. % FIELD EVALUATION OF FIVE LANDFILL LINER INSULATIONS1. by Craig H. Benson*, Michael A. Olson3, and Wayne R. Bergstrom4

Size: px
Start display at page:

Download ". % FIELD EVALUATION OF FIVE LANDFILL LINER INSULATIONS1. by Craig H. Benson*, Michael A. Olson3, and Wayne R. Bergstrom4"

Transcription

1 . % FELD EVALUATON OF FVE LANDFLL LNER NSULATONS1 by Craig H. Benson*, Michael A. Olson3, and Wayne R. Bergstrom4 Abstract: Five methods for thermally insulating the side slope of a landfill liner were evaluated in a field test. The insulations consisted of leachate collection sand, leachate collection sand and chipped tires, polyurea foam, polystyrene boards, and encapsulated fiber glass geoinsulation panels. Results of the study show that tire chips are an effective means to insulate landfill liners, whereas sand alone is inadequate. Of the three geoinsulations tested, the encapsulated fiber glass and extruded polystyrene worked best. The polyurea foam performed poorly, although its performance would have been better had it been thicker. NTRODUCTON Landfill liners constructed with compacted clay can be severely damaged if exposed to frost (Benson and Othman 1993, Chamberlain et al. 1995). Consequently, good practice includes thermally insulating liners before the onset of freezing to ensure that the clay liner is not damaged. Different types of insulating materials have been used, including municipal solid waste, soil, straw, and polystyrene boards. More recently, chipped tires and geosynthetic insulation blankets (i.e., geoinsulations) have been employed (Benson et al. 1995). n this paper, a monitoring program is described that was conducted to evaluate five insulation methods being considered for use at a composite-lined landfill in southeastern Michigan. The insulating methods were being considered because portions of the landfill cells at this site might not be covered with waste before winter, which would leave the lining system exposed to winter weather. The lining system at this landfill consists of a layer of compacted clay 0.9 m thick, overlain by a smooth high density polyethylene geomembrane 1.5 mm thick, and an 8-mm-thick geocomposite drain (heat bonded non-woven geotextile, geonet, and non-woven geotextile). A 450-mm-thick layer of leachate collection sand is placed above the geocomposite drain before the lining system is covered with waste. The insulations tested in this program included: leachate collection sand, leachate collection sand and chipped tires, polyurea foam, polystyrene boards, and encapsulated fiber glass geoinsulation panels. Five test sections were constructed on a landfill slope to evaluate the insulations. Temperatures at the surface of the liner, within the insulation, and in the air were monitored. Presented at the 18th nternational Madison Waste Conference, Sept , 1995, Dept. of Engineering Prof. Development, University of Wisconsin-Madison, Madison, W *~ssoc. Prof., Dept. of Civil and Environ. Eng., Univ. of Wisconsin, Madison, W ~resident, Abletech, nc., P.O. Box 15176, Ann Arbor, M ~resident, Engineering Geo-Techniques, 1212 James Savage, Suite G3, Midland, M 48640

2 NSULATONS Leachate Collection Sand A layer of leachate collection sand 380 mm thick was the first insulation method to be considered. f the sand could be used for insulation, cost savings could be achieved because the sand was a required component of the leachate collection system and would be installed regardless. Sand Covered with Waste Tire chips The second insulation method was to place a 450-mm-thick layer of chipped waste tires over 380 mm of leachate collection sand. Chipped waste tires were considered a desirable means to provide additional insulation because the landfill could collect fees for disposing the chipped tires while also using them as insulation. F~~rthermore, because chipped tires are permeable to water (Edil and Bosscher 1994), placing them above the leachate collection sand would improve leachate collection and removal at the landfill. As a result, the chipped tires would not have to be removed from above the leachate collection system before waste is placed, whereas other insulations would need to be removed. Polyurea Foam Geoinsulation The third insulation was a 25-mm-thick layer of closed cell polyurea foam placed directly on the geocomposite drain. The polyurea foam was considered because it could be spray-applied, which would facilitate insulating areas where changes in grade occur or irregitlarities exist in the surface of the lining system. However, because the quantity of polyurea to be used in this study was small, the polyurea was sprayed indoors to form panels 3 m long by 3 m wide. After preparation, the foam panels were transferred to the field for installation. Encapsulated Fiber Glass Geoinsulation The fourth insulation method was a layer of encapsulated fiber glass geoinsulation blankets placed directly on the non-woven geotextile. Unlike the other insulations, the encapsulated fiber glass geoinsulation is specifically designed for insulating lining systems. The product used in this study was a prototype that consisted of panels 0.6 m wide, 1.5 m long, and 50 mm thick. The casing was 0.2-mm-thick clear or black polyethylene film. Extruded Polystyrene Geoinsulation Boards 'The fifth insulation was extruded polystyrene boards placed directly on the non-woven geotextile. The pink boards were 1.22 m long, 2.44 m wide, and 25 mm thick.

3 TEST SECTONS lgg4 On Five test sections were constructed between December slope of the landfill ce\\ currently being filled. The test sections the were approximately g m x 9 m in areal extent and were installed adjacent to each other as shown in Fig. 1, The panels of polyurea and encapsulated fiber glass were installed with overlaps of mm. The polystyrene boards were installed by butting them against each other. Tape 0.1 m wide was placed to seal the seams between the panels of encapsulated fiber glass as recommended by the manufacturer. The Same tape was used to seal the joints between the polystyrene boards, as in building construction. Sand bags were placed on the polyurea foam, the encapsulated fiber glass blankets, and the polystyrene boards to prevent them from moving when exposed to wind. A~ of the materials were straightforward to install except the polystyrene boards. rregularities in the surface of the lining system and the stiffness of the boards made them difficult to install while maintaining tight seams. Also, the fixed shape of the boards made alignment of adjacent boards difficult, even on the relatively flat slope on which they were installed. MONTORNG Thermocouple Locations Temperatures beneath the insulation were monitored using type-t thermocouples. Locations of the thermocouples are shown in Fig. 1. The thermocouples were installed between December 18-26, For the test section constructed with sand, three thermocouples were placed at each station corresponding to the surface of the geomembrane, mid-depth in the sand, and at the surface of the sand. A similar arrangement was used at each station in the test section constructed with sand and chipped tires, except a thermocouple was placed at the interface between the sand and the chipped tires as well as mid-depth in the tires (five thermocouples per station). Two thenocouples were installed at each station in the section insulated with encapsulated fiber glass. One thermocouple was placed on the geomernbrane and the other was placed at mid-depth in the insulation. N~ were placed inside the polyurea foam or the polystyrene boards. thermocou~les were placed in the clay because this would have required puncturing the geomembrane. repaired The punctures wol~ld have to be after Was complete and the repairs would need to be reapproved the regulatory agency. The landfill owner was not willing to undergo repair and re-approval, and thus limited the scope of the project to temperatures at and above the geomembrane.

4

5 Temperatures at each thermocouple station were monitored using a data acquisition and control computer (DACC). Four solid-state multiplexers equipped with an internal temperature reference were used to connect the thermocouples with the DACC. Meteorological measurements including ambient air temperature, relative humidity, and solar radiation were also performed using instruments connected to the DACC. Leachate Collection Sand Temperatures mid-depth in the sand and on the surface of the geomembrane are shown in Fig. 2 for the test section insulated or~ly with leachate collection sand. Similar temperatures were monitored at the other stations in this test section. Both the sand temperature and the geomembrane temperature closely follow changes in the air temperature, with exception of the periods when snow cover persisted (Days 5-19, 31-42, and 66-75). During these periods, the temperature in the sand and on the geomembrane changed more gradually due to the insulating effect of the snow. 'The temperature on the surface of the geomembrane fell below 0 OC twice during the monitoring period. During the second event, the temperature on the geomembrane remained below 0 OC for 20 days. Freezing of the underlying clay probably occurred during this period. Leachate Collection Sand and Chipped Tires Temperatures mid-depth in the tires, at the sand-tire interface, and on the surface of the geomembrane are shown in Fig. 3 for the test section insulated with sand and chipped tires. Similar temperatures were monitored at all stations. The tire layer was very effective in insulating the sand and the lining system. Only gradual changes in temperature occurred at the sand-tire interface. n contrast, for the section insulated only with sand, relatively rapid changes in temperature were recorded mid-depth in the sand. Furthermore, the temperature of the geomembrane surface varied only 3 OC during the monitoring period and never fell below 0 OC. Polyurea Foam Geoinsulation Temperatures on the surface of the geomembrane for the test section insulated with polyurea foam are shown in Fig. 4. Nearly identical temperatures were monitored at all stations. Large fluctuations in geomembrane temperature occurred throughout the monitoring period except during periods of persistent snow cover. Particularly large diurnal temperature fluctuations occurred during

6 30 o^b e f!10 # lk O E,!E -10 Dec. 9 4 JWUW ~ February lqq5.d, ~~ar- Leachate Collccctlon Sand.. f.,! #,,,,,,,, a 20 ' % 40 60, Time (days) Fig. 2. Oe~nernbmne and Mid-Sand Tamperahnee for Test Section nsulated with Sand a ' a i,,f l #. > t l l * Time (days) Fig. 3, Temperatures for Test Section nsulated with Sand and Chipped Tires Ttme (days) Fig. 4. Geornembrane Temperatures for Test Saction nsulated with Polyurea Foam

7 the latter half of the monitoring period, which are probably due to solar radiation being absorbed by the dark-gray foam. Sub-freezing temperatures occurred in the geomembrane repeatedly throughout the monitoring period and extended.periods of freezing occurred in early February and early March. During the entire monitoring period, the geomerr~brane temperature fell below 0 OC 27 times. The periods of extended sub-freezing temperature and the numerous instances during which the geomembrane temperature dropped below 0 OC may have damaged the underlying clay liner. Encapsulated Fiber Glass Geoinsulation Temperatures mid-depth in the insulation and on the surface of the geomembrane are shown in Fig. 5 for the portion of the test section insulated with fiber glass geoinsulation having clear encapsulation. Similar temperatures were monitored at the other stations where clear encapsulation was used as well as the stations located in the areas insulated with black encapsulated The encapsulated fiber glass geoinsulation was effective. Fluctuations in geomembrane temperature were generally moderate, except near the end of the monitoring period when relatively high internal and geomembrane temperatures occurred as a result of increased solar radiation and warming air temperatures. The geomem brane experienced sub-freezing temperatures only once for an extremely brief duration in the section covered with clear geoinsulation (Day 61, Fig. 5). Extruded Polystyrene Board Geoinsulation Temperatures on the surface of the geomembrane in the test section insulated with extruded polystyrene boards are shown in Fig. 6. Nearly identical temperatures were measured at each station. The polystyrene boards were nearly as effective as the encapsulated fiber glass, although the geomembrane temperature fell below 0 OC several times during the monitoring period. However, the geomembrane remained below 0 OC for at most a few hours when the temperature dropped. Thus, damage to the underlying clay was unlikely. n addition, the geomembrane did not undergo increases in temperature as large as those incurred in the section insulated with fiber glass. Relative Performance of nsulations The relative performance of the insulation methods is shown in Fig. 7 in terms of the minimum temperature of the geomembrane and the freezing index of the geomembrane during the monitoring period. For all of the test sections except the section insulated with sand alone, the minimum geomembrane

8 Fl ber Glass nsulation "" -%'"'"', z,,! a 1,,,,,,. j Time (days) Fig. 5. Geamembrane and Mid-nsulation Temperatures for Test Section nsulated with Fiber Glass ~ednsdlation 3 20 Dec. 94 January 1985 Febnrary March ~~ c ~ s t q s -. EPS Boards 1 - i;mbr-,, '.,',,.,, L ' ', j -206.,, ' Time (days) Fig. 6. Gecmembrane Temperatures for Tan Sectlon insulated wlth Pdystyrsne

9 tempersature occurred between Days (Figs. 2-6). The geomembrane in the section covered with sand reached its lowest temperature on Day 51 (Fig. Fig. 7. Relative Performance of nsulation Met hods. According to Fig. 7, the sand covered with tire chips performed best and the polyurea foam performed worst. Furthermore, the section insulated with tire chips would still have performed the best had the sand not been placed beneath the chips because the sand provided little attenuation of temperature relative to the tires (Fig. 3). The fiber glass and the extruded polystyrene performed essentially the same and the sand alone performed poorly. These inferences are consistent with temperatures records (Figs. 2-6) that were previously discussed. The performance of the insulation methods is consistent with their thermal resistance (R). Those insulations having higher R had higher minimum geomembrane temperature, lower geomembrane freezing index (Fig. 7), and in general performed better throughout the entire monitoring period. The correspondence between insulation performance and R also indicates that different results could have been obtained had the insulation thicknesses been different. For example, if the polyurea foam had been gnificantly thicker, its R would have been higher, and sub-freezing temperat~~res on the surface of the geomerr~brane potentially could have been avoided in that test section.

10 CONCLUSONS Based on the data collected in this study and the observations made during installation and monitoring, the following conclusions are made: Of the three geoinsulations tested, the encapsulated fiber glass and extruded polystyrene worked best. The polyurea foam performed poorly, although its performance would have been better had it been thicker. The extruded polystyrene was the most difficult to place. The rigidity of the polystyrene prevented it from conforming to irregularities in the liner surface and made fits to corr~plicated geometries difficult. Tire chips are an effective means to insulate landfill liners if they can be obtained at low cost. They are particularly useful at sites where regulations do not prohibit landfilling of chipped tires. n this situation, the landfill owner can obtain fees for disposing of the tires and concurrently obtain an effective insulation material that does not need to be removed from the liner system after winter. Furthermore, it is not necessary to place sand between the tires and the liner provided the liner is protected against punctures caused by protruding metallic reinforcements in the tires. ACKNOWLEDGMENT Financial support for this study was provided by the Environmental Quality Company of Ypsilanti, Michigan. The findings and conclusions described in this paper are solely those of the authors and are not necessarily consistent with the policies or opinions of the Environmental Quality Company. REFERENCES Benson, C. and Othman, M. (1993), "Hydraulic Conductivity of Compacted Clay Frozen and Thawed n Situ," J. of Geotech. Engrg., ASCE, 11 9(2), Benson, C., Abichou, T., Olson, M., and Bosscher, P. (1995), "Winter Effects on the Hydraulic Conductivity of a Compacted Clay," J. of Geotech. Engrg., ASCE, 121 (2), Chamberlain, E., Erickson, A., and Benson, C. (1 995), "Effects of Frost Action on Compacted Clay Barriers," Geoenviron. 2000, GSP No. 45, ASCE, Edil, T. and Bosscher, P. (1994)) "Engineering Properties of Tire Chips and Soil Mixtures," Geotech. Testing J., ASTM, 17(4),

GEOTEXTILE DEFORMATION ANALYSIS OF GEOSYNTHETIC CLAY LINERS WITH FEM

GEOTEXTILE DEFORMATION ANALYSIS OF GEOSYNTHETIC CLAY LINERS WITH FEM Geotextile deformation analysis of Geosynthetic Clay Liners under high hydraulic heads with Finite Element Method VII International Conference on Textile Composites and Inflatable Structures STRUCTURAL

More information

Liner Construction & Testing Guidance Overview

Liner Construction & Testing Guidance Overview Liner Construction & Testing Guidance Overview Ruben Meza, Jr., P.E. Waste Permits Division Municipal Solid Waste Permits Section 2017: TCEQ Environmental Trade Fair Agenda Summary of Revised Guidance

More information

Selecting the Right Closure Cap Option for Your Surface Impoundment or CCR Landfill

Selecting the Right Closure Cap Option for Your Surface Impoundment or CCR Landfill 2017 World of Coal Ash (WOCA) Conference in Lexington, KY - May 9-11, 2017 http://www.flyash.info/ Selecting the Right Closure Cap Option for Your Surface Impoundment or CCR Landfill Steven C. Lamb 1,

More information

Exposed Geomembrane Cover Systems for Coal Ash Facilities

Exposed Geomembrane Cover Systems for Coal Ash Facilities 2017 World of Coal Ash (WOCA) Conference in Lexington, KY - May 9-11, 2017 http://www.flyash.info/ Exposed Geomembrane Cover Systems for Coal Ash Facilities Clay Reichert, P.E. GSE Environmental, LLC,

More information

D.P.E. Enviroliner. geotextile protection layer. covering new ground 2016

D.P.E. Enviroliner. geotextile protection layer. covering new ground 2016 LEVEL 7 osynthetic clay liner www.gundle.co.za H.D.P.E. Enviroliner geosynthetic clay liner geotextile protection layer D.P.E. Enviroliner solid waste sand (leachate collection) geotextile protection layer

More information

REHABILITATION OF SAIDA DUMPSITE

REHABILITATION OF SAIDA DUMPSITE Traditionally a landfill s construction involves large quantities of natural materials such as clay (waterproofing), gravel (drainage) and sand (filter and separation). These materials are scarce in the

More information

Geosynthetics and Their Applications

Geosynthetics and Their Applications GEOSYNTHETICS AND REINFORCED SOIL STRUCTURES Different Types of Geosynthetics and Their Applications K. Rajagopal, Professor Department of Civil Engineering IIT Madras, Chennai e-mail: gopalkr@iitm.ac.inac

More information

Leakage through Liners under High Hydraulic Heads. PH (512) ; FAX (512) ;

Leakage through Liners under High Hydraulic Heads. PH (512) ; FAX (512) ; Weber, C.T., and Zornberg, J.G. (2005). Leakage through Liners under High Hydraulic Heads." Geosynthetics Research and Development in Progress, Eighteenth Geosynthetic Research Institute Conference (GRI-18),

More information

Evaluating Tubular Drainage Geocomposites for use in Lined Landfill Leachate Collection Systems

Evaluating Tubular Drainage Geocomposites for use in Lined Landfill Leachate Collection Systems Geo-Environmental Engineering 2015 Concordia University Montreal, Canada May 21-22, 2015 Evaluating Tubular Drainage Geocomposites for use in Lined Landfill Leachate Collection Systems Eric Steinhauser

More information

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE Prof. J. N. Mandal Department of Civil Engineering, IIT Bombay, Powai, Mumbai 400076, India. Tel.022-25767328 email: cejnm@civil.iitb.ac.in Module - 2

More information

Geosynthetics for the Management, Containment and Closure of Coal Combustion Residual Disposal Facilities

Geosynthetics for the Management, Containment and Closure of Coal Combustion Residual Disposal Facilities 2013 World of Coal Ash (WOCA) Conference - April 22-25, 2013 in Lexington, KY http://www.flyash.info/ Geosynthetics for the Management, Containment and Closure of Coal Combustion Residual Disposal Facilities

More information

Moisture Content Effect on Sliding Shear Test Parameters in Woven Geotextile Reinforced Pilani Soil

Moisture Content Effect on Sliding Shear Test Parameters in Woven Geotextile Reinforced Pilani Soil International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 2 Issue 8 ǁ August 2013 ǁ PP.10-15 Moisture Content Effect on Sliding Shear Test Parameters

More information

SUITABILITY OF GEOGRID REINFORCED - RUBBER WASTE IN PAVEMENTS

SUITABILITY OF GEOGRID REINFORCED - RUBBER WASTE IN PAVEMENTS Abstract S. Thenmozhi et. al. / International Journal of Engineering Science and Technology SUITABILITY OF GEOGRID REINFORCED - RUBBER WASTE IN PAVEMENTS S. THENMOZHI 1 Research Scholar, Department of

More information

Lessons Learned From the Failure of a GCL/Geomembrane Barrier on a Side Slope Landfill Cover

Lessons Learned From the Failure of a GCL/Geomembrane Barrier on a Side Slope Landfill Cover Lessons Learned From the Failure of a GCL/Geomembrane Barrier on a Side Slope Landfill Cover by G. N. Richardson, R. S. Thiel and W. A. Marr ABSTRACT: A sliding failure which occurred during construction

More information

Geosynthetics. Work platforms built with geotextile tubes at the Lach Huyen Bridge. GMA TECHLINE Exposed GM? Deformations?

Geosynthetics. Work platforms built with geotextile tubes at the Lach Huyen Bridge. GMA TECHLINE Exposed GM? Deformations? FEBRUARY/MARCH 2016 VOLUME 34 NUMBER 1 SUBSCRIBE AT GeosyntheticsMagazine.com GMA TECHLINE Exposed GM? Deformations? For landfill drainage layer GIROUD & HAN Geosynthetics and unpaved roads Geosynthetics

More information

SWANA/A&WMA s. Third Annual Landfill Operator s Training Geosynthetics in Landfills. February 13, 2013

SWANA/A&WMA s. Third Annual Landfill Operator s Training Geosynthetics in Landfills. February 13, 2013 SWANA/A&WMA s Third Annual Landfill Operator s Training Geosynthetics in Landfills February 13, 2013 Geosynthetics Products Applications Current Lining Requirements Tips 2 Geosynthetics polymeric products

More information

Modified geotextile tube a new geotextile tube for optimized retaining efficiency and dewatering rate

Modified geotextile tube a new geotextile tube for optimized retaining efficiency and dewatering rate Modified geotextile tube a new geotextile tube for optimized retaining efficiency and dewatering rate Hyeong-Joo Kim 1), Tae-Woong Park 2), Sung-Gil Moon 3), Hyeong-Soo Kim 4), Ri Zhang 5), and *Peter

More information

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE Prof. J. N. Mandal Department of civil engineering, IIT Bombay, Powai, Mumbai 400076, India. Tel.022-25767328 email: cejnm@civil.iitb.ac.in Module - 3

More information

Leak Location Geosynthetic Materials in Base Liner Systems. NY Federation SWANA. May, 2014

Leak Location Geosynthetic Materials in Base Liner Systems. NY Federation SWANA. May, 2014 Leak Location Geosynthetic Materials in Base Liner Systems NY Federation SWANA May, 2014 Different ELI Surveys A. Covered Electrical Liner Integrity (ELI) Survey Dipole Method Suitable for water or soil

More information

Consulting Engineers and Scientists. Closure Plan. Submitted by: GEI Consultants, Inc Voyager Drive Green Bay, Wisconsin

Consulting Engineers and Scientists. Closure Plan. Submitted by: GEI Consultants, Inc Voyager Drive Green Bay, Wisconsin Consulting Engineers and Scientists Regulation Compliance Report Submitted to: We Energies 333 West Everett Street, A231 Milwaukee, Wisconsin 53203 Submitted by: GEI Consultants, Inc. 3159 Voyager Drive

More information

Load-Carrying Capacity of Stone Column Encased with Geotextile. Anil Kumar Sahu 1 and Ishan Shankar 2

Load-Carrying Capacity of Stone Column Encased with Geotextile. Anil Kumar Sahu 1 and Ishan Shankar 2 Load-Carrying Capacity of Stone Column Encased with Geotextile Anil Kumar Sahu 1 and Ishan Shankar 2 1 Professor, Department of Civil Engineering, Delhi Technological University, Delhi, India (sahuanilkr@yahoo.co.in)

More information

Performance and design features to improve and sustain geomembrane performance. R. Kerry Rowe. at Queen s-rmc

Performance and design features to improve and sustain geomembrane performance. R. Kerry Rowe. at Queen s-rmc Performance and design features to improve and sustain geomembrane performance R. Kerry Rowe at Queen s-rmc Observations To minimize leakage you need a composite liner Data shows that composite liners

More information

Geosynthetics for Erosion Control and Reinforcement

Geosynthetics for Erosion Control and Reinforcement Geosynthetics for Erosion Control and Reinforcement Stan Boyle, Ph.D., P.E. Shannon & Wilson, Inc. What are Geosynthetics? Geosynthetics are (generally) polymeric products used in civil engineering applications.

More information

SPECIAL SPECIFICATION 3687 Impermeable Liner

SPECIAL SPECIFICATION 3687 Impermeable Liner 1993 Specifications CSJ s 0569-01-043 & 0945-04-025 SPECIAL SPECIFICATION 3687 Impermeable Liner 1. Description. This Item shall govern for the furnishing and installation of the impermeable liner (geomembrane)

More information

Charudatta R. Prayag Deputy Director Ahmedabad Textile Industry s Research Association Ahmedabad

Charudatta R. Prayag Deputy Director Ahmedabad Textile Industry s Research Association Ahmedabad Introduction to Geotextiles and the use of Polyester in Geosynthetics, and a brief outline of the Scheme for promotion of usage of Geotextiles in the NER of the Ministry of Textiles, Govt. of India Charudatta

More information

Introduction To Geosynthetics In Transportation

Introduction To Geosynthetics In Transportation Module 1 Separation, Stabilization & Base Reinforcement Introduction To Geosynthetics In Transportation Prepared by July 2007 For the Local Technical Assistance Program The Geosynthetic Materials Association

More information

The Mercer Lecture

The Mercer Lecture The Mercer Lecture 2005-2006 Sponsored by Tensar International with the endorsement of the International Society for Soil Mechanics and Geotechnical Engineering and the International Geosynthetics Society

More information

SUBGRADE IMPROVEMENT OF CLAYEY SOIL WITH THE USE OF GEOTEXTILES

SUBGRADE IMPROVEMENT OF CLAYEY SOIL WITH THE USE OF GEOTEXTILES SUBGRADE IMPROVEMENT OF CLAYEY SOIL WITH THE USE OF GEOTEXTILES 1 Soma Prashanth Kumar, 2 Mohammed Asif T L, 3 Mane S R Rohith 1 Assistant Professor, Department of Civil Engineering, JBIET, Moinabad, (India)

More information

INSTALLATION GUIDELINES. Landfills and mines

INSTALLATION GUIDELINES. Landfills and mines INSTALLATION GUIDELINES Landfills and mines Introduction Recommendations This installation manual gives general recommendations for the installation of the drainage geocomposites InterDRAIN and TechDRAIN

More information

CAPPING OF A GOLD MINE IN ROSIA MONTANA, ROMANIA

CAPPING OF A GOLD MINE IN ROSIA MONTANA, ROMANIA Rosia Montana has always been rich in mineral resources, especially in gold. Unfortunately the accident at Baia Mare in 2000 brought home to Romanians the dangers of cyanide leaching due to the use of

More information

LARGE-SCALE SHEAR TESTS ON INTERFACE SHEAR PERFORMANCE OF LANDFILL LINER SYSTEMS

LARGE-SCALE SHEAR TESTS ON INTERFACE SHEAR PERFORMANCE OF LANDFILL LINER SYSTEMS Proceeding of the 4 th Asian Regional Conference on Geosynthetics June 17-2, 28 Shanghai, China LARGE-SCALE SHEAR TESTS ON INTERFACE SHEAR PERFORMANCE OF LANDFILL LINER SYSTEMS M. Kamon 1, S. Mariappan

More information

DESIGNING WITH GEOSYNTHETICS (5TH EDITION) BY ROBERT M KOERNER DOWNLOAD EBOOK : DESIGNING WITH GEOSYNTHETICS (5TH EDITION) BY ROBERT M KOERNER PDF

DESIGNING WITH GEOSYNTHETICS (5TH EDITION) BY ROBERT M KOERNER DOWNLOAD EBOOK : DESIGNING WITH GEOSYNTHETICS (5TH EDITION) BY ROBERT M KOERNER PDF Read Online and Download Ebook DESIGNING WITH GEOSYNTHETICS (5TH EDITION) BY ROBERT M KOERNER DOWNLOAD EBOOK : DESIGNING WITH GEOSYNTHETICS (5TH EDITION) BY Click link bellow and free register to download

More information

Introduction. Functions of Non woven Geotextile (TechGeo) Separation. Filtration. Drainage. Containment. Tech Geo. . Geotextile Overview

Introduction. Functions of Non woven Geotextile (TechGeo) Separation. Filtration. Drainage. Containment. Tech Geo. . Geotextile Overview Introduction Nonwoven Geotextile (TechGeo) - Functions & Applications TechGeo is made from the highest quality PP fibers. It is a Nonwoven Geotextile, needle punched to form a strong fabric that relates

More information

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE Prof. J. N. Mandal Department of Civil Engineering, IIT Bombay, Powai, Mumbai 400076, India. Tel.022-25767328 email: cejnm@civil.iitb.ac.in Module - 2

More information

EARTH STABILIZATION GEOSYNTHETIC SOLUTIONS

EARTH STABILIZATION GEOSYNTHETIC SOLUTIONS EARTH STABILIZATION GEOSYNTHETIC SOLUTIONS A FULL LINE OF GEOSYNTHETIC SOLUTIONS As one of the largest manufacturer of geosynthetics in the world, we are focused on providing superior performance every

More information

Elements of Design of Multi-linear Drainage Geocomposites for Landfills

Elements of Design of Multi-linear Drainage Geocomposites for Landfills Elements of Design of Multi-linear Drainage Geocomposites for Landfills Stephan Fourmont Business Development Manager East sfourmont@draintube.net C : (418) 929-3139 Multi-linear drainage geocomposites

More information

Pozidrain. A guide to the selection and specification of Pozidrain drainage geocomposite

Pozidrain. A guide to the selection and specification of Pozidrain drainage geocomposite Pozidrain A guide to the selection and specification of Pozidrain drainage geocomposite Pozidrain Pozidrain is the original wide width drainage and gas venting layer and offers a sustainable, environmentally

More information

A Collection and Removal System for Water in the Final Cover Drainage Layer

A Collection and Removal System for Water in the Final Cover Drainage Layer Landfills A Collection and Removal System for Water in the Final Cover Drainage Layer A rainwater toe drainage system, by removing water from the final cover drainage layer, eliminates the possibility

More information

Break Layers. A guide to the design and specification of capillary break, salt barrier and frost barrier layers.

Break Layers. A guide to the design and specification of capillary break, salt barrier and frost barrier layers. Break Layers A guide to the design and specification of capillary break, salt barrier and frost barrier layers. Upward movement of water in fine grained soil is a natural process that is usually beneficial

More information

SHEAR STRENGTH CHARACTERISTICS OF PVC GEOMEMBRANE-GEOSYNTHETIC INTERFACES

SHEAR STRENGTH CHARACTERISTICS OF PVC GEOMEMBRANE-GEOSYNTHETIC INTERFACES Technical Paper by R.P. Hillman and T.D. Stark SHEAR STRENGTH CHARACTERISTICS OF PVC GEOMEMBRANE-GEOSYNTHETIC INTERFACES ABSTRACT: Torsional ring shear and large-scale direct shear tests were conducted

More information

LiteEarth Advanced Synthetic Grass Geomembrane Liner INDEPENDENT THIRD PARTY PERFORMANCE TESTING REPORT. U.S. Patent No.

LiteEarth Advanced Synthetic Grass Geomembrane Liner INDEPENDENT THIRD PARTY PERFORMANCE TESTING REPORT. U.S. Patent No. LiteEarth Advanced Synthetic Grass Geomembrane Liner INDEPENDENT THIRD PARTY PERFORMANCE TESTING REPORT U.S. Patent No. 9151009 B2 Contents 1.0 INTRODUCTION...4 2.0 INDEX AND QUALITY CONTROL TESTS 2.1

More information

Geosynthetic materials Solutions for improved ground structure. Name it. We ll do it.

Geosynthetic materials Solutions for improved ground structure. Name it. We ll do it. Geosynthetic materials Solutions for improved ground structure TEXEL S PRODUCTION CAPABILITIES By concentrating on the carding/needlepunching technology and continuously investing in its production and

More information

FIELD PERFORMANCE OF GEOTEXTILE REINFORCED SLUDGE CAPS

FIELD PERFORMANCE OF GEOTEXTILE REINFORCED SLUDGE CAPS FIELD PERFORMANCE OF GEOTEXTILE REINFORCED SLUDGE CAPS AHMET H. AYDILEK UNIVERSITY OF WISCONSIN-MADISON UNITED STATES OF AMERICA ABSTRACT Geosynthetic reinforced capping of highwater content waste materials

More information

GEOMEMBRANE FIELD INSTALLATION

GEOMEMBRANE FIELD INSTALLATION GEOMEMBRANE FIELD INSTALLATION CONTENTS Introduction Quality Control and Quality Assurance Types of lining systems Basic Lining Design Executive Lining Design Basic Lining Design Specification Executive

More information

Workshop On Capping Design In South Africa. Product Showcase By. Tyrone Naidoo

Workshop On Capping Design In South Africa. Product Showcase By. Tyrone Naidoo Workshop On Capping Design In South Africa Product Showcase By Tyrone Naidoo Kaytech Introduction Kaytech providing Africa with Geosynthetics for over 40 years Offering geosynthetic solutions to corporations

More information

1993 Specifications CSJ SPECIAL SPECIFICATION ITEM Impermeable Liner

1993 Specifications CSJ SPECIAL SPECIFICATION ITEM Impermeable Liner 1993 Specifications CSJ 0128-01-085 SPECIAL SPECIFICATION ITEM 5327 Impermeable Liner 1. Description. This Item shall govern for the furnishing and installation of the impermeable liner (geomembrane) shown

More information

2.2 Soils 3 DIRECT SHEAR TEST

2.2 Soils 3 DIRECT SHEAR TEST 507 c) GT TS 50: Nonwoven needle-punched, continuous filament, polypropylene geotextile, with mass per unit area of 200 g/m 2 and thickness of 1.9mm. d) Smooth HDPE geomembrane (GM) with average thickness

More information

Chesapeake Energy Center. Submitted To: Chesapeake Energy Center 2701 Vepco Street Chesapeake, VA 23323

Chesapeake Energy Center. Submitted To: Chesapeake Energy Center 2701 Vepco Street Chesapeake, VA 23323 NOTICE OF INTENT TO CLOSE INACTIVE CCR SURFACE IMPOUNDMENT NOTICE OF INTENT Chesapeake Energy Center Submitted To: Chesapeake Energy Center 2701 Vepco Street Chesapeake, VA 23323 Submitted By: Golder Associates

More information

Technical Specification Guidelines

Technical Specification Guidelines SECTION I- DESIGN CONSIDERATIONS PAGE 1.01 APPLICABILITY...I.2 1.02 PROTECTION AND PRECAUTIONS...I.3 1.03 SITE AND SUBSTRATE CONSIDERATIONS...I.3 1.04 PRODUCT CONSIDERATIONS...I.8 1.05 FASTENING CONSIDERATIONS...I.9

More information

Assessment of Geotextile Reinforced Embankment on Soft Clay Soil

Assessment of Geotextile Reinforced Embankment on Soft Clay Soil Assessment of Geotextile Reinforced Embankment on Soft Clay Soil M. Siavoshnia*, F. Kalantari and A. Shakiba Corresponding author: Civil Engineering Faculty, Neyaiesh Complex, Tehran Central Branch, Islamic

More information

NOTICE OF INTENT. Submitted To: Bremo Power Station 1038 Bremo Bluff Road Bremo Bluff, VA 23022

NOTICE OF INTENT. Submitted To: Bremo Power Station 1038 Bremo Bluff Road Bremo Bluff, VA 23022 NOTICE OF INTENT TO CLOSE INACTIVE CCR SURFACE IMPOUNDMENTS NOTICE OF INTENT Bremo Power Station Submitted To: Bremo Power Station 1038 Bremo Bluff Road Bremo Bluff, VA 23022 Submitted By: Golder Associates

More information

Geomembranes and Geosynthetic Clay Liners (GCLs)

Geomembranes and Geosynthetic Clay Liners (GCLs) Geomembranes and Geosynthetic Clay Liners (GCLs) Geosynthetic Materials Association 800 636 5042 www.gmanow.com gmatechline@ifai.com Geomembranes are essentially impermeable polymeric lining materials

More information

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE Prof. J. N. Mandal Department of Civil Engineering, IIT Bombay, Powai, Mumbai 400076, India. Tel.022-25767328 email: cejnm@civil.iitb.ac.in Module - 2

More information

Sea to Sky Geotechnique 2006

Sea to Sky Geotechnique 2006 INTERFACE SHEAR-STRENGTH PROPERTIES OF TEXTURED POLYETHYLENE GEOMEMBRANES Eric Blond, CTT Group / SAGEOS, Quebec, Canada Guy Elie, Solmax International, Quebec, Canada ABSTRACT In order to better characterize

More information

PERFORMANCE OF GEOSYNTHETICS IN THE FILTRATION OF HIGH WATER CONTENT WASTE MATERIAL

PERFORMANCE OF GEOSYNTHETICS IN THE FILTRATION OF HIGH WATER CONTENT WASTE MATERIAL IGC 2009, Guntur, INDIA PERFORMANCE OF GEOSYNTHETICS IN THE FILTRATION OF HIGH WATER CONTENT WASTE MATERIAL K. Ilamparuthi Professor, Anna University, Chennai 600025, India. E-mail: kanniilam@gmail.com

More information

Performance of Geosynthetics in the Filtration of High Water Content Waste Material

Performance of Geosynthetics in the Filtration of High Water Content Waste Material INDIAN GEOTECHNICAL SOCIETY CHENNAI CHAPTER Performance of Geosynthetics in the Filtration of High Water Content Waste Material T. Arun 1 and K. Ilamparuthi 2 ABSTRACT: Filtration mould was fabricated

More information

Module 5 Erosion & Sediment Control. Introduction To Geosynthetics In Transportation. Prepared by. For the Local Technical Assistance Program

Module 5 Erosion & Sediment Control. Introduction To Geosynthetics In Transportation. Prepared by. For the Local Technical Assistance Program Module 5 Erosion & Sediment Control Introduction To Geosynthetics In Transportation Prepared by July 2007 For the Local Technical Assistance Program The Geosynthetic Materials Association (GMA) represents

More information

GRI White Paper #8. - on - Construction Quality Assurance-Inspectors Certification Program (CQA-ICP)

GRI White Paper #8. - on - Construction Quality Assurance-Inspectors Certification Program (CQA-ICP) Geosynthetic Certification Institute 475 Kedron Avenue Folsom, PA 19033-1208 USA TEL (610) 522-8440 FAX (610) 522-8441 GEI GRI GSI GAI GCI GII GRI White Paper #8 - on - Construction Quality Assurance-Inspectors

More information

TRANSMISSIVITY BEHAVIOR OF SHREDDED SCRAP TIRE DRAINAGE LAYER IN LANDFILL COVER SYSTEM *

TRANSMISSIVITY BEHAVIOR OF SHREDDED SCRAP TIRE DRAINAGE LAYER IN LANDFILL COVER SYSTEM * TRANSMISSIVITY BEHAVIOR OF SHREDDED SCRAP TIRE DRAINAGE LAYER IN LANDFILL COVER SYSTEM * Krishna R. Reddy, Aravind Marella and Prasanth Ala University of Illinois at Chicago, Department of Civil and Materials

More information

Numerical Analysis of Leakage through Geomembrane Lining Systems for Dams

Numerical Analysis of Leakage through Geomembrane Lining Systems for Dams The First Pan American Geosynthetics Conference & Exhibition 25 March 2008, Cancun, Mexico Numerical Analysis of Leakage through Geomembrane Lining Systems for Dams C.T. Weber, University of Texas at Austin,

More information

POND SEALING OR LINING GEOMEMBRANE OR GEOSYNTHETIC CLAY LINER

POND SEALING OR LINING GEOMEMBRANE OR GEOSYNTHETIC CLAY LINER NATURAL RESOURCES CONSERVATION SERVICE CONSERVATION PRACTICE STANDARD POND SEALING OR LINING GEOMEMBRANE OR GEOSYNTHETIC CLAY LINER CODE 521 (NO.) DEFINITION A liner for an impoundment constructed using

More information

LANDFILL FINAL COVER AND MANAGEMENT OF LEACHATE SEEPS BELOW FINAL COVER

LANDFILL FINAL COVER AND MANAGEMENT OF LEACHATE SEEPS BELOW FINAL COVER LANDFILL FINAL COVER AND MANAGEMENT OF LEACHATE SEEPS BELOW FINAL COVER Ali Khatami, Ph.D., P.E. SCS Engineers 1900 NW Corporate Blvd. #W110 Boca Raton, Florida 33431 akhatami@scsengineers.com Abstract:

More information

Geosynthetic materials Solutions for improved ground structure. Name it. We ll do it.

Geosynthetic materials Solutions for improved ground structure. Name it. We ll do it. Geosynthetic materials Solutions for improved ground structure TEXEL S PRODUCTION CAPABILITIES By concentrating on the carding/needlepunching technology and continuously investing in its production and

More information

Experimental tests for geosynthetics anchorage trenches

Experimental tests for geosynthetics anchorage trenches Experimental tests for geosynthetics anchorage trenches Girard H. Cemagref, Bordeaux, France Briançon L Cnam, Paris, France Rey E. Cnam, Paris, France Keywords: geosynthetics, anchorage trench, full-scale

More information

LABORATORY STUDY ON THE CONSOLIDATION SETTLEMENT OF CLAY-FILLED GEOTEXTILE TUBE AND BAGS

LABORATORY STUDY ON THE CONSOLIDATION SETTLEMENT OF CLAY-FILLED GEOTEXTILE TUBE AND BAGS Journal of GeoEngineering, Vol. 6, No. 1, pp. Chew 41-45, et al.: April Laboratory 2011 Study on the Consolidation Settlement of Clay-Filled Geotextile Tube and Bags 41 LABORATORY STUDY ON THE CONSOLIDATION

More information

Acronyms. TRI TRI Environmental, Inc. Table of Contents. iii

Acronyms. TRI TRI Environmental, Inc. Table of Contents. iii Table of Contents Acronyms AEG American Environmental Group, Ltd. AMEC American Environmental & Infrastructure, Inc. CAT I Category I CES ARCADIS Construction and Environmental Services Group CQA Construction

More information

GEOSYNTHETIC CLAY LINER (GCL) PANEL SEPARATION UNDER EXPOSED GEOMEMBRANES: AN UPDATE FOR DESIGNERS OF LINING SYSTEMS

GEOSYNTHETIC CLAY LINER (GCL) PANEL SEPARATION UNDER EXPOSED GEOMEMBRANES: AN UPDATE FOR DESIGNERS OF LINING SYSTEMS GEOSYNTHETIC CLAY LINER (GCL) PANEL SEPARATION UNDER EXPOSED GEOMEMBRANES: AN UPDATE FOR DESIGNERS OF LINING SYSTEMS PETER DAVIES Kaytech Engineered Fabrics, South Africa peter@kaytech.co.za SUMMARY Geosynthetic

More information

Section Specification for Geotextile Used in Permanent Erosion Control Application

Section Specification for Geotextile Used in Permanent Erosion Control Application Project Name: Project Number: 1 GENERAL Section 02370 Specification for Geotextile Used in Permanent Erosion Control Application 1.1 SECTION INCLUDES A. Geotextile to prevent soil loss resulting in excessive

More information

GSI. Director Geosynthetic Institute. GSI White Paper #30. In-Situ Repairs of Geomembrane Bubbles, Whales and Hippos GRI

GSI. Director Geosynthetic Institute. GSI White Paper #30. In-Situ Repairs of Geomembrane Bubbles, Whales and Hippos GRI Geosynthetic Institute 475 Kedron Avenue Folsom, PA 19033-1208 USA TEL (610) 522-8440 FAX (610) 522-8441 GEI EI GAI GRI GSI GCI GII GSI White Paper #30 In-Situ Repairs of Geomembrane Bubbles, Whales and

More information

Cracking in Liner Behavior and Desiccation of Compacted Landfill Liner Soils

Cracking in Liner Behavior and Desiccation of Compacted Landfill Liner Soils International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2015 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Cracking

More information

Technical Supplement 14D. Geosynthetics in Stream Restoration. (210 VI NEH, August 2007)

Technical Supplement 14D. Geosynthetics in Stream Restoration. (210 VI NEH, August 2007) Technical Supplement 14D (210 VI NEH, August 2007) Issued August 2007 Cover photo: Inert or manmade materials can be used in restoration designs where immediate stability is required and can be used in

More information

Geosynthetics: GEOTEXTILES ASDSO WOVEN GEOTEXTILE GEOSYNTHETICS IN DAMS. Geosynthetics in Dams, Forty Years of Experience by J.P.

Geosynthetics: GEOTEXTILES ASDSO WOVEN GEOTEXTILE GEOSYNTHETICS IN DAMS. Geosynthetics in Dams, Forty Years of Experience by J.P. ASDSO ORLANDO, SEPTEMBER 2005 GEOSYNTHETICS IN DAMS FORTY YEARS OF EXPERIENCE J.P. GIROUD Geosynthetics: GEOMEMBRANES GEOTEXTILES GEOMATS GEONETS GEOCOMPOSITES GEOGRIDS etc. GEOMEMBRANES GEOTEXTILES Used

More information

AASHTO M Subsurface Drainage

AASHTO M Subsurface Drainage Subsurface Drainage Description: This specification is applicable to placing a geotextile against the soil to allow long-term passage of water into a subsurface drain system retaining the in -situ soil.

More information

Analysis of Pullout Resistance of Soil-Nailing in Lateritic Soil

Analysis of Pullout Resistance of Soil-Nailing in Lateritic Soil Analysis of Pullout Resistance of Soil-Nailing in Lateritic Soil B,L.A. Isaka 1, B.C. Madushanka 1 and N.H. Priyankara 1 1 Department of Civil and Environmental Engineering Faculty of Engineering University

More information

Basic Geosynthetics: A Guide to Best Practices in Forest Engineering

Basic Geosynthetics: A Guide to Best Practices in Forest Engineering Basic Geosynthetics: A Guide to Best Practices in Forest Engineering Jonathan Fannin Ph.D., P. Eng., Forest Resources Management and Civil Engineering, University of British Columbia, Canada. ABSTRACT

More information

Exposed geomembrane covers: Part 1 - geomembrane stresses

Exposed geomembrane covers: Part 1 - geomembrane stresses Exposed geomembrane covers: Part 1 - geomembrane stresses By Gregory N. Richardson, Ph.D. P.E., principal of GN Richardson and Assoc. During the late 1980s and early 1990s, many mixed-waste disposal areas

More information

Centrifuge modelling and dynamic testing of Municipal Solid Waste (MSW) landfills

Centrifuge modelling and dynamic testing of Municipal Solid Waste (MSW) landfills Centrifuge modelling and dynamic testing of Municipal Solid Waste (MSW) landfills N. I. Thusyanthan & S. P. G. Madabhushi Department of Engineering, University of Cambridge, United Kingdom ABSTRACT: An

More information

Geosynthetic Barriers for

Geosynthetic Barriers for 8 th International Conference on Geosynthetics Geosynthetic Barriers for Environmental Protection at Landfills by Edward Kavazanjian, Jr., USA Neil Dixon, United Kingdom Takeshi Katsumi, Japan Anthony

More information

FIELD EVALUATION OF PROTECTIVE COVERS FOR LANDFILL GEOMEMBRANE LINERS UNDER CONSTRUCTION LOADING

FIELD EVALUATION OF PROTECTIVE COVERS FOR LANDFILL GEOMEMBRANE LINERS UNDER CONSTRUCTION LOADING Technical Paper by K.R. Reddy, S.R. Bandi, J.J. Rohr, M. Finy and J. Siebken FIELD EVALUATION OF PROTECTIVE COVERS FOR LANDFILL GEOMEMBRANE LINERS UNDER CONSTRUCTION LOADING ABSTRACT: The performance of

More information

IMPORTANT CONSIDERATIONS FOR LEAKAGE CONTROL OF EXPOSED GEOMEMRANE-LINED PONDS

IMPORTANT CONSIDERATIONS FOR LEAKAGE CONTROL OF EXPOSED GEOMEMRANE-LINED PONDS IMPORTANT CONSIDERATIONS FOR LEAKAGE CONTROL OF EXPOSED GEOMEMRANE-LINED PONDS R. THIEL* AND J.P. GIROUD** * THIEL ENGINEERING, PO Box 1010, Oregon House, CA, 95962, USA ** JP GIROUD, INC., 5837 N. Ocean

More information

APPLICATIONS IN FILTRATION AND DRAINAGE & EROSION CONTROL

APPLICATIONS IN FILTRATION AND DRAINAGE & EROSION CONTROL Lecture 36 APPLICATIONS IN FILTRATION AND DRAINAGE & EROSION CONTROL Prof. G L Sivakumar Babu Department of Civil Engineering Indian Institute of Science Bangalore 560012 Geotextile filter requirements:

More information

INSTRUMENTATION AND EVALUATION OF COMMERCIAL AND HOMEMADE PASSIVE SOLAR PANELS

INSTRUMENTATION AND EVALUATION OF COMMERCIAL AND HOMEMADE PASSIVE SOLAR PANELS Session 1359 INSTRUMENTATION AND EVALUATION OF COMMERCIAL AND HOMEMADE PASSIVE SOLAR PANELS Emin Yılmaz University of Maryland Eastern Shore Princess Anne, Maryland 21853 (410)-651-6470 E-mail: eyilmaz@mail.umes.edu

More information

A Study on Stabilization of Subgrade Soil Using Natural Fibers (Coir and Jute)

A Study on Stabilization of Subgrade Soil Using Natural Fibers (Coir and Jute) A Study on Stabilization of Subgrade Soil Using Natural Fibers (Coir and Jute) M. Mohan 1, L. Manjesh Research Scholar, Department of Civil Engineering, UVCE, Bangalore University, Bengaluru, Karnataka,

More information

FINAL COVER VENEER STABILITY ANALYSES FOR SCA DESIGN

FINAL COVER VENEER STABILITY ANALYSES FOR SCA DESIGN DRAFT ONONDAGA LAKE SEDIMENT CONSOLIDATION AREA CIVIL & GEOTECHNICAL FINAL DESIGN 12B12BAPPENDIX L FINAL COVER VENEER STABILITY ANALYSES FOR SCA DESIGN p:\honeywell -syr\444853 - lake detail design\09

More information

The use of geosynthetics in the installation of ballast layers

The use of geosynthetics in the installation of ballast layers The use of geosynthetics in the installation of ballast layers C. Cilliers, Jones & Wagener (Pty) Ltd, South Africa, cilliers@jaws.co.za ABSTRACT The ballast layer is an essential element of any landfill

More information

Geomembranes that work

Geomembranes that work Geomembranes that work www.firestonebpe.com Dependable performance in demanding environments Firestone EPDM Geomembrane is a rubber liner offering a flexible and durable solution for a wide variety of

More information

Subgrade Characteristics of Locally Available Soil Mixed With Fly Ash and Randomly Distributed Fibers

Subgrade Characteristics of Locally Available Soil Mixed With Fly Ash and Randomly Distributed Fibers Subgrade Characteristics of Locally Available Soil Mixed With Fly Ash and Randomly Distributed Fibers Prof. R.K Sharma Abstract Expansive soils cause lots of civil engineering structural damage, particularly

More information

Sustainable Drainage Applied Research Group, Coventry University Priory Street, Coventry, CV1 5FB, United Kingdom 3

Sustainable Drainage Applied Research Group, Coventry University Priory Street, Coventry, CV1 5FB, United Kingdom 3 FUCTIONALITY OF GEOTEXTILE MEMBRANES WITHIN PERMEABLE PAVEMENTS FOR BIOGEGRADATION, INFILTATION AND WATER DETENTION OF CONCENTRATION URBAN STORMWATER RUNOFF Kiran Tota-Maharaj 1*, Stephen John Coupe 2

More information

Soil/Geosynthetic Interface Strengths from Torsional Ring Shear Tests

Soil/Geosynthetic Interface Strengths from Torsional Ring Shear Tests Geotechnical Frontiers 2017 GSP 280 260 Soil/Geosynthetic Interface Strengths from Torsional Ring Shear Tests Timothy D. Stark, F. ASCE, P.E. 1 and Rodrigo Fernandez Santoyo 2 1 Professor, Dept. of Civil

More information

CONTINUOUS GEOMEMBRANES FOR ON SITE APPLICATION. PDA Europe 2012 Annual Conference Istanbul, November

CONTINUOUS GEOMEMBRANES FOR ON SITE APPLICATION. PDA Europe 2012 Annual Conference Istanbul, November POLYMERIC GEOMEMBRANES ARE MADE OF: - POLYOLEOFINS (HDPE, LDPE, LLDPE, TPO, VLDPE). - EPDM. - PVC LIMITATIONS OF CONVENTIONAL POLYMERIC GEOMEMBRANES: - REQUIRE WELDING AT JOINTS AND SEAMS (heat or ultrasound).

More information

EXPLORING POSSIBILITIES WITH THE DEVELOPMENT OF THE LOOP HEAT PIPE TECHNOLOGY. Roger R. Riehl

EXPLORING POSSIBILITIES WITH THE DEVELOPMENT OF THE LOOP HEAT PIPE TECHNOLOGY. Roger R. Riehl EXPLORING POSSIBILITIES WITH THE DEVELOPMENT OF THE LOOP HEAT PIPE TECHNOLOGY Roger R. Riehl National Institute for Space Research INPE Space Mechanics and Control Division-DMC Av dos Astronautas 1758,

More information

Assessment of Domestic Evacuated Tube. Direct Solar Water Heater

Assessment of Domestic Evacuated Tube. Direct Solar Water Heater Assessment of Domestic Evacuated Tube Direct Solar Water Heater Abstract F. Kamel 1, Paul Wilson 1 1 Renewable Energy Research Laboratory 2 School of Electrical&Computer Engineering, Faculty of Applied

More information

Session 1: Construction of Landfill Facilities

Session 1: Construction of Landfill Facilities Western Cape LIG Seminar Session 1: Construction of Landfill Facilities Prepared for 24 July 2014 A Founder Member of The Geosynthetics Interest Group of South Africa Landfills: Complex Engineered Containments

More information

We Don t Have No Stinkin Dirt! Coal Ash Pond Closures (Traditional and an Alternative Method)

We Don t Have No Stinkin Dirt! Coal Ash Pond Closures (Traditional and an Alternative Method) 2017 World of Coal Ash (WOCA) Conference in Lexington, KY - May 9-11, 2017 http://www.flyash.info/ We Don t Have No Stinkin Dirt! Coal Ash Pond Closures (Traditional and an Alternative Method) Rosanna

More information

An Innovative Composite Liner System for Coal Combustion Residual Containment Projects

An Innovative Composite Liner System for Coal Combustion Residual Containment Projects 2013 World of Coal Ash (WOCA) Conference - April 22-25, 2013 in Lexington, KY http://www.flyash.info/ An Innovative Composite Liner System for Coal Combustion Residual Containment Projects Ed Zimmel 1,

More information

Drop-In Specifications INTEGRATED DRAINAGE SYSTEM GEOMEMBRANE

Drop-In Specifications INTEGRATED DRAINAGE SYSTEM GEOMEMBRANE Drop-In Specifications INTEGRATED DRAINAGE SYSTEM GEOMEMBRANE The following specification is a sample guideline to be customized by the engineer for preparing site specific specification. This information

More information

Air-channel testing landfill geomembrane seams

Air-channel testing landfill geomembrane seams Air-channel testing landfill geomembrane seams Results from a recent workshop help minimize destructive testing By Timothy D. Stark, John Heap, Stuart Lange, Dave McLaury and Stanford Slifer Thermal welding

More information

Indoor Climate Control Effect of AAC Panel Heat Capacity Experimental rooms and simulations with three structural materials

Indoor Climate Control Effect of AAC Panel Heat Capacity Experimental rooms and simulations with three structural materials Indoor Climate Control Effect of AAC Panel Heat Capacity Experimental rooms and simulations with three structural materials YUKO TSUKIYAMA 1, NOBUYUKI SUNAGA 2, AKIKO SUZUKI 2, TAMAKI FUKAZAWA 2, YOSUKE

More information

Wisconsin Contractors Institute Continuing Education

Wisconsin Contractors Institute Continuing Education Wisconsin Contractors Institute Continuing Education Erosion & Sediment Control Course # 12775 2 hours Wisconsin Contractors Institute N27 W23953 Paul Road, Suite 203 Pewaukee, WI 53072 Website: www.wicontractorsinstitute.com

More information

4.0 EROSION AND SEDIMENT PROCESS. 4.1 Mechanics of Erosion

4.0 EROSION AND SEDIMENT PROCESS. 4.1 Mechanics of Erosion 4.0 EROSION AND SEDIMENT PROCESS 4.1 Mechanics of Erosion SECTION 4 - EROSION AND SEDIMENT PROCESS Erosion is the wearing away of material by naturally occurring agents through the detachment and transport

More information