Agenda. April 9, pm MDT. Introduction. Helical Piles in Practice Examples Closing Poll 10/1/2014

Size: px
Start display at page:

Download "Agenda. April 9, pm MDT. Introduction. Helical Piles in Practice Examples Closing Poll 10/1/2014"

Transcription

1 Helical lpiles in Practice (1Hr Webinar) Presented by Dr Gamal Abdelaziz, P.Eng. Sponsored by SAGA Engineering sagaengineering.ca April 9, pm MDT gic edu.com Agenda Introduction Upcomng Courses Helical Piles in Practice Examples Closing Poll gic edu.com 1

2 GIC Mission We strive to deliver: Current and relevant industry knowledge Highly qualified and experienced instructors A positive enrolment experience A superior selection of courses and programs Flexible learning options gic edu.com GIC Poll Online automated registration process 10 years proven track record in educational services Over 300 live courses offered per year Portfolio of over 1000 available courses Courses offered in all across Canada and Internationally Public & Private Classroom, In house, Distance, Online, Webinar Courses Ability to customize courses for organizations Exam Preparation Services Certification programs gic edu.com 2

3 GIC Poll Online automated registration process 10 years proven track record in educational services Over 300 live courses offered per year Portfolio of over 1000 available courses Courses offered in all across Canada and Internationally Public & Private Classroom, In house, Distance, Online, Webinar Courses Ability to customize courses for organizations Exam Preparation Services Certification programs gic edu.com Special for Attendees Today s attendees will receive a special gift for attending today s webinar. We will reveal at the end of today s presentation gic edu.com 3

4 Introductions Dr. Gamal Abdelaziz, P.Eng, MSc. has a Ph.D. in Geotechnical Engineering from Concordia University, Montreal, Canada. Dr. Abdelaziz has over 30 years of experience in geotechnical and structural engineering, foundation design, teaching, research and consulting in Canada and overseas. EoR for Stony Plain ring road, Calgary, AB. Currently he is a senior geotechnical engineer with SAGA Engineering, Edmonton, Alberta. SAGAengineering.ca gic edu.com Basic Helical Pile Design Dr. Gamal Abdelaziz, Ph.D., P.Eng. Senior Geotechnical Engineer SAGA Engineering Edmonton, Alberta Former Visiting Professor, Ryerson University, Adjunct Professor, University of Western Ontario 1. Basics of Design 8 4

5 Introduction Screw piles have been in use for more than 160 years. In 1838 a lighthouse designed by an Irish engineer, Alexander Mitchell. In 1863, Eugenius Birch designed the Brighton West Pier in Brighton, 9 England. Introduction These piers are still in use 140 years later. The original screw piles were installed at 10 feet per hour using eight 20 foot long torque bars and the force of 32 to 40 men. 10 5

6 Sporadic use of screw piles has been documented throughout the 19th and early 20th centuries mainly for supporting structures and bridges over weak or wet soil. 11 Advantages of Helical Piles Ease of Installation Little to No Vibration Immediate Load Transfer upon Installation Installed Torque Correlates to Capacity Easily Load Tested to Verify Capacity Installs Below Active Soils All Weather Installation Little to No Disturbance to Jobsite 12 6

7 Ragged Point Light was constructed in March 1910 a It was the last lighthouse built in the Chesapeake Bay area. Piney Point Lighthouse in Maryland is on the opposite side of the river. Ragged Point Light was one of the first lighthouses to be dismantled. It was deactivated in Carysfort Reef Light, four miles east of Key Largo, Florida, was built in 1852 and is the oldest screw- pile (with disk) lighthouse still in service in the United States

8 In foundation restoration and stabilization applications, foundation brackets are available that attach between the helical l screw pile and the foundation beam or footing. Transferring the load from the soil below the footing to the helical screw pile restores the structure. 15 Hydraulic torque motors became available in the 1960's 16 8

9 Configura tions of Typical ECP Torque Anchor'" Brand of Helcial Screw Piles 17 Current uses for screw pile foundations include foundations for commercial and residential structures, light standards, retaining walls tieback anchors, failed foundation restorations, pipeline and pumping equipment supports, elevated walkways, bridge abutments, and numerous uses in the electric utility industry. 18 9

10 Screw Pile Components Helical screw piles consist of a shaft fabricated from either solid square steel bar or tubular steel. Welded to the shaft are one or more helical plates

11 oundationsupportw orks.com/products/ 11-helical- piles.html 22 11

12 Each lead section of a helical steel pier has provisions at the top for a connection to an extension, and has an earth-penetrating pilot at the bottom. Each extension has provisions for 23 The plates can vary in diameter from 6" to 14" and have a thickness of 3/8" or 1/2" depending upon the soil and the application. Typically the plate diameters increase from the bottom of the shaft upward and are spaced a distance of three times the diameter of the plate directly below, unless specified otherwise 24 12

13 The standard thickness for helical plates is 3/8 inch, but in high load applications a plate thickness of 1/2" may be specified. The pitch of the helical plate is three inches, which means that the anchor advances into the soil a distance of three inches during one revolution of the shaft. The number of the plates per screw pile is limited only by the capacity of the shaft to transmit the torque required to advance the helical screw pile into the soil

14

15 winnipegscrewpiles.com 29 Screw Piles Limitations locations where subsurface material may damage the shaft or the helices. Soils containing cobbles, large amounts of gravel, boulders, construction debris, and/or landfill materials are usually unsuitable for helical products

16 Screw Piles Limitations Helical piles have slender shafts, buckling may occur in extremely soft soil, which cannot exert sufficient lateral force on the narrow shaft. When extremely soft soils are present, generally having a Standard Penetration Test - "N" <5blowsper foot, one must take into consideration the axial stiffness of the anchor shaft in the design. 31 Screw Piles Limitations The slender shafts also render the typical screw pile ineffective against large lateral loads or overturning moments

17 Capacities of ECP Helical Torque Anchor' Brand of Helical Screw Piles The capacities listed above are mechanical ratings 33 Design Criteria The bearing capacity of a helical screw pile (P w ) can be defined as the load which can be sustained by the pile without producing objectionable settlement, either initially or progressively, which results in damage to the structure or interferes with the use of the structure

18 Screw Piles Bearing Capacity Bearing Capacity is dependant upon many factors: Kind Of Soil, Soil Properties, Surface and/or Ground Water Conditions, Screw Pile Configuration (Shaft Size & Type, Helix Diameter, and Number Of Helices), Depth to Bearing, Installation Angle, Pile Spacing, Installation Torque, Type of Loading - Tension, Compression, Alternating Loads, etc. 35 The most accurate design requires knowledge from field testing using the Standard Penetration Test (SPT) standardized to ASTM D1586 plus laboratory evaluations of the soil shear strength, which is usually given as soil cohesion - "c", soil density - and granular friction angle -" " 36 18

19 Helical Pile Load and Reaction Diagram 37 Each design requires specific information involving the structure and soil characteristics at the site. Each design should involve geotechnical and engineering input

20 Standard and V-style cut plates

21 kcaribe.com

22 terratorque.com

23

24 47 ecbiz119.inmotionhosting.com

25

26 51 Preliminary Design Guidelines Helical screw pile systems must be considered as deep foundation elements as a rule of thumb, screw pile to be installed to a depth of at least six times the diameter of the largest helix. The measurement is from the surface to the upper most helical plate of the screw pile

27 The capacity of a multi-helix deep foundation system assumes that the ultimate bearing capacity is the sum of the bearing support from each plate of the system. Testing has shown that when the helical plates are spaced at three times the diameter away from the adjacent lower helical plate, each plate will develop full efficiency in the soil. 53 Spacing the helical plates at less than three diameters is possible, however, each plate will not be able to develop full capacity and the designer will have to include a plate efficiency factor in the analysis when conducting the design

28 Equation 1: Ultimate Theoretical Capacity: Eq 1 Where: P u = Ultimate Capacity of Screw Pile A H = Sum of Projected Helical Plate Areas c = Cohesion of Soil (Ib Ib/ft 2 ) N c = Bearing Capacity Factor for Cohesion q = Soil Overburden Pressure to Mid-Plate Depth - Ib/ft 2 N q = Bearing Capacity Factor for Granular Soil. 55 The ultimate capacity is defined here as the working capacity at a factor of safety of 2.0 that results in a deformation of one inch. In all cases, it is highly recommended that field testing to verify the accuracy of the preliminary design load capacities

29 Soil Behavior Cohesive Soil (Clays) Cohesive soil is soil that is generally classified as a fine grained clay soil. By comparison, granular soils like sands and gravels are sometimes referred to as non-cohesive or cohesionless soil. 57 Clays or cohesive soils are defined as soils where the internal friction between particles is approximately zero. This internal friction angle is usually referred to as " "" or "phi". Cohesive soils have a rigid behavior when exposed to stress

30 Stiff clays act almost like rock. They remain solid and inelastic until they fail. Soft clays act more like putty. The soft clay bends and molds around the anchor when under stress. 59 Undrained Shear Strength - "c": The undrained shear strength of a soil is the maximum amount of shear stress that t may be placed on the soil before the soil yields or fails. This value of "c" only occurs in cohesive soils where the internal friction " of the fine grain particles is zero or nearly zero

31 The value of "c generally increases with soil density; therefore, one can expect that stiff clays have greater undrained shear strength than soft clay soil. It is easy to understand that when dealing with cohesive soils; that the greater the shear strength "c" of the soil, the greater the bearing capacity. It also follows that the shear strength of the soil tends to increase with depth. 61 Cohesion Bearing Capacity Factor - "N c ": The bearing capacity factor for cohesion is an empirical value proposed by Meyerhof in the Journal of the Geotechnical Engineering Division, Proceedings of ASCE,

32 Cohesion Bearing Capacity Factor - "N c ": For small shaft screw piles with helical plate diameters under 18 inches, the value of "N c " = 9 is generally accepted as a reasonable value to use when determining capacities of helical piles and anchors. When determining the ultimate capacity for a helical screw pile in cohesive soil, Equation 1 may be simplified because the internal friction of the soil particles " can be assumed to be zero and the cohesive bearing factor "N c " = Table 2. Cohesive Soil Classification 64 32

33 Where: Ultimate Theoretical Capacity (Equation 1) P u = Ultimate Capacity of Helical Screw Pile A H = Sum of Projected Helical Plate Areas c = Cohesion of Soil (Ib Ib/ft 2 ) N c = Bearing Capacity Factor for Cohesion = 9 N q = Bearing Capacity Factor for Granular Soil = 0. q = Soil Overburden Pressure to Mid-Plate 65 Depth (When multiplied by N q = 0) Equation 2: Ultimate Capacity -- Cohesive Soil Where: (Use With Clay Soil Only) P u = Ultimate Capacity of Helical Screw Pile in Clay AA H = Sum of Projected Helical l Plate Areas c = Cohesion of Soil (lb/ft 2 ) 66 33

34 Table 3. Properties of Cohesive Soil 67 Cohesionless Soil (Sands) Particles of sand in cohesionless soil act independently of each other. This type of soil has fluid-like like characteristics. When cohesion less soils are placed under stress they tend to reorganize into a more compact configuration

35 Cohesionless soils achieve their strength and capacity in several ways: The unit weight of the soil above the Torque Anchor, The internal friction angle " ", ", The adhesion or skin friction. 69 In sandy soil, the grains are independent and there is no cohesion, therefore "c" may be assumed to be zero, therefore N c = 0 One can simplify Equation 1 when analyzing cohesionless (sandy) soil by eliminating the values relating to cohesive (clay) soil that become zero when the screw pile is founded only in sand and gravel. Equation 1 is repeated below and simplified

36 Ultimate Theoretical Capacity (Equation 1) Where: P u = Ultimate Capacity of Helical Screw Pile A H = Sum of Projected Helical Plate Areas c = Cohesion of Soil (lb/ft2) N c = Bearing Capacity Factor for Cohesion = 0 N q = Bearing Capacity Factor for Granular Soil. q = Soil Overburden Pressure to Mid-Plate Depth 71 Table 4. Cohesionless Soil Classification 72 36

37 Equation 3: Ultimate Capacity -- Cohesionless Soil (Use with Sand & Gravel Only) Where: P u = Ultimate Capacity of Helical Screw Pile A H = Sum of Helical Plate Areas q = Soil Overburden Pressure from the surface to mid-plate depth - lb/ft 2 N q = Bearing Capacity Factor for Granular Soil. 73 Soil Overburden Pressure - "q": The soil overburden pressure at a given depth is the sum of the soil density " (lb/ft 3 - kn/m3) multiplied by the depth of the soil. When calculating the value of "q" for a given soil layer above the water table, the dry density of the soil is used

38 Below the water table, the buoyancy effect of the water must be taken into consideration by reducing the dry density of the soil by 62 lb/ft kn/m 3 The general equation for calculating "q" is presented in Equations 4 & Equation 4: Soil Overburden Pressure (Above Water Table) Where: q = Soil Layer Overburden Pressure (lb/ft 2 ) = Dry Density of the Soil Layer (lb/ft 3 ) h = Thickness of the Soil Layer (ft) 76 38

39 Equation 5: Soil Overburden Pressure (Below Water Table) To arrive at the total soil overburden pressure on a helical screw pile, the values of "q" of each stratum of soil from the surface to the point midway between the upper helical plate and the lowest helical plate must be determined and then added together. 77 Cohesionless Bearing Capacity Factor - "N q ": Zhang proposed the ultimate compression capacity of the helical screw pile in a thesis for the University of Alberta in From this work the dimensionless empirical ii value "N q " was introduced. d "N q " is related to the friction angle of the soil " "" as shown in Table

40 Table 5. Properties of Cohesionless Soil 79 Helical Screw Pile Design Considerations Projected Areas of Helical Plates: When determining the capacity of a screw pile in a given soil, knowledge of the projected total area of the helical plates is required. This projected area is the summation of the areas of the helical plates in contact with the soil less the cross sectional area of the shaft

41 Table 6 provides projected areas in square feet of bearing for various plate diameters on the different shaft configurations of ECP Torque Anchors. The projected areas for helical plates may be slightly different for other manufacturers of screw piles as some manufacturers stamp the plates from flat steel bars. 81 Table 6. Projected Areas* of ECP Helical Torque Anchor Brand Helical Plates 82 41

42 Allowable Capacity per Helix: When conducting a preliminary design, one must also be aware of the mechanical capacity of a helical plate when welded to the shaft. The capacities of the ECP Torque Anchor plates are given in Table Table 7. Helical Plate Capacities 84 42

43 Preventing "Punch Through" When designing the helical screw pile to achieve bearing in the competent soil situated above a weaker soil, we must consider the possibility that the screw pile could "punch through" to the weaker soil when fully loaded. 85 When designing an axial compression pile in such a situation, it is recommended that a distance greater than 5 times the diameter of the lowest helical plate (55 x d 1 ) exist to prevent the helical l screw pile from "punching through" to the stratum of weak soil

44 List of References 1- Basic Helical Screw Pile Design, Donald J. & Clayton, PE, 2005, Earth Contact Products, LLC. 87 Special for Attendees Thank you for attending today s webinar on Helical Piles in Practice. Here is today s promotional code to save $150 on any upcoming public or webinar course in Geotechnical Engineering. WEBGEOTECHAPR Valid until May 1 st, 2014 gic edu.com 44

45 Upcoming Courses gic edu.com Upcoming Free Seminars Sept 23, 2014 A Quick Guide to Communicating Effectively in your Technical Career Registration is now open! Sept 25, 2014 Practical Machine Foundation Design Registration is now open! April 30 th, 2014 Practical Machine Foundation Design Registration coming soon gic edu.com 45

46 Special for Attendees Thank you for attending today s webinar on Helical Piles in Practice. Here is today s promotional code to save $150 on any public or webinar course in Geotechnical Engineering. WEBGEOTECHAPR Valid until May 15 th, 2014 gic edu.com 46

Bearing Capacity Theory. Bearing Capacity

Bearing Capacity Theory. Bearing Capacity Bearing Capacity Theory Bearing Capacity 1 Bearing Capacity Failure a) General Shear Failure Most common type of shear failure; occurs in strong soils and rocks b) Local Shear Failure Intermediate between

More information

PILE FOUNDATIONS CONTENTS: 1.0 Introduction. 1.1 Choice of pile type Driven (displacement) piles Bored (replacement) piles. 2.

PILE FOUNDATIONS CONTENTS: 1.0 Introduction. 1.1 Choice of pile type Driven (displacement) piles Bored (replacement) piles. 2. PILE FOUNDATIONS CONTENTS: 1.0 Introduction 1.1 Choice of pile type 1.1.1 Driven (displacement) piles 1.1.2 Bored (replacement) piles 2.0 Analysis 2.0.1 Driving formulae 2.0.2 Soil mechanics 2.1 Piles

More information

Hamdy H.A. Abdel-Rahim, Yahiya Kamal Taha and Walla El din El sharif Mohamed. Civil Engineering Department, Faculty of Engineering, Assiut University

Hamdy H.A. Abdel-Rahim, Yahiya Kamal Taha and Walla El din El sharif Mohamed. Civil Engineering Department, Faculty of Engineering, Assiut University The Compression and Uplift Bearing Capacities of Helical Piles in Cohesionless Soil Hamdy H.A. Abdel-Rahim, Yahiya Kamal Taha and Walla El din El sharif Mohamed Civil Engineering Department, Faculty of

More information

Advanced Foundation Engineering. Soil Exploration

Advanced Foundation Engineering. Soil Exploration Shahrood University of Technology Department of Geotechnical Engineering Advanced Foundation Engineering Soil Exploration Mohsen Keramati, Ph.D. Assistant Professor 1 - Introduction The field and laboratory

More information

PULLOUT CAPACITY OF HORIZONTAL AND INCLINED PLATE ANCHORS IN CLAYEY SOILS

PULLOUT CAPACITY OF HORIZONTAL AND INCLINED PLATE ANCHORS IN CLAYEY SOILS PULLOUT CAPACITY OF HORIZONTAL AND INCLINED PLATE ANCHORS IN CLAYEY SOILS BALESHWAR SINGH Associate Professor Department of Civil Engineering Indian Institute of Technology Guwahati Guwahati 78139, India

More information

EAT 212 SOIL MECHANICS

EAT 212 SOIL MECHANICS EAT 212 SOIL MECHANICS Chapter 4: SHEAR STRENGTH OF SOIL PREPARED BY SHAMILAH ANUDAI@ANUAR CONTENT Shear failure in soil Drained and Undrained condition Mohr-coulomb failure Shear strength of saturated

More information

Tension anchor LTD (Load transfer device)

Tension anchor LTD (Load transfer device) At IDEAL, we try not to complicate things. We discover needs and problems, then work out solutions. It takes real teamwork to accomplish truly great things. That s you and us, working together, with all

More information

Subsoil conditions are examined using test borings, provided by soil engineer (geotechnical).

Subsoil conditions are examined using test borings, provided by soil engineer (geotechnical). SOIL & FOUNDATION TYPES: Subsurface investigations: Subsoil conditions are examined using test borings, provided by soil engineer (geotechnical). Number of borings and location of borings depends on building

More information

COMPARISON OF SHEAR STRENGTH PARAMETERS OF BLACK COTTON SOIL WITH EFFECT OF RELATIVE COMPACTION

COMPARISON OF SHEAR STRENGTH PARAMETERS OF BLACK COTTON SOIL WITH EFFECT OF RELATIVE COMPACTION Vol-2 Issue-4 16 COMPARISON OF SHEAR STRENGTH PARAMETERS OF BLACK COTTON SOIL WITH EFFECT OF RELATIVE COMPACTION Prof. Usha k. Patel Assistant Professor, LDCE Prof. M. G. Vanza Associate Professor, LDCE

More information

Analysis of Pullout Resistance of Soil-Nailing in Lateritic Soil

Analysis of Pullout Resistance of Soil-Nailing in Lateritic Soil Analysis of Pullout Resistance of Soil-Nailing in Lateritic Soil B,L.A. Isaka 1, B.C. Madushanka 1 and N.H. Priyankara 1 1 Department of Civil and Environmental Engineering Faculty of Engineering University

More information

A Review on Pull-Out Capacity of Helical Anchors in Clay And Sand

A Review on Pull-Out Capacity of Helical Anchors in Clay And Sand Quest Journals Journal of Architecture and Civil Engineering Volume 3 ~ Issue 6 (2017) pp: 24-32 ISSN(Online) : 2321-8193 www.questjournals.org Research Paper A Review on Pull-Out Capacity of Helical Anchors

More information

Advanced Foundation Engineering. Introduction

Advanced Foundation Engineering. Introduction Shahrood University of Technology Department of Geotechnical Engineering Advanced Foundation Engineering Introduction Mohsen Keramati, Ph.D. Assistant Professor 1 - Detailed Course Plan Introduction (Geotechnical

More information

Advanced Foundation Engineering. Sheet-Pile Walls

Advanced Foundation Engineering. Sheet-Pile Walls Shahrood University of Technology Department of Geotechnical Engineering Advanced Foundation Engineering Sheet-Pile Walls Mohsen Keramati, Ph.D. Assistant Professor 1 Introduction Connected or semiconnected

More information

1 Introduction. 2 General Pile Analysis Features. 2.1 Pile Internal Forces and Displacements

1 Introduction. 2 General Pile Analysis Features. 2.1 Pile Internal Forces and Displacements RSPile version 1.0 RSPile is a general pile analysis software for analyzing driven pile installation, axially loaded piles and laterally loaded piles. It is capable of computing the axial capacity for

More information

Effect of Placement of Footing on Stability of Slope

Effect of Placement of Footing on Stability of Slope Scientific Journal of Impact Factor (SJIF) : 3.134 ISSN (Print) : 2348-6406 ISSN (Online): 2348-4470 International Journal of Advance Engineering and Research Development Effect of Placement of Footing

More information

Numerical Analysis of the Bearing Capacity of Strip Footing Adjacent to Slope

Numerical Analysis of the Bearing Capacity of Strip Footing Adjacent to Slope International Journal of Science and Engineering Investigations vol. 4, issue 46, November 25 ISSN: 225-8843 Numerical Analysis of the Bearing Capacity of Strip Footing Adjacent to Slope Mohammadreza Hamzehpour

More information

Piles subject to excavation-induced soil movement in clay

Piles subject to excavation-induced soil movement in clay Piles subject to -induced soil movement in clay Des foundations soumis au mouvement du sol du a l' dans l'argile D.E.L. Ong, C.F. Leung & Y.K. Chow Centre for Soft Ground Engineering, National University

More information

CHAPTER 8 SLOPE STABILITY ANALYSIS

CHAPTER 8 SLOPE STABILITY ANALYSIS TM 5-818-1 / AFM 88-3. Chap. 7 CHAPTER 8 SLOPE STABILITY ANALYSIS 8-1. General. This chapter is concerned with characteristics and critical aspects of the stability of excavation slopes; methods of designing

More information

Stability of Inclined Strip Anchors in Purely Cohesive Soil

Stability of Inclined Strip Anchors in Purely Cohesive Soil Stability of Inclined Strip Anchors in Purely Cohesive Soil R. S. Merifield 1 ; A. V. Lyamin 2 ; and S. W. Sloan 3 Abstract: Soil anchors are commonly used as foundation systems for structures requiring

More information

EXPERIMENTAL STUDY ON PULL-OUT CAPACITY OF HELICAL PILE IN CLAYEY SOIL

EXPERIMENTAL STUDY ON PULL-OUT CAPACITY OF HELICAL PILE IN CLAYEY SOIL International Journal of Civil Engineering and Technology (IJCIET) Volume 8, Issue 4, April 217, pp. 1514 1521 Article ID: IJCIET_8_4_17 Available online at http://www.ia aeme.com/ijciet/issues.asp?jtype=ijciet&vtyp

More information

EFFECT OF COMPACTION ON THE UNSATURATED SHEAR STRENGTH OF A COMPACTED TILL

EFFECT OF COMPACTION ON THE UNSATURATED SHEAR STRENGTH OF A COMPACTED TILL EFFECT OF COMPACTION ON THE UNSATURATED SHEAR STRENGTH OF A COMPACTED TILL Vanapalli, S.K., Pufahl, D.E., and Fredlund, D.G. (University of Saskatchewan, Saskatoon, SK., Canada, S7N 5A9) Abstract An experimental

More information

Definitions. Super Structure. Ground Level. Foundation. Foundation Soil

Definitions. Super Structure. Ground Level. Foundation. Foundation Soil Definitions Bearing capacity is the power of foundation soil to hold the forces from the superstructure without undergoing shear failure or excessive settlement. Foundation soil is that portion of ground

More information

Compaction. Compaction purposes and processes. Compaction as a construction process

Compaction. Compaction purposes and processes. Compaction as a construction process Compaction Compaction purposes and processes Specification and quality control Moisture condition value Compaction is a process that brings about an increase in soil density or unit weight, accompanied

More information

This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine

This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine Don t forget to visit our companion site http://www.vulcanhammer.org Use subject to the terms and conditions of the respective

More information

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE Prof. J. N. Mandal Department of Civil Engineering, IIT Bombay, Powai, Mumbai 400076, India. Tel.022-25767328 email: cejnm@civil.iitb.ac.in Module - 8

More information

STA PILE3 ANCHOR PILE DESIGN (USING API RP 2A) WITH SUCTION EMBEDMENT OPTION USER MANUAL

STA PILE3 ANCHOR PILE DESIGN (USING API RP 2A) WITH SUCTION EMBEDMENT OPTION USER MANUAL STA PILE3 ANCHOR PILE DESIGN (USING API RP 2A) WITH SUCTION EMBEDMENT OPTION USER MANUAL STA PILE3 is a computer program for the design and analysis of pile anchors. The piles are treated as being "short"

More information

[Gupta* et al., 5(7): July, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116

[Gupta* et al., 5(7): July, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116 [Gupta* et al., 5(7): July, 6] ISSN: 77-9655 IC Value: 3. Impact Factor: 4.6 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY EFFECT OF DENSITY AND MOISTURE ON THE SLOPE STABILITY

More information

This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine

This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine Don t forget to visit our companion site http://www.vulcanhammer.org Use subject to the terms and conditions of the respective

More information

REDISTRIBUTION OF LOAD CARRIED BY SOIL UNDERNEATH PILED RAFT FOUNDATIONS DUE TO PILE SPACING AND GROUNDWATER AS WELL AS ECCENTRICITY

REDISTRIBUTION OF LOAD CARRIED BY SOIL UNDERNEATH PILED RAFT FOUNDATIONS DUE TO PILE SPACING AND GROUNDWATER AS WELL AS ECCENTRICITY International Journal of Civil Engineering and Technology (IJCIET) Volume 9, Issue 3, March 2018, pp. 36 55, Article ID: IJCIET_09_03_005 Available online at http://http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=9&itype=3

More information

Load-Carrying Capacity of Stone Column Encased with Geotextile. Anil Kumar Sahu 1 and Ishan Shankar 2

Load-Carrying Capacity of Stone Column Encased with Geotextile. Anil Kumar Sahu 1 and Ishan Shankar 2 Load-Carrying Capacity of Stone Column Encased with Geotextile Anil Kumar Sahu 1 and Ishan Shankar 2 1 Professor, Department of Civil Engineering, Delhi Technological University, Delhi, India (sahuanilkr@yahoo.co.in)

More information

EFFECT OF CENTRAL PILE IN INCREASING THE BEARING CAPACITY OF BORED PILE GROUPS

EFFECT OF CENTRAL PILE IN INCREASING THE BEARING CAPACITY OF BORED PILE GROUPS EFFECT OF CENTRAL PILE IN INCREASING THE BEARING CAPACITY OF BORED PILE GROUPS Mohamed M. Shahin Department of Civil Engineering, 7 th October University, Misurata,, Libya, E-mail: Mohamed_zubi@yahoo.com

More information

Full Scale Model Test of Soil Reinforcement on Soft Soil Deposition with Inclined Timber Pile

Full Scale Model Test of Soil Reinforcement on Soft Soil Deposition with Inclined Timber Pile Full Scale Model Test of Soil Reinforcement on Soft Soil Deposition with Inclined Timber Pile Suheriyatna 1, L. Samang 2, M. W. Tjaronge 3 and T. Harianto 4 1 Doctoral Student, Department of Civil Engineering,

More information

Effect of pile sleeve opening and length below seabed on the bearing capacity of offshore jacket mudmats

Effect of pile sleeve opening and length below seabed on the bearing capacity of offshore jacket mudmats NGM 2016 Reykjavik Proceedings of the 17 th Nordic Geotechnical Meeting Challenges in Nordic Geotechnic 25 th 28 th of May Effect of pile sleeve opening and length below seabed on the bearing capacity

More information

Soil-Structure Interaction of a Piled Raft Foundation in Clay a 3D Numerical Study

Soil-Structure Interaction of a Piled Raft Foundation in Clay a 3D Numerical Study 388 J. Eng. Technol. Sci., Vol. 48, No. 4, 2016, 388-407 Soil-Structure Interaction of a Piled Raft Foundation in Clay a 3D Numerical Study Endra Susila 1,* & Nita Anggraini 2 1 Geotechnical Engineering

More information

Transition of soil strength during suction pile retrieval

Transition of soil strength during suction pile retrieval Maritime Heritage and Modern Ports 415 Transition of soil strength during suction pile retrieval S. Bang 1, Y. Cho 2 & K. Jones 1 1 Department of Civil and Environmental Engineering, South Dakota School

More information

CHAPTER 1: INTRODUCTION. Road transport is an only means of transport that offers itself to the whole community

CHAPTER 1: INTRODUCTION. Road transport is an only means of transport that offers itself to the whole community 1 CHAPTER 1: INTRODUCTION 1.1 General Road transport is an only means of transport that offers itself to the whole community alike. It is accepted fact that of all the modes the transportation, road transport

More information

Lightweight aggregates in Civil Engineering applications. Arnstein Watn Senior Scientist, SINTEF

Lightweight aggregates in Civil Engineering applications. Arnstein Watn Senior Scientist, SINTEF Lightweight aggregates in Civil Engineering applications Arnstein Watn Senior Scientist, SINTEF SINTEF Independent Multiscience Research Institute About 1800 employees Closely linked to the Universities

More information

VARIATION IN BEARING CAPACITY OF CONTAMINATED LATERITE SOIL. Dr R N Khare

VARIATION IN BEARING CAPACITY OF CONTAMINATED LATERITE SOIL. Dr R N Khare VARIATION IN BEARING CAPACITY OF CONTAMINATED LATERITE SOIL Dr R N Khare Professor, Civil Engineering & Principal Shri Shankaracharya Engineering College, Bhilai Prashant Pathak Research Scholar, SaiNath

More information

GEOMEMBRANE FIELD INSTALLATION

GEOMEMBRANE FIELD INSTALLATION GEOMEMBRANE FIELD INSTALLATION CONTENTS Introduction Quality Control and Quality Assurance Types of lining systems Basic Lining Design Executive Lining Design Basic Lining Design Specification Executive

More information

TECHNICAL. Design Guide. Retaining walls made easy with this beautiful solution EARTH RETAINING WALLS

TECHNICAL. Design Guide. Retaining walls made easy with this beautiful solution EARTH RETAINING WALLS TECHNICAL Design Guide EARTH RETAINING WALLS Retaining walls made easy with this beautiful solution qro.com.au sales@qsolutionsco.com.au (07) 3881 0208 TDG-ERW-01 Sept 2017 1 RETAINING WALL SELECTION PROCEDURE

More information

A STUDY ON LOAD CAPACITY OF HORIZONTAL AND INCLINED PLATE ANCHORS IN SANDY SOILS

A STUDY ON LOAD CAPACITY OF HORIZONTAL AND INCLINED PLATE ANCHORS IN SANDY SOILS A STUDY ON LOAD CAPACITY OF HORIZONTAL AND INCLINED PLATE ANCHORS IN SANDY SOILS BALESHWAR SINGH Associate Professor Department of Civil Engineering Indian Institute of Technology Guwahati Guwahati 78139,

More information

Slope stability assessment

Slope stability assessment Engineering manual No. 25 Updated: 03/2018 Slope stability assessment Program: FEM File: Demo_manual_25.gmk The objective of this manual is to analyse the slope stability degree (factor of safety) using

More information

The University of Iowa Department of Civil & Environmental Engineering SOIL MECHANICS 53:030 Final Examination 2 Hours, 200 points

The University of Iowa Department of Civil & Environmental Engineering SOIL MECHANICS 53:030 Final Examination 2 Hours, 200 points The University of Iowa epartment of Civil & Environmental Engineering SOIL MECHNICS 53:030 Final Examination 2 Hours, 200 points Fall 1998 Instructor: C.C. Swan Problem #1: (25 points) a. In a sentence

More information

Evaluation of undrained shear strength of soft New Orleans clay using piezocone

Evaluation of undrained shear strength of soft New Orleans clay using piezocone Evaluation of undrained shear strength of soft New Orleans clay using piezocone L. Wei & R. Pant HNTB Corporation, Baton Rouge, LA, USA M.T. Tumay Louisiana State University, Baton Rouge, LA, USA and Bogazici

More information

Loading unsaturated soil. *Mohamed Abdellatif Ali Albarqawy 1)

Loading unsaturated soil. *Mohamed Abdellatif Ali Albarqawy 1) The 2012 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM 12) Seoul, Korea, August 26-30, 2012 Loading unsaturated soil *Mohamed Abdellatif Ali Albarqawy 1) 1) Faculty of

More information

Reinforcement with Geosynthetics

Reinforcement with Geosynthetics Reinforcement with Geosynthetics GEO-SLOPE International Ltd. www.geo-slope.com 1200, 700-6th Ave SW, Calgary, AB, Canada T2P 0T8 Main: +1 403 269 2002 Fax: +1 888 463 2239 Introduction Reinforced earth

More information

Field tests on the lateral capacity of poles embedded in Auckland residual clay

Field tests on the lateral capacity of poles embedded in Auckland residual clay Proc. 18 th NZGS Geotechnical Symposium on Soil-Structure Interaction. Ed. CY Chin, Auckland Field tests on the lateral capacity of poles embedded in Auckland residual clay Peter Rodgers Mercury Bay Civil

More information

Behaviour of Black Cotton Soil Reinforced with Sisal Fibre

Behaviour of Black Cotton Soil Reinforced with Sisal Fibre 10th National Conference on Technological Trends (NCTT09) 6-7 Nov 2009 Behaviour of Black Cotton Soil Reinforced with Sisal Fibre Santhi Krishna K. M Tech Student Department of Civil Engineering College

More information

1 SITE AND PROJECT DESCRIPTION

1 SITE AND PROJECT DESCRIPTION February 14, 2017 Our File Ref.: 160796 Denis Lacroix 6909 Notre Dame Street Ottawa, Ontario K1C 1H6 Subject: Slope Stability Analysis 6909 Notre Dame Street Ottawa, Ontario Pursuant to your request, LRL

More information

An Introduction to Soil Stabilization for Pavements

An Introduction to Soil Stabilization for Pavements An Introduction to Soil Stabilization for Pavements J. Paul Guyer, P.E., R.A. Paul Guyer is a registered mechanical engineer, civil engineer, fire protection engineer and architect with over 35 years experience

More information

CHAPTER 4 EXPERIMENTAL WORK 4.1 GENERAL

CHAPTER 4 EXPERIMENTAL WORK 4.1 GENERAL CHAPTER 4 EXPERIMENTAL WORK 4.1 GENERAL In the present chapter engineering properties of subgrade soils, moorum and aggregate used in the investigation are presented. The details of geotextiles and geogrids

More information

Recommendations for a Model Curriculum for a BS Degree in Fire Protection Engineering (FPE) April 15, 2010

Recommendations for a Model Curriculum for a BS Degree in Fire Protection Engineering (FPE) April 15, 2010 Recommendations for a Model Curriculum for a BS Degree in Fire Protection Engineering (FPE) April 15, 2010 Society of Fire Protection Engineers (SFPE) Acknowledgement: SFPE would like to acknowledge the

More information

APPENDIX E COMPACTION CHARACTERISTICS AND EQUIPMENT

APPENDIX E COMPACTION CHARACTERISTICS AND EQUIPMENT APPENDIX E COMPACTION CHARACTERISTICS AND EQUIPMENT When the Materials Division designs a pavement structure, there are a number of factors that influence it s outcome. Projected traffic counts, percentage

More information

Base resistance of individual piles in pile group

Base resistance of individual piles in pile group th WSEAS Int. Conf. on ENVIRONMENT, ECOSYSTEMS and DEVELOPMENT, Tenerife, Spain, December 14-16, 27 111 Base resistance of individual piles in pile group MOHAMED M. SHAHIN Department of Civil Engineering

More information

COHESIONLESS SOIL PROPERTIES IMPROVEMENT USING BENTONITE

COHESIONLESS SOIL PROPERTIES IMPROVEMENT USING BENTONITE COHESIONLESS SOIL PROPERTIES IMPROVEMENT USING BENTONITE Khalida A. Daud Department of Architectural Engineering, Al-Nahrain University, Baghdad, Iraq E-Mail: khalida_dwd@yahoo.com ABSTRACT Construction

More information

RESPONSE OF ANCHOR IN TWO-PHASE MATERIAL UNDER UPLIFT

RESPONSE OF ANCHOR IN TWO-PHASE MATERIAL UNDER UPLIFT IGC 29, Guntur, INDIA RESPONSE OF ANCHOR IN TWO-PHASE MATERIAL UNDER UPLIFT K. Ilamparuthi Professor and Head, Division of Soil Mechanics and Foundation Engineering, Anna University, Chennai 25, India.

More information

An Experimental Study on Variation of Shear Strength for Layered Soils

An Experimental Study on Variation of Shear Strength for Layered Soils An Experimental Study on Variation of Shear Strength for Layered Soils Mr. Hemantkumar Ronad 1 DCE, M.Tech in Geotechnical Engg. Department of Civil Engineering 1, Basaveshwar Engineering College, Bagalkot-587102.

More information

Study of Soil Cement with Admixture Stabilization for Road Sub-Grade

Study of Soil Cement with Admixture Stabilization for Road Sub-Grade IJIRST International Journal for Innovative Research in Science & Technology Volume 3 Issue 10 March 2017 ISSN (online): 2349-6010 Study of Soil Cement with Admixture Stabilization for Road Sub-Grade Rupesh

More information

Helical Piles Embedded in Expansive Soil Overlaying Sandy Soil

Helical Piles Embedded in Expansive Soil Overlaying Sandy Soil Al-Khwarizmi Engineering Journal,Vol. 12, No. 3, P.P. 19-25 (2016) Al-Khwarizmi Engineering Journal Helical Piles Embedded in Expansive Soil Overlaying Sandy Soil Bushra Suhale Al-Busoda * Hassan Obaid

More information

Rapid Drawdown with Multi-Stage

Rapid Drawdown with Multi-Stage 1 Introduction Rapid Drawdown with Multi-Stage Stability analysis during rapid drawdown is an important consideration in the design of embankment dams. During rapid drawdown, the stabilizing effect of

More information

1. RETAINING WALL SELECTION PROCEDURE

1. RETAINING WALL SELECTION PROCEDURE 1. RETAINING WALL SELECTION PROCEDURE a. Select the appropriate design table(s) depending on whether or not there are fences located above the retaining wall. Go to Section 3.1 or 4.1 of this document

More information

UNIFIED FACILITIES GUIDE SPECIFICATIONS

UNIFIED FACILITIES GUIDE SPECIFICATIONS USACE / NAVFAC / AFCEC / NASA UFGS-02 66 00 (February 2010) ----------------------------- Preparing Activity: USACE Superseding UFGS-02 66 00 (April 2006) UNIFIED FACILITIES GUIDE SPECIFICATIONS References

More information

APPENDIX D. Slope Stability Analysis Results for Soil and Overburden Storage Mounds

APPENDIX D. Slope Stability Analysis Results for Soil and Overburden Storage Mounds Geotechnical Assessment Report APPENDIX D Slope Stability Analysis Results for Soil and Overburden Storage Mounds DABGeot/09059GA/Final Geotechnical Assessment Report STABILITY OF SOIL AND OVERBURDEN STORAGE

More information

Road Soil. Curtis F. Berthelot Ph.D., P.Eng. Department of Civil Engineering. Road Soil Introduction

Road Soil. Curtis F. Berthelot Ph.D., P.Eng. Department of Civil Engineering. Road Soil Introduction Road Soil Characterization ti By: Curtis F. Berthelot Ph.D., P.Eng. Department of Civil Engineering Road Soil Introduction Roads are constructed of layered heterogeneous multiphase geo-materials that exhibit

More information

DRAFT ONONDAGA LAKE CAPPING AND DREDGE AREA AND DEPTH INITIAL DESIGN SUBMITTAL H.3 STATIC SLOPE STABILITY ANALYSES

DRAFT ONONDAGA LAKE CAPPING AND DREDGE AREA AND DEPTH INITIAL DESIGN SUBMITTAL H.3 STATIC SLOPE STABILITY ANALYSES DRAFT ONONDAGA LAKE CAPPING AND DREDGE AREA AND DEPTH INITIAL DESIGN SUBMITTAL H.3 STATIC SLOPE STABILITY ANALYSES Parsons P:\Honeywell -SYR\444576 2008 Capping\09 Reports\9.3 December 2009_Capping and

More information

Fine Coal Refuse 25 Years of Field and Laboratory Testing Data and Correlations

Fine Coal Refuse 25 Years of Field and Laboratory Testing Data and Correlations Fine Coal Refuse 25 Years of Field and Laboratory Testing Data and Correlations October 1, 2018 Blaise E. Genes Gonzalo Castro, Ph.D., P.E. Thomas O. Keller, P. E. Fatma Ciloglu, Ph.D., P. E. Presentation

More information

Gary Person, Foundation Engineer Geotechnical Engineering Section

Gary Person, Foundation Engineer Geotechnical Engineering Section Minnesota Department of Transportation MEMO Mailstop 64 14 Gervais Avenue Maplewood, MN 9 DATE: November 3 rd, 214 TO: FROM: CONCUR: Bruce Johnson, Project Manager Metro Design Hossana Teklyes, Assist.

More information

Dam Construction by Stages

Dam Construction by Stages Dam Construction by Stages 1 Introduction This simple example demonstrates the simulation of staged embankment construction on soft ground. The primary objective of this example is to demonstrate the use

More information

Paper ID: GE-007. Shear Strength Characteristics of Fiber Reinforced Clay Soil. M. R. Islam 1*, M.A. Hossen 2, M. A.Alam 2, and M. K.

Paper ID: GE-007. Shear Strength Characteristics of Fiber Reinforced Clay Soil. M. R. Islam 1*, M.A. Hossen 2, M. A.Alam 2, and M. K. Paper ID: GE-7 International Conference on Recent Innovation in Civil Engineering for Sustainable Development (IICSD-2) Department of Civil Engineering DUET - Gazipur, Bangladesh 48 Shear Strength Characteristics

More information

Shear Strength of Soils

Shear Strength of Soils Shear Strength of Soils Shear failure Soils generally fail in shear strip footing embankment failure surface mobilised shear resistance At failure, shear stress along the failure surface reaches the shear

More information

THE PERFORMANCE OF STRENGTHENING SLOPE USING SHOTCRETE AND ANCHOR BY FINITE ELEMENT METHOD (FEM)

THE PERFORMANCE OF STRENGTHENING SLOPE USING SHOTCRETE AND ANCHOR BY FINITE ELEMENT METHOD (FEM) THE PERFORMANCE OF STRENGTHENING SLOPE USING SHOTCRETE AND ANCHOR BY FINITE ELEMENT METHOD (FEM) Tri Harianto 1*, Lawalenna Samang 2, Takenori Hino 3, Fakhriyah Usman 4 and Akbar Walenna 5 1 Associate

More information

Backfill Stress and Strain Information within a Centrifuge Geosynthetic-Reinforced Slope Model under Working Stress and Large Soil Strain Conditions

Backfill Stress and Strain Information within a Centrifuge Geosynthetic-Reinforced Slope Model under Working Stress and Large Soil Strain Conditions GeoCongress 2012 ASCE 2012 461 Yang, K-H., Zornberg, J.G., Liu, C-N. and Lin, H-D. (2012). Backfill Stress and Strain Information within a Centrifuge Geosynthetic-Reinforced Slope under Working Stress

More information

Soil Stabilization by Using Fly Ash

Soil Stabilization by Using Fly Ash IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 13, Issue 6 Ver. VII (Nov. - Dec. 2016), PP 10-14 www.iosrjournals.org Soil Stabilization by Using

More information

SUBGRADE IMPROVEMENT OF CLAYEY SOIL WITH THE USE OF GEOTEXTILES

SUBGRADE IMPROVEMENT OF CLAYEY SOIL WITH THE USE OF GEOTEXTILES SUBGRADE IMPROVEMENT OF CLAYEY SOIL WITH THE USE OF GEOTEXTILES 1 Soma Prashanth Kumar, 2 Mohammed Asif T L, 3 Mane S R Rohith 1 Assistant Professor, Department of Civil Engineering, JBIET, Moinabad, (India)

More information

Stress-Strain and Strength Behavior of Undrained Organic Soil in Kupondol, Kathmandu

Stress-Strain and Strength Behavior of Undrained Organic Soil in Kupondol, Kathmandu TUTA/IOE/PCU Journal of the Institute of Engineering, Vol. 8, No. 1, pp. 113 118 TUTA/IOE/PCU All rights reserved. Printed in Nepal Fax: 977-1-5525830 Stress-Strain and Strength Behavior of Undrained Organic

More information

GUIDE FOR SELECTING AN APPROPRIATE METHOD TO ANALYZE THE STABILITY OF SLOPES ON RECLAIMED SURFACE MINES 1

GUIDE FOR SELECTING AN APPROPRIATE METHOD TO ANALYZE THE STABILITY OF SLOPES ON RECLAIMED SURFACE MINES 1 GUIDE FOR SELECTING AN APPROPRIATE METHOD TO ANALYZE THE STABILITY OF SLOPES ON RECLAIMED SURFACE MINES 1 John J. Bowders, Jr. and Sun Chai Lee 2 Abstract: Geotechnical engineers have long Recognized the

More information

THE ULTIMATE SKIN RESISTANCE OF CONCRETE PILE IN PARTIALLY SATURATED COHESIVE SOIL BY MODIFIED Β METHOD

THE ULTIMATE SKIN RESISTANCE OF CONCRETE PILE IN PARTIALLY SATURATED COHESIVE SOIL BY MODIFIED Β METHOD International Journal of Civil Engineering and Technology (IJCIET) Volume 9, Issue 10, October 2018, pp. 1882 1891, Article ID: IJCIET_09_10_187 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=9&itype=10

More information

Test Pit Observation Report. Albertville Business Park 67th Street to 70th Street NE Albertville, Minnesota. Prepared for.

Test Pit Observation Report. Albertville Business Park 67th Street to 70th Street NE Albertville, Minnesota. Prepared for. Test Pit Observation Report Albertville Business Park 67th Street to 70th Street NE Albertville, Minnesota Prepared for Fehn Companies Professional Certification: I hereby certify that this plan, specification,

More information

THREE DIMENSIONAL SLOPE STABILITY

THREE DIMENSIONAL SLOPE STABILITY THREE DIMENSIONAL SLOPE STABILITY Timothy D. Stark, Ph.D, PE Associate Professor of Civil and Environmental Engineering University of Illinois at Urbana-Champaign 205 N. Mathews Ave. Urbana, IL 61801 (217)

More information

2.2 Soils 3 DIRECT SHEAR TEST

2.2 Soils 3 DIRECT SHEAR TEST 507 c) GT TS 50: Nonwoven needle-punched, continuous filament, polypropylene geotextile, with mass per unit area of 200 g/m 2 and thickness of 1.9mm. d) Smooth HDPE geomembrane (GM) with average thickness

More information

B.Tech. First Semester Examination Basics of Mechanical Engineering (ME-101F)

B.Tech. First Semester Examination Basics of Mechanical Engineering (ME-101F) B.Tech. First Semester Examination Basics of Mechanical Engineering (ME-101F) Q. 1. (a) Differentiate between water tube boiler and fire tube boiler. Ans. Comparison Between 'Fire-tube and Water tube'

More information

Global Journal of Engineering Science and Research Management

Global Journal of Engineering Science and Research Management ANALYSIS OF SOIL EFFECTIVE SHEAR STRENGTH PARAMETERS CONSIDERING DIFFERENT SPECIMEN DIAMETERS IN TRIAXIAL TESTS Fernando Feitosa Monteiro*, Yago Machado Pereira de Matos, Mariana Campos Fontenelle, Beatriz

More information

Agitation and Mixing

Agitation and Mixing Agitation and Mixing Agitation: Agitation refers to the induced motion of a material in a specified way, usually in a circulatory pattern inside some sort of container. Purpose is to make homogeneous phase.

More information

AASHTO M Subsurface Drainage

AASHTO M Subsurface Drainage Subsurface Drainage Description: This specification is applicable to placing a geotextile against the soil to allow long-term passage of water into a subsurface drain system retaining the in -situ soil.

More information

LABORATORY STUDY ON THE CONSOLIDATION SETTLEMENT OF CLAY-FILLED GEOTEXTILE TUBE AND BAGS

LABORATORY STUDY ON THE CONSOLIDATION SETTLEMENT OF CLAY-FILLED GEOTEXTILE TUBE AND BAGS Journal of GeoEngineering, Vol. 6, No. 1, pp. Chew 41-45, et al.: April Laboratory 2011 Study on the Consolidation Settlement of Clay-Filled Geotextile Tube and Bags 41 LABORATORY STUDY ON THE CONSOLIDATION

More information

Mechanical Behavior of Soil Geotextile Composites: Effect of Soil Type

Mechanical Behavior of Soil Geotextile Composites: Effect of Soil Type Mechanical Behavior of Geotextile Composites: Effect of Type A.I. Droudakis and I.N. Markou Department of Civil Engineering, Democritus University of Thrace, Greece 12 Vas. Sofias str., GR-671 Xanthi,

More information

BAUER Soil Improvement

BAUER Soil Improvement BAUER Soil Improvement a fast and economic solution 2 3 In the 1960s Bauer started performing ground improvement. The first vibrator for vibrocompaction was created in 1962 under the supervision of Dr.-Ing.

More information

Study on Effect of Water on Stability or Instability of the Earth Slopes

Study on Effect of Water on Stability or Instability of the Earth Slopes International Research Journal of Applied and Basic Sciences 2014 Available online at www.irjabs.com ISSN 2251-838X / Vol, 8 (9): 1482-1487 Science Explorer Publications Study on Effect of Water on Stability

More information

1. Introduction. Abstract. Keywords: Liquid limit, plastic limit, fall cone, undrained shear strength, water content.

1. Introduction. Abstract. Keywords: Liquid limit, plastic limit, fall cone, undrained shear strength, water content. Comparison In Undrained Shear Strength Between Low And High Liquid Limit Soils Neelu Das *1, Binu Sarma 2, Shashikant Singh 3 and Bidyut Bikash Sutradhar 4 1( Assistant Professor, Department of Civil Engineering,

More information

INFLUENCE OF SOIL DENSITY AND MOISTURE ON SEISMIC STABILITY OF SLOPE STRUCTURES

INFLUENCE OF SOIL DENSITY AND MOISTURE ON SEISMIC STABILITY OF SLOPE STRUCTURES International Journal of Civil Engineering and Technology (IJCIET) Volume 10, Issue 03, March 2019, pp. 788 794, Article ID: IJCIET_10_03_076 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijciet&vtype=10&itype=3

More information

YCEF WEEKLY TECHNICAL INTERACTIVE SESSION

YCEF WEEKLY TECHNICAL INTERACTIVE SESSION YOUNG CIVIL ENGINEERS FORUM SOIL RELATIVE COMPACTION TEST. PRESENTED BY HABEEB OLADAPO OLAWOLE FOR YCEF WEEKLY TECHNICAL INTERACTIVE SESSION MAY 2018 This paper is purposely for the presentation of YCEF

More information

Uplift Capacity of Rectangular Foundations 1n Sand

Uplift Capacity of Rectangular Foundations 1n Sand 4 Uplift Capacity of Rectangular Foundations 1n Sand BRAJA M. DAS AND ANDREW D. JONES Laboratory model test results for the net ultimate uplift capacity of rectan gular foundations in sand are presented.

More information

Improvement of Granular Subgrade Soil by Using Geotextile and Jute Fiber

Improvement of Granular Subgrade Soil by Using Geotextile and Jute Fiber International Journal of Science, Technology and Society 2015; 3(5): 230-235 Published online August 3, 2015 (http://www.sciencepublishinggroup.com/j/ijsts) doi: 10.11648/j.ijsts.20150305.12 ISSN: 2330-7412

More information

Classification of soils

Classification of soils Classification of soils Introduction: Soil classification is the arrangement of soils into different groups such that the soils in a particular group have similar behaviour. As there are a wide variety

More information

Shear strength features of unsaturated clayey sand by lab test

Shear strength features of unsaturated clayey sand by lab test Innov. Infrastruct. Solut. (2) 1:24 DOI 1.17/s42--3-y ORIGINAL PAPER Shear strength features of unsaturated clayey sand by lab test Qingyan Tian 1 Nigui Qian 2 Jiantong Zhang 3 Received: 29 May 2 / Accepted:

More information

Slope Stability of Soft Clay Embankment for Flood Protection

Slope Stability of Soft Clay Embankment for Flood Protection Research Article Slope Stability of Soft Clay Embankment for Flood Protection Vannee Sooksatra and Pawinee Jinga* Department of Civil Engineering, College of Engineering, Rangsit University, Phaholyothin

More information

A STUDY ON BEARING CAPACITY OF STRIP FOOTING ON LAYERED SOIL SYSTEM

A STUDY ON BEARING CAPACITY OF STRIP FOOTING ON LAYERED SOIL SYSTEM International Conference on GEOTECHNIQUES FOR INFRASTRUCTURE PROJECTS 27 th & 28 th February 2017, Thiruvananthapuram A STUDY ON BEARING CAPACITY OF STRIP FOOTING ON LAYERED SOIL SYSTEM ANITHA K.S. PG

More information

NUMERICAL ANALYSIS OF VERTICAL UPLIFT RESISTANCE OF HORIZONTAL STRIP ANCHOR EMBEDDED IN COHESIVE FRICTIONAL WEIGHTLESS SOIL

NUMERICAL ANALYSIS OF VERTICAL UPLIFT RESISTANCE OF HORIZONTAL STRIP ANCHOR EMBEDDED IN COHESIVE FRICTIONAL WEIGHTLESS SOIL Proceedings of 3rd International Conference on Advances in Civil Engineering, 21-23 December 216, CUET, Chittagong, angladesh Islam, Imam, Ali, oque, Rahman and aque (eds.) NUMERICAL ANALYSIS OF VERTICAL

More information

Merrill Zwanka Geotechnical Materials Engineer SCDOT Research and Materials Lab February Definitions Sampling and Testing Classification

Merrill Zwanka Geotechnical Materials Engineer SCDOT Research and Materials Lab February Definitions Sampling and Testing Classification Soil as a Construction Material Merrill Zwanka Geotechnical Materials Engineer SCDOT Research and Materials Lab February 1999 Soil as a Construction Material Definitions Sampling and Testing Classification

More information

A Study on Soil Stabilization of Clay Soil Using Flyash

A Study on Soil Stabilization of Clay Soil Using Flyash Volume 1, Issue 2, October-December, 2013, pp. 33-37, IASTER 2013 www.iaster.com, Online: 2347-2855, Print: 2347-8284 ABSTRACT A Study on Soil Stabilization of Clay Soil Using Flyash R. Saravanan*, Roopa

More information