteristics of commercial building HVAC systems. Volume 3: Energy savings potential. Cambridge. 2. Zarins M. 2.Climate data model for air conditioning capacity calculations. Master work. University of Jelgava, Latvia. Krūmiņš A., Dzelzitis E., Lešinskis A. Gaisa apstrādes iekārtas enerģijas patēriņa aprēķina programmas izveide. Darbā ir izklāstīta metodika gaisa apstrādes iekārtas enerģijas patēriņa programmas izveidē. Gaisa apstrādes iekārtas enerģijas patēriņa programma ir izveidota, izmantojot Matlab programmēšanas valodu. Programma nodrošina gaisa apstrādes iekārtas jaudu aprēķinu sildīšanas, dzesēšanas, sausināšanas, mitrināšanas un enerģijas atguves režīmiem. Kā izejas dati tiek izmantots Latvijas vidējais metereoloģiskais gads un zināmi nosūces gaisa parametri. Rakstā ir parādīts piemērs enerģijas patēriņa aprēķinam gaisa apstrādes iekārtai ar sildīšanas, siltuma atguves, dzesēšanas un sausināšanas režīmiem. Pieplūdes gaisa parametri tiek aprēkināti pēc siltuma un mitruma 59

izdalījumiem telpā, zinot vēlamo telpas temperatūru un gaisa daudzumu. Programma aprēķina nepieciešamās jaudas režīmiem (sildīšana kw, dzesēšana un sausināšana kw, ventilatoru jauda kw) ar stundas intervālu. Enerģijas patēriņš gadā (876h) tiek iegūts, summējot iegūtās jaudas. Ir izanalizēta rotējošā reģeneratora darba lietderība vasarā. Gaisa apstrādes iekārtas jaudu analīze, ņemot vērā procesa virzienu telpā, ļauj efektīvāk izvēlēties gaisa apstrādes iekārtas konfigurāciju, kā arī dod nepieciešamo informāciju gaisa apstrādes iekārtas automatizācijas izveidē. Krūmiņš A., Dzelzitis E., Lešinskis A. Development of air handling units energy consumption calculation program. This paper reports on development of air handling unit s calculation program. Air handling units calculation program is developed, using Matlab programming language. Program ensures air handling unit power calculation for heating, cooling, dehumidification, humidification and energy recovery regimes. Average meteorology year of Latvia and known exhaust air parameters are used as input data. Energy calculation of air handling unit with heat recovery, cooling, heating and dehumidification regimes is done as example of program capabilities in this paper. Supply air parameters are calculated according to heat and moisture gains in premises, when there is known necessary room temperature and air volume. Program calculates necessary power for each regime (heating kw, cooling kw, dehumidification kw, fans power kw) with interval hour. Energy consumption is calculated as a sum of all power. Rotating heat exchanger work efficiency in summer is analyzed. Analyze of power of air handling unit with calculation of supply air condition line, gives benefits in selection of air handling units configuration and gives the necessary information for the development of the air handling unit s control system. Круминшь А., Дзелзитис Е., Лешинскис А. Создание программы расчета потребления энергии для воздухообработочного агрегата. В работе изложена методика создания программы по расчету потребления энергии воздухообработочным агрегатом. Программа по расчету потребления энергии воздухообработочным агрегатом создана на базе языка программирования MATLAB. Программа обеспечивает расчет мощностей воздухообработачного агрегата в режиме обогрева, охлаждения, сушки, увлажнения и в режиме возврата. В качестве исходных данных использован средний метереологичиский год Латвии и известные параметры вытяжного воздуха. В статье рассмотрены примеры для расчета потребления энергии для воздухо-обработочого агрегата в режиме обогрева, охлаждения, сушки и в режиме возврата тепла. Параметры притока воздуха рассчитываются, исходя из выделения тепла и влажности в помещении, зная желаемую температуру помещения и объем воздуха. Программа вычисляет необходимую мощность с интервалам в час для режимов (обогрева кw, охлаждение и обсушивание кw, мощность вентиляторов кw). Потребление энергии в год (876h) рассчитывается, суммируя полученные мощности. Проанализирована целесообразность работы вращающегося регенератора в летний период. Анализ мощностей воздухо-обработочого агрегата, учитывая направления процесса в помещении, позволяет эффективнее выбрать конфигурацию воздухообработочого агрегата, а также предоставляет необходимую информацию для автоматизации воздухообработочого агрегата. 6