Gas ventilation monitoring and control system

Similar documents
IGD.CO.UK

Hard rock mining solutions

APPLICATION DATA SHEET

Mine Automation Technologies. know-how performance reliability

Tunnelling. Total electrical and power distribution solutions

1S25. Arc Fault Monitor 4 Zones, 8 Sensors. Features. Introduction. ARC Fault Protection

The PBE Group. Industries We Serve. PBE Catalogue

APPLICATION DATA SHEET

APPLICATION DATA SHEET

5New features & EXtreme design, now with HART Protocol and DuraSource Technology. Ultima X Series Gas Monitors

POWERING SUCCESS. A brief history of Ampcontrol. Ampcontrol Group

SIL 2. Ultima X Series Gas Monitors CERTIFIED

BST-MG07 Multi-gas Detecting Alarm Manual Instruction

Fixed Range. Fixed Gas Detection Equipment. Field mounted gas detection. solutions for the protection of. plant and personnel

Zareba Metro Gas Detector

7XG3120 ReyArc20 Arc Fault Monitor Relay Energy Management

Fill Point, Level Gauges, and Control Range

Pakton Technologies Pty Ltd ABN Ferrier Road, Narangba Qld 4504

SEL Arc-Flash Solutions

ALARMLINE ANALOGUE Linear Heat Detection System

GAS DETECTION International Gas Detectors CH4 NO

SEL Arc-Flash Solutions

monitoring air flow gas detection temperature sensors CASE STUDY GAS DETECTION SYSTEM AT LOWER LEA VALLEY CABLE TUNNELS For Murphy Group/National Grid

GasAlertMicroClip X3 Specifications

Speed and Frequency Seite 1 von 7

Dräger Polytron 5200 CAT Detection of flammable gases and vapours

P R O D U C T S P E C I F I C A T I O N MSA Ultima X Series Sensor/Transmitter Specification

Minimal maintenance requirements - No consumables and low cost of ownership. Rapid, accurate results - for safe operation of coal handling systems

U L T R A S O N I C G A S L E A K D E T E C T O R

Intelligent addressable fire alarm control panel

Dräger Pac Ex 2. Elegant and smart... Explosive hazards and lack or surplus of oxygen under control

Notice of Proprietary Rights

SYSTEM MANUAL FT1-SB. Single Zone Fire Alarm System

DIPL Solutions and Services

Dräger Polytron 5100 EC Detection of toxic gases and vapors

4-20mA CYBER Cyber Transmitter for flammable, toxic and IR gas detection Cyber Head Increased security in ATEX certified head

Dräger Polytron 5700 IR Detection of flammable gases and vapours

TX6351 TX6352 Sentro 1 Universal Gas Detector Contents

OMC Ex interface unit. Manual. Version 1.2 August Author: Observator Instruments

Networked Access Control Panel. Installation Guide

DCS-100. intelligent damper control & monitoring system

P R O D U C T D ATA S H E E T

Dräger Polytron 8100 EC Detection of toxic gases and vapors

Dräger Polytron 8100 EC Detection of toxic gases and oxygen

INSTRUCTION MANUAL (ATEX/IECEx/SIL2) BExBG05D-SIL Flameproof Xenon SIL 2 Beacons For use in Flammable Gas and Dust Atmospheres

WARRANT Y AND LIMITS OF LIABILIT Y Vulcain Inc. warrants to the original purchaser that its product, and the component parts thereof, will be free fro

Substation Monitoring System

PTE0705 Electric Fence Monitor

EMEX 110 and EMEL. EMEX 110 and EMEL. 110, 50 and 24 volt AC/DC Central Battery Systems. EMEX 110 and EMEL

Operate the Mutli-Gas Monitor PID

UEE30811 Q-Tracker Work Tasks

Policy and Specification for the Interface with Independent Distribution Network Operators Installations

IEEE Transformer Committee PC Distribution Transformer Monitoring - User

Part: I TECHNICAL SPECIFICATION

Universal Tank Alarm Type Installation, Operation & Maintenance

Safety instructions VEGADIF DF65.GX*****H/Z/P/F***** IECEx BVS

Dräger Polytron 8310 IR Detection of flammable gases and vapour

Environmental Monitoring & Control Units Types MCU 3 & 4 Installation and Hardware

ALTAIR 5X Multigas Detector Product Specification

REMOTELY OPERATED STENCH GAS RELEASE SYSTEM. Front Panel View Remote Activated Stench Gas Release System 240 Volt AC Supply

Each burner shall be equipped with a Micro-Processor Based Burner Management Flame Safeguard and Parallel Positioning Control System.

P R O D U C T D ATA S H E E T

Overview. Wireless Overview QLD NSW VIC Fundamentals. Operation. Features.

Intrinsically Safe or Explosionproof? Understanding the technology

5.1 Safety instructions for system configuration and explosion protection. Zone-specific conditions for system configuration

Sensepoint. Fit For Purpose Flammable, toxic and Oxygen versions available High performance, low cost Suitable for new and retro fit applications

Gasflag. Single Channel Control Panel Alarm Only Apparatus. Installation, operating and maintenance instructions, M07225.

SENTINEL D - Fault Passage Monitoring

Annunciator Unit SACO 16 D1. Product Guide

SUPREMATouch. Modular Fire & Gas Detection System

Dräger Polytron (approved as type P3S) Transmitter for electrochemical Sensors. Instructions for Use. ST eps

Warranty Registration

SUPREMATouch. Modular Fire & Gas Detection System

Electrical Inspection Service & Distribution

USER MANUAL FOR OPERATING SYSTEM

Fixed Gas Detection Equipment

Installation and Maintenance Manual for Dimako NERM Panels REV 4. NERM Reference Manual NERM Panels 1 of 7

SAPCON SMART-SSI. Continuous Speed Indicator. Users Manual. . Introduction. . General Description. . Principle of Operation. .

S200Plus Triple Infra Red Flame Detector Triple Waveband Infra-Red Flame Detection

Dräger Polytron 5200 CAT Detection of flammable gases and vapours

P R O D U C T D ATA S H E E T

Personal & Portable Gas Monitors

Alarm Panel Operating Instructions

CERTIFICATE OF COMPLIANCE HAZARDOUS LOCATION ELECTRICAL EQUIPMENT PER CANADIAN REQUIREMENTS

INSTALLATION AND OPERATING INSTRUCTIONS

Installation, Operating and Maintenance Manual

REMOTE TOXIC, COMBUSTIBLE, AND OXYGEN GAS SENSORS WITH LOCAL DIGITAL DISPLAY

HART XL High Sensitivity Smoke Detection

SUPREMATouch Modular Fire & Gas Detection System

Two-Channel Gas Controller

MINERVA S200Plus. Fire Detection. Triple Waveband Infra-Red Flame Detection. Features: Minerva S200PLUS

PARTICULATE EMISSION MONITORING

HD COMMUNICATOR. Features & Benefits: Unique continuous Redundant Routing capacity. Up to 20km reach on a single copper pair.

OLCT 700 & 710. Certifications FIXED GAS DETECTION. Better detection. Better protection.

Pac Ex 2. Elegant and smart Explosive hazards and lack or surplus of oxygen under control

Murco Core Product Guide Gas Leak Detection Solutions for all your building needs

Installation and user manual for the BiWire / Conventional Repeater Panel

Watchdog Elite Watchdog Elite BRAIME Product Information Bucket Elevator & Conveyor Hazard Monitor

Technical Manual

Dependable Solutions for Gas Detection

Transcription:

Gas ventilation monitoring and control system A case study Regulations and customer requirements surrounding the operation and maintenance of gas and ventilation monitoring and control systems in underground coal mines in Australia and across the world, have become more arduous in recent years. With these systems now interfaced directly to the power reticulation systems, availability is key.

introduction When approached recently to design and supply a mine wide system, Ampcontrol considered new design concepts incorporating the latest available certified technology. Safety, reliability and efficiency would form the pillars of the design philosophy. Collaboration with the client was an essential part of the project. The client provided clear functional and operational expectations which included providing an integrated, fail safe, easy to use and deploy system which; Monitored carbon monoxide, methane, carbon dioxide, oxygen and differential pressure at ventilation splits throughout the coal mine, Monitored carbon monoxide around conveyor drive heads and loop take up areas, Monitored carbon monoxide at the boot end of conveyor belts, Monitored methane and provided visual indication of healthy, warning and alarm conditions at zone boundaries throughout the coal mine with the ability to individually isolate sensors at each sensors location for maintenance and calibration purposes, d with the high tension power reticulation system for automatic tripping of the feeders in a gas detection event, d with conveyor belt starters, Included low smoke, zero halogen cable suitable for Zone 0 installation, Provided better than 99.99% system availability, Was suitable for a 20 year plus life of mine, Incorporated end to end system lengths of up to 15,000 metres, Provided a minimum of 24 hour operation without mains power, Was Group I Ex ia, Complied with all statutory and legislative requirements for Queensland mines. During the design phase, with the recognition that this system is vital and must be maintained for mine operations, a request was made to have the gas communications network perform additional functions. With the system already interfacing with the HV distribution network and with HV cable systems not incorporating pilot cores, the client requested that the system have upstream tripping capability for downstream switchgear faults. Gas Ventilation Monitoring and Control System Ampcontrol 2014 2

statutory and legislative requirements The system was installed in a recently developed coal mine in Central Queensland. As such the design incorporates the requirements of the Queensland Coal Mining Safety and Health Regulation 2001 including zone boundaries and the inter-tripping of power systems. This regulation divides zone boundaries into Explosive Risk Zones (ERZ) and Negligible Explosive Risk Zone () these are defined as: ERZ0 (Explosive Risk Zone) is an underground mine, or any part of it, where the general body concentration of methane is known to be or is identified by a risk assessment as likely to be, greater than 2%. These areas are typically sealed off and inaccessible areas with no ventilation. ERZ1 is an underground mine, or any part of it, where the general body concentration of methane is known to range, or is shown by a risk assessment as likely to range from 0.5% to 2%. These areas are typically face or coal cutting areas and return airways. is an underground mine, or any part of it, where the general body concentration of methane is known to be, or identified by a risk assessment as likely to be, less than 0.5% 1. These areas are typically fresh air intakes and referred to as Zone 2 in IECEx certified systems. These boundaries are typically only valid while the mines ventilation system is operational. When no ventilation is present the whole mine is considered to be an ERZ0. In a - and -ERZ gas and ventilation monitoring and control system methane gas sensors are installed in all fresh air intakes forming zone boundaries and provide local visual indication of: Healthy when the methane level is below 0.25%, Warning when the methane level is between 0.25% and 0.49%, Alarm when the methane level is above 0.49%, These boundaries can be an interface between and ERZ1 zones or an interface between and zones. When a methane level of above 0.49% is detected the system must automatically remove power from the area being monitored back to an adjacent zone boundary. An example of a - and -ERZ system architecture is shown in figure 2. 1. John Kabel, Inspector of Mines, Electrical, Department of Employment, Economic Development and Innovation, 2010, Explosion Risk Zones in QLD Underground Coal Mines www.resources.nsw.gov.au/_data/ assets/pdf_file/0004368752/john_kabel_explosion_risk_zones.pdf Gas Ventilation Monitoring and Control System Ampcontrol 2014 3

equipment selection Sensors Ampcontrol Gasguard Gas Sensors and Emerson Rosemount Differential Pressure Sensors were selected for this project. The sensing technologies used include infra-red, catalytic and electrochemical for the detection of carbon monoxide, methane, carbon dioxide and oxygen. The robustness and reliability of the Gasguard gas sensors, manufactured from cast stainless steel with ingress protection levels of IP66, including gas inlet ports, was considered paramount in order to achieve the required system availability of better than 99.99%. Ampcontrol engineers identified a potential issue with the integration of the differential pressure sensors early in the project, with the sensors having a 1 Watt power input limitation and the system power supplies having an output of 22.65 Watts. This issue was addressed with the creation and subsequent Ex ia certification of a new product to limit the available power at the differential pressure sensor to less than 1 Watt. The new product designated a Field Module has since been deployed in numerous applications. Gas Ventilation Monitoring and Control System Ampcontrol 2014 4

Power Supplies Ampcontrol Power Supplies with integrated battery back-up were selected to meet the functional requirements of the project. The selected units incorporate an output of 15.1 Volts DC at 1.5 Amps with a universal input voltage of 90 to 250 Volts AC and a 300 Watt Hour battery capacity. The battery backed power supplies feature stainless steel construction with an ingress protection level of IP66 and an RS-485 communication port allowing connection to the monitoring system. The monitored parameters include battery voltage, battery temperature, AC input voltage, DC output current and DC output voltage The system design utilising these power supplies in conjunction with the cable design (described below) allowed for possible installation distances between the power supplies and Gasguard methane gas sensors to be in excess of 4000 metres, maintaining complete functionality and intrinsic safety. A battery back-up time of more than 72 hours was achieved with a standard return gas monitoring station comprising of carbon monoxide, methane, carbon dioxide, oxygen and differential pressure sensors. 72 Hours Battery Back-Up Carbon Dioxide 198 Hours Battery Back-Up Carbon Monoxide 1,400 Metres + Possible imac Copper Backbone With IS Power Oxygen 4,000 Metres + Possible imac Copper Backbone With IS Power Boundary Gas Monitoring Station Differential Pressure Return Gas Monitoring Station imac Copper Backbone Surface imac Controller With Barrier Figure 1: Examples of power supply deployment Gas Ventilation Monitoring and Control System Ampcontrol 2014 5

Monitoring and Control The use of an Ampcontrol imac pulse width modulated copper backbone system made it possible to achieve the required system end to end lengths. It also provided infrastructure that was easy to maintain with a small number of system components. These included; imac Controllers for surface control & tripping, imac Barriers for surface control & tripping, imac Analogue Input Modules for sensor inputs, imac Digital Input Modules for isolation inputs & upstream tripping, imac Serial Modules for power supply monitoring, imac Relay Output Modules for upstream tripping. cable Due to the end to end system length design of up to 15,000 metres, as well as the requirement for low smoke zero halogen sheath materials and Zone 0 installation requirements, Ampcontrol worked closely with cable manufacturers to design a system cable that was both electrically suitable with low capacitance and inductance and also mechanically suitable. The cable was copper screened replacing the typical aluminium screening making the cable suitable for Zone 0 installation without need for further consideration or mechanical protection. Gas Ventilation Monitoring and Control System Ampcontrol 2014 6

system description The system utilises standard sensors with 4-20mA DC analogue output connected to imac Analogue Input Modules. Each imac Analogue Input Module reports, via a pulse width modulated signal on a single twisted pair cable, to the imac Controller located on the surface of the mine. Information from each module includes sensor value, alarm status, sensor voltage and cable resistance. Zone boundary sensors also have a retained key switch connected to an imac Digital Input Module, used for local isolation of the tripping functionally allowing for maintenance and calibration and a tri-colour LED strobe. The surface imac Controller is interlocked with the underground power feeds and interfaced with the mine PLC - SCADA system for completely integrated monitoring and control. imac Controllers are also installed in the 11kV underground switchboard and in each 11kV section circuit breaker. These controllers are user configurable and able to monitor any sensor or combination of sensors connected to the network automatically initiating a power trip at the required set points. The controllers also monitor the status of the outlet to be tripped. If the outlet does not trip, an upstream trip of the underground power feed is automatically initiated. The surface imac Controller communicates with and monitors the additional imac Controllers connected to the network allowing local configurations to be confirmed and monitored. The design of the system is fail safe and any damage to the system hardware or cabling is treated in the same fashion as a gas initiated event. For increased robustness, each production panel was allocated an isolated imac network ensuring any system or cable damage in a production panel only affected the production panel involved. Gas Ventilation Monitoring and Control System Ampcontrol 2014 7

Active Longwall Panel Longwall Development Panel Carbon Monoxide Carbon Monoxide Conveyor Boot End Conveyor Boot End ERZ1 ERZ1 -ERZ1 Longwall -ERZ1 Development 1 Carbon Monoxide Conveyor Tripper Drive Main Underground Switchboard Section Circuit Breaker Longwall - Longwall Section Circuit Breaker Development 1 - Development 1 Mains Development Panel Carbon Monoxide Conveyor Boot End Surface imac Controller With Barrier - Mains Section Circuit Breaker Mains Development - Mains Development -ERZ1 Mains Development ERZ1 Figure 2: An example of the - and - ERZ system architecture Gas Ventilation Monitoring and Control System Ampcontrol 2014 8

upstream tripping One of the unique features of the imac system is that relay output modules will automatically mirror the status of the digital input modules inputs, if a relay output module is configured with the same address as a digital input module. This mirroring is automatic and requires no programming; this makes the upstream power tripping for non pilot protected electrical equipment relatively simple to achieve by deploying two imac modules in each piece of equipment, one module with 4 digital inputs and one module with 4 relay outputs. An example of this configuration is shown in figure 3. Surface Distribution Substation Main Underground Switchboard Section Isolator Development Substation SAME ADDRESS SAME ADDRESS SAME ADDRESS Surface imac Controller With Barrier 4 x INPUTS 4 x INPUTS 4 x INPUTS 4 x OUTPUTS 4 x OUTPUTS 4 x OUTPUTS Figure 3: Upstream tripping For more information on Ampcontrol s gas detection capabilities visit ampcontrolgroup.com Gas Ventilation Monitoring and Control System Ampcontrol 2014 9