POLYMER HOLLOW FIBRE HEAT EXCHANGERS

Similar documents
Experimental Investigation of a Multi Effect Membrane Based Regenerator for High Concentration Aqueous LiCL Solution as Desiccant

NOVEL COMPACT SORPTION GENERATORS FOR HEAT PUMP APPLICATIONS

Makatec. Spiral Heat Exchanger. for Heating and Cooling

K.F. Fong *, C.K. Lee, T.T. Chow

Performance Evaluation and Design Optimization of Refrigerated Display Cabinets Through Fluid Dynamic Analysis

PRISM PE dryers membrane air dehydration... tell me more

Compression of Fins pipe and simple Heat pipe Using CFD

Heat Pumps: Some options for using advanced/compact heat exchangers. David Reay David Reay & Associates

Comparison Simulation between Ventilation and Recirculation of Solar Desiccant Cooling System by TRNSYS in Hot and Humid Area

Experimental Investigation of a Hybrid Evacuated Tube Solar Collector

Adsorption refrigeration system using waste heat

CFD Analysis of temperature dissipation from a hollow metallic pipe through circular fins using Ansys 14.5

COMPACT HEAT EXCHANGERS FOR MOBILE CO 2 SYSTEMS

Recent Advances in Energy, Environment and Economic Development

Performance Enhancement of Refrigeration Cycle by Employing a Heat Exchanger

COOLING SYSTEMS FOR CONTINOUS GALVANIZING LINE Miroslav Raudensky a, Milan Hnizdil a, Jaroslav Horsky a, FrédéricMarmonier b

Reducing energy consumption of airconditioning systems in moderate climates by applying indirect evaporative cooling

Healthy Buildings 2017 Europe July 2-5, 2017, Lublin, Poland. Experimental study of a novel dew point indirect evaporative cooler

Design and Development of Water Cooled Condenser for Domestic Refrigerator

ANALYSING THE EFFECTIVENESS OF THE HEAT EXCHANGER BY INCREASING OVERALL HEAT TRANSFER COEFFICIENT

Access Energy Thermapower Organic Rankine Cycle (ORC) Systems

Theoretical Performance Analysis of a Liquid Desiccant Air- Conditioning System for Air Heating and Cooling

4th IIR International Conference on Thermophysical Properties and Transfer Processes of Refrigerants 2013

Numerical Studies On The Performance Of Methanol Based Air To Air Heat Pipe Heat Exchanger

Experimental Research On Gas Injection High Temperature Heat Pump With An Economizer

Open Cycle Liquid Desiccant Air Conditioning Systems Theoretical and Experimental Investigations

Testing and Performance Analysis of a Hollow Fibre-Based Core for Evaporative Cooling and Liquid Desiccant Dehumidification

Feasibility Study of Condensation Heat Exchanger with Helical Tubes for a Passive Auxiliary Feedwater System

INSTITUTE FOR ENVIRONMENTAL RESEARCH & SUSTAINABLE DEVELOPMENT NATIONAL OBSERVATORY OF ATHENS (NOA)

Impact of Multi-Stage Liquid Desiccant Dehumidification in a Desiccant and Evaporative Cooling-Assisted Air Conditioning System

International Journal of Engineering Research (IJOER) [Vol-1, Issue-3, June- 2015]

International Journal of Advance Research in Engineering, Science & Technology SOLAR HUMIDIFIER

Heat pump and energy recovery systems

To investigate the surface properties for increasing efficiency of solar water heater

Falling Film Heat Exchangers for Solar Water Heaters

Review on Waste Heat Recovery Techniques in Air Conditioning Application

Analysis of freeze protection methods for recuperators used in energy recovery from exhaust air

Development of Automotive Air-Conditioning Systems by Heat Pump Technology

Impact of indirect evaporative air cooler type on the performance of desiccant systems

Performance analysis of ejector refrigeration system with environment friendly refrigerant driven by exhaust emission of automobile

WORK STUDY ON LOW TEMPERATURE (CASCADE) REFRIGERATION SYSTEM

An Experiment of Heat Exchanger Produces Hot Water Using Waste Heat Recovery from Air Conditioning

"COP Enhancement Of Domestic Refrigerator By Sub cooling And Superheating Using Shell &Tube Type Heat Exchanger"

MULTI-CHANNEL R134A TWO-PHASE FLOW MEASUREMENT TECHNIQUE FOR AUTOMOBILE AIR-CONDITIONING SYSTEM

Review of Temperature and Humidity Control Technology for Air Conditioning and Heat Pump Systems Paper 2386

Experimental study on mass transfer comparison of two liquid desiccants aqueous solutions

Experimental & Analytical Investigation on Modified Solar Dryer with Recirculation of Air

Pressure drop analysis of evaporator using refrigerants R-22, R-404A and R-407C

Heat Transfer Enhancement using Herringbone wavy & Smooth Wavy fin Heat Exchanger for Hydraulic Oil Cooling

Feasibility of Controlling Heat and Enthalpy Wheel Effectiveness to Achieve Optimal Closed DOAS Operation

Purdue e-pubs. Purdue University

The Effect of the Ventilation and the Control Mode on the Performance of a VRV System in Cooling and Heating Modes

Ultra Efficient Desiccant Based Evaporative Cooling for Air- Conditioning

ASSESSMENT OF R430A REFRIGERANT AS A POSSIBLE SUBSTITUTE TO R134A REFRIGERANT IN LARGE CAPACITY FREEZER

HEAT EXCHANGERS. Heat exchangers are broadly classified based on the following considerations.

Experimental Investigate on the Performance of High Temperature Heat Pump Using Scroll Compressor

Dae-Hyun Jin. 8/2018-Present Assistant Professor of Mechanical Engineering, Taylor University, USA

Performance Of The Dehumidification Cycle Of A 3-Fluid Liquid Desiccant Membrane Air-Conditioning System

Performance Characteristics of a Refrigerator- Freezer with Parallel Evaporators using a Linear Compressor

Adsorption Chillers Energysmart Green Cooling

System Modeling of Gas Engine Driven Heat Pump

Dr. Riaan Rankin & Dr. Martin van Eldik M-Tech Industrial (Pty) Ltd / North-West University October 2010.

A Review on Analysis of Vapour Compression Refrigeration System Using Matrix Heat Exchanger

Identification of the Most Effective Heat Exchanger for Waste Heat Recovery

GAS FREE REFRIGERATOR USING PELTIER MODULE

Experimental study of hybrid loop heat pipe using pump assistance for high heat flux system

A study of Transient Performance of A Cascade Heat Pump System

FABRICATION SOLAR REFRIGERATION SYSTEM BY PELTIER EFFECT

Desiccant Cooling with Solar Energy

EVALUATION OF A LIQUID DESICCANT AIR CONDITIONING SYSTEM WITH SOLAR THERMAL REGENERATION

Design of Divided Condensers for Desiccant Wheel-Assisted Separate Sensible and Latent Cooling AC Systems

Evaluation the Effect of Washing on the Heat Transfer Capacity and Air-Side Flow Resistance of Air Cooled Condensers

Warm-a-Matic Hot Cup. Team Yamagochi International. Michael Brupbacher, Tara Feller, Ian Levy, Craig Sobin, Alex Vanarelli

Thermal Performance of a Loop Thermosyphon

THE GATE COACH All Rights Reserved 28, Jia Sarai N.Delhi-16, ,-9998

Performance of an Improved Household Refrigerator/Freezer

Evaluation The Effect Of Washing On The Heat Transfer Capacity And Air-Side Flow Resistance Of Air Cooled Condensers

Application of two hybrid control methods of expansion valves and vapor injected compression to heat pumps

Analysis of Coefficient of Performance & Heat Transfer Coefficient on Sterling Cycle Refrigeration system.

Performance Comparisons Of A Unitary Split System Using Microchannel and Fin-Tube Outdoor Coils, Part I: Cooling Tests

Experimental Efficiency Investigation on Heat Recovery System Used in a Solar-Powered Desalination Process

SIMULATION ANALYSIS OF BUILDING HUMIDITY CONTROL AND ENERGY CONSUMPTION FOR DIFFERENT SYSTEM CONFIGURATIONS USA

Solar Drying Techniques And Performance Analysis: A Review

SOLAR WATER DISTILLATION BY USING WATER IN THE INNER GLASS EVACUATED TUBES

SOLAR COOLING TECHNOLOGIES

0Effect of Fin on the Performance Characteristics of Close and Open Loop Pulsating Heat Pipe

Development of a Novel Structure Rotary Compressor for Separate Sensible and Latent Cooling Air-Conditioning System

Development of R744 Two Stage Compressor for Commercial Heat Pump Water Heater

AN EXPERIMENTAL STUDY OF A REFRIGERATING PLANT WHEN REPLACING R22 WITH HFCs REFRIGERANTS

Hot Water Making Potential Using of a Conventional Air- Conditioner as an Air-Water Heat Pump

Study of R161 Refrigerant for Residential Airconditioning

Computerized Simulation of Automotive Air-Conditioning System: A Parametric Study

Energy Savings Potential of Passive Chilled Beam System as a Retrofit Option for Commercial Buildings in Different Climates

CL4001 HEAT TRANSFER OPERATIONS

Performance Comparison of Ejector Expansion Refrigeration Cycle with Throttled Expansion Cycle Using R-170 as Refrigerant

Feasibility of a Liquid Desiccant Application in an Evaporative. Cooling Assisted 100% Outdoor Air System

Heat sinks for electronic cooling applications

Experimental Study on Compact Heat Pump System for Clothes Drying Using CO 2 as a Refrigerant. Abstract

SOLAR WATER HEATING SYSTEM VERSOSUN THERMAL SOLUTIONS

ME Mechanical Engineering Systems Laboratory. Experiment 3 - Mass and Energy Balances in Psychrometric Processes

Transcription:

POLYMER HOLLOW FIBRE HEAT EXCHANGERS Current developments and applications under an INNOVATE project David Reay, David Reay & Associates (with thanks to the INNOVATE project partners)

Polymer Hollow Fibre Heat Exchanger http://www.polyhx.com/ is the project web site of the Innovate project This project aims to develop, optimize, and manufacture a novel micro-polymer hollow fibre heat exchangers (PHFHE) for various applications. This light weight PHFHE can reduce the weight by up to 50% compared with traditional metal heat exchangers, leading to at least a 50% cost reduction. The small diameter fibres (<1mm) also have thin walls and large surface areas so heat transfer intensity is significantly increased

What do the Fibres look like? Above Random chaotic bundles of fibres RHS Flexible non-chaotised CPHEs, length 750 mm. Miroslav Raudenský, Ilya Astrouski, Miroslav Dohnal Intensification of heat transfer of polymeric hollow fiber heat exchangers by chaotisation Applied Thermal Engineering, Volume 113, 2017, 632 638 http://dx.doi.org/10.1016/j.applthermaleng.2016.11.038

Detailed design of hollow fibre module 5 bundles of hollow fibre, each contains 100 fibres In order to avoid the flow channelling or shielding of adjacent fibres, the fibres in each bundle were compressed from both ends to make them into spindle shapes to allow maximum contact between the air stream and the fibres. Polymer Micro-Hollow Fibre Heat Exchangers,Ref:1341821

When bundled together at the manifold, many fibres of <1mm diameter can be contained in a 25mm diameter end fitting Fig. 2. Potting of flexible chaotised CPHE, diameter 25 mm. Miroslav Raudenský, Ilya Astrouski, Miroslav Dohnal Intensification of heat transfer of polymeric hollow fiber heat exchangers by chaotisation Applied Thermal Engineering, Volume 113, 2017, 632 638 http://dx.doi.org/10.1016/j.applthermaleng.2016.11.038

Material properties PEEK is of interest Also PAEK Polyaryletherketone (Victrex)

Materials, header sealing and 3D printing https://www.victrex.com/en/news/2016/04/driving-innovation-for- 3d-printing One application where a gasliquid PHFHE has potential is as a car radiator. The unit shown developed at Brno University shows the challenge of sealing a header as in the previous slide. Victrex PEEK polymer in hollow fibre form is being used in the INNOVATE project it has a continuous use T of 250deg.C Victrex, with companies such as HiETA, has a project top develop AM using Victrex. See for example: ASTROUSKI, I.; RAUDENSKÝ, M. Polymeric Hollow Fiber Heat Exchangers: Liquidto-Gas Application. Seattle, Proceedings of the ASHRAE 2014 Annual Conference. 2014.

Applications are seen in: 1. Buildings: hollow membrane fibres for liquid desiccant cooling and nonporous capillaries for air heat recuperation, air heaters and fan-coils; 2. Automotive: car radiators with same thermal power as traditional radiators but 50% lighter; 3. Electronics: heat transfer units for cooling compact electronic devices; 4. Water desalination: air humidification by pervaporation through hollow fibre membranes; 5. Energy Storage: non-porous hollow fibres for encapsulating PCMs can enhance heat transfer for passive cooling and energy storage applications. 6. The use of hollow fibre membranes for carbon capture has been examined in other countries.

The Project Partners reflect the application interests - 1 Spirax Sarco (Leading the project). The company sees this as a new product opportunity to complement their existing heat exchanger product range. EPS. A leading supplier of PCMs (Phase Change Materials) and systems into which they are engineered. Looking at an evaporative cooling system with desiccant inside the fibres Geo Green Power. The company is strong in solar PV and renewable energy for heat generation.

The Project Partners - 2 PAK Engineering. A heat exchanger company seeing this type of unit as a new product opportunity. In this project it is involved in the construction of the heat exchanger units for tests. Involved in potting of the fibres as shown in the earlier heat exchanger illustrations. PAB. This company, highly active in the automotive and aerospace industries, sees application for the heat exchanger in electric vehicles. Solar Ready. Working in the energy storage area. University of Nottingham. Carrying out tests on evaporative cooling system using the fibres, and also desiccant cooling examples later DRA.

Fig. 14. Three bundles in a box forming heat exchanger typically used in liquid gas applications. Miroslav Raudenský, Ilya Astrouski, Miroslav Dohnal Intensification of heat transfer of polymeric hollow fiber heat exchangers by chaotisation Applied Thermal Engineering, Volume 113, 2017, 632 638 http://dx.doi.org/10.1016/j.applthermaleng.2016.11.038

Fig. 3. Heat transfer coefficient at outer surface for external flow of air (20 C) across separated fibers. Miroslav Raudenský, Ilya Astrouski, Miroslav Dohnal Intensification of heat transfer of polymeric hollow fiber heat exchangers by chaotisation Applied Thermal Engineering, Volume 113, 2017, 632 638 http://dx.doi.org/10.1016/j.applthermaleng.2016.11.038

PHFHEs for Electronics Cooling 15th IEEE ITHERM Conference; 978-1-4673-8121-5/$31.00 2016 IEEE paper by Raudensky et al. A single bundle of fibres (amongst others) has been tested in a gas-liquid configuration under natural convection conditions. It is suggested that bundles of fibres could be used in electronic enclosures for heat extraction. 21/04/2017 INNOVATE HOLLOW FIBRE PROJECT - DRA INPUT Q8 MEETING 13

Experimental testing of shell and tube PHFHE at University of Nottingham Polymer Micro-Hollow Fibre Heat Exchangers,Ref:1341821

Performance of prototypes in liquid-liquid duty 13th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics POLYMER HOLLOW FIBRE SHELL AND TUBE HEAT EXCHANGER FOR LIQUIDS-LIQUID APPLICATIONS Amir Amini 1* Tereza Brozova 2, Miroslav.Raudensky 2, Jeremy Miller 1 1 Spirax Sarco Ltd,Technology Centre,Runnings Road,Kingsditch Industrial Estate,Cheltenham,Gloucester,GL51 9NQ,UK 2 Heat Transfer and Fluid Flow Laboratory, Brno University of Technology 616 69 Brno, Technicka 2, Czech Republic * Corresponding author E-mail: amir.amini@uk.spiraxsarco.com

Organic Rankine Cycle unit with Polymer HX Low temperature heat recovery. Design of a 20 kw regenerative ORC adopting commercial plastic heat exchangers. Electricity cost comparable with ORC modules with typical carbon steel components. Economic benefit from plastic evaporator adoption with corrosive heat source media. Applied Energy Volume 154, 15 September 2015, Pages 882 890 ORC units are often used for heat recovery from aggressive streams, so a polymer unit that is corrosion-resistant is useful. 21/04/2017 INNOVATE HOLLOW FIBRE PROJECT - DRA INPUT Q8 MEETING 16

Journal of Membrane Science 527 (2017) 92 101 Scale-up of PEEK hollow fiber membrane contactor for postcombustion CO2 capture Shiguang Lia et al. From Gas Technology Institute, 1700 S. Mount Prospect Road, Des Plaines, IL 60018, USA & Air Liquide Advanced Separations, 35A Cabot Road, Woburn, MA 01801, USA http://dx.doi.org/10.1016/j.memsci.2017.01.014 21/04/2017 INNOVATE HOLLOW FIBRE PROJECT - DRA INPUT Q8 MEETING 17

Comparison of PHFHE with other types (UoN data) for building heat recovery A compact metal heat exchanger with wall thickness of 0.4 mm, a plate heat exchanger with 0.4 mm thickness, and a PEEK plate heat exchanger are chosen for comparisons. We can see from the figure that PHFHE modules generally demonstrate higher volumetric HTC values (about 2 8 times) compared with conventional metal and plastic heat exchangers. Despite the relatively low overall heat transfer coefficients, the large surface area to volume ratio of PHFHEs offers a controlling performance factor on a volumetric basis. For instance, for PHFHE module 3 (fibre number = 400), the CUV values are about 7 times higher than the compact tubular heat exchanger, and 1.5 times higher than the metal plate heat exchanger. However, the values used for the metal heat exchangers already represent the cutting edge of current technology, while the packing/manufacturing technology for the PHFHEs are currently only subjected to laboratory testing conditions. Optimisation should give even better performance. See: Xiangjie Chen, Yuehong Su, Devrim Aydin, David Reay, Richard Law, Saffa Riffat (2016). Experimental investigations of polymer hollow fibre heat exchangers for building heat recovery application. Energy and Buildings 125, 99 108

Conclusions The proposed PHFHE product will be non-corrosive, flexible, 100% recyclable and, most importantly, 50% lighter than traditional metal heat exchangers. This will in turn lead to major system weight savings at the same or better thermodynamic performance. Other advantages of micro-phfhe includes low friction in fluid flow and suitability for mass production and ease of moulding. This PHFHE is suitable for applications across the built environment, transport and clean technology sectors. The markets include: Automotive vehicles which are equipped with PHFHE product will benefit from improved thermal performance. This will lead to better vehicle indoor comfort with reduced vehicle weight. The owner of such kind of vehicles will hence enjoy better thermal comfort with reduced fuel costs. The owners and occupiers of buildings, in which the air conditioning/ heat recovery system is equipped with PHFHE products stand to benefit from improved indoor thermal comfort, less occupation space of the AC system, and lower fuel bills. PHFHE products designer, installers and contractors benefit as the costs and disruption associated with installing and commissioning the product to be significantly lower than what is currently attainable. This, combined with the proposed product functionality and flexibility, will increase the quality of service they are able to offer.

Additional references Fashandi et al (2016). CO2 absorption using gas-liquid membrane contactors made of highly porous PVC hollow fibre membranes. Int. J. Greenhouse Gas Control 52, 13-23 (Iran) Ning Zhng et al (2016). A heat pump driven and hollow fibre membrane-based liquid desiccant air dehumidification system: A transient performance study. Int. J. Refrigeration 67, 143-156 (same group as paper in main slides). Na Peng et al (2012). Evolution of polymeric hollow fibres as sustainable technologies: Past, present and future. Progress in Polymer Science 73, 1401-1424 (very good for fasbrication methods). Raudensky, M. et al (2016). Flexible Polymeric Hollow Fiber Heat Exchangers for Electronic Systems. In Thermal and Thermomechanical, Phenomena in Electronic Systems, ITherm 2016, p. 1143-1147. ISBN: 978-1-4799-5266- 3. Kundalwal, S.I et al (2014). Effective thermal conductivities of a novel fuzzy carbon fibre heat exchanger containing wavy carbon nanotubes. Int. J. Heat & Mass Transfer 72, 440-451 20/10/2016 INNOVATE HOLLOW FIBRE PROJECT - DRA INPUT Q7 MEETING 20