Statement of Dr. Gregory W. Swift Physics Division Los Alamos National Laboratory

Size: px
Start display at page:

Download "Statement of Dr. Gregory W. Swift Physics Division Los Alamos National Laboratory"

Transcription

1 Statement of Dr. Gregory W. Swift Physics Division Los Alamos National Laboratory before Ad Hoc Subcommittee on Consumer and Environmental Affairs Senate Committee on Governmental Affairs United States Senate Washington DC May 15, 1992 INTRODUCTION Thank you for the opportunity to testify on this important topic today. As recently as 10 years ago, only a few experts appreciated the potentially disastrous consequences of stratospheric ozone depletion by manufactured chemicals such as chlorofluorocarbons (CFCs). But today, it is widely believed that such chemicals are destroying stratospheric ozone, which shields the earth from the sun s ultraviolet radiation, and that the resulting increased ultraviolet radiation will soon lead to unacceptable numbers of cataracts, fatal and nonfatal skin cancers, other dangers to human health, and potentially severe dangers to agriculture and ecosystems. To prevent these serious effects, the 1987 Montreal Protocol on Substances that Deplete the Ozone Layer and its 1990 revision have committed the United States and most other nations to a 50 per cent reduction in CFC production by 1995 and to 1

2 complete elimination by the year CFCs, previously believed to be completely safe, have until now been used extensively as refrigerants in refrigerators and air conditioners, as solvents in electronics and sheet metal fabrication, and as foaming agents in foam insulation and cushions. Of these three common uses of CFCs, the use as a refrigerant in refrigerators and air conditioners appears to be the most difficult to eliminate, in part because CFC-based cooling systems are the most efficient on the market. Cooling systems use a significant amount of electric power: about 20 per cent of the nation s electricity, at a cost of tens of billions of dollars per year. Kitchen refrigerators alone use 8 per cent of the nation s electricity. lost of that electricity is produced by burning fossil fuels. Clearly, cooling-system efficiency has major economic and environmental impacts. Recognizing this, Congress is requiring ever more efficient cooling equipment; for example, 1993 kitchen refrigerators must use 30 per cent less electricity than 1990 models, and additional improvements will be required in subsequent years. Thus, the appliance industry and other cooling industries are facing the double challenge of eliminating CFCs and simultaneously improving energy efficiency. These challenges will force this industry to make tremendous changes and to work out many difficult problems, ranging from choice of technology through production-line retooling to product-liability concerns. CFC elimination and efficiency improvement should not proceed without simultaneous attention to cost, reliability, safety, compactness, and other such issues of practicality. I can address only a small part of this challenge. I have firsthand knowledge of three new cooling technologies--sonic compression, thermoacoustic refrigeration, and Malone refrigeration--which have been developed in part at Los Alamos National Laboratory. I will discuss the principles, features, and status of each. With these three examples I hope to establish that potentially practical cooling methods exist other than mechanical compression and subsequent evaporation of CFCs. I believe that enough new cooling technologies exist and that the probability for success of each technology is high enough to enable both the elimination of CFCs and the reduction of 2

3 electricity consumption, without prohibitively high production costs. THE SONIC COMPRESSOR In conventional small refrigeration systems such as kitchen refrigerators, the CFC refrigerant vapor is compressed mechanically, usually by a reciprocating piston, whose motion pulls the CFC vapor into a cylinder through a one-way valve at low pressure and then pushes the CFC vapor out through another one-way valve at high pressure. The piston and associated crankshaft parts are lubricated with oil to reduce friction and promote long compressor life. Because the oil is in constant contact with the refrigerant vapor, a high degree of chemical compatibility between oil and refrigerant is required. In addition, compressor losses consume a large fraction of the electric power supplied to small refrigeration systems. A new small-compressor technology, called the Sonic Compressor, has shown the potential to compress refrigerant vapors with greater efficiency, comparable to that of much larger conventional compressors. The Sonic Compressor has no piston or crankshaft to produce friction; it uses a resonant sound wave and a pair of one-way valves to compress the refrigerant. The Sonic Compressor is powered by an acoustic driver, which converts electrical power into acoustic power. The principle is similar to that which operates in a bass (low- frequency) loudspeaker. As in a loudspeaker, the flexible perimeter around the acoustic driver permits motion of the driver without any sliding seal, which would require lubrication. The Sonic Compressor is fairly well developed and has several appealing features. Because it has no parts that produce friction, the Sonic Compressor requires no lubricating oil. This characteristic provides compatibility with all CFC replacements, such as HFC-134a. It should also be extremely efficient: The developer of the Sonic Compressor projects a 30 to 40 per cent reduction in annual electricity consumption compared with the electricity consumption of a standard 1990 kitchen refrigerator. In other words, it should be possible to meet 1993 efficiency standards by using a 1990 refrigerator with a Sonic Compressor and a non-cfc refrigerant, with no other 3

4 modifications. As a drop-in replacement for current compressors, the Sonic Compressor will require little or no retooling by refrigerator manufacturers: cabinets, heat exchangers, piping, and control circuits need not change. The projected manufacturing cost of the Sonic Compressor is low, roughly comparable to that of conventional small compressors. Tim Lucas of Sonic Compressor Systems, Inc., invented the Sonic Compressor, and afterwards came to Los Alamos for help in designing and building acoustic resonators that suppress acoustic shock-wave formation at the high pressure differences required for refrigeration. Sonic Compressor Systems is now completing development of this new compressor technology and plans to test its product in standard home refrigerators within one year. Large-scale production could begin within two years because of the Sonic Compressor s inherent simplicity and compatibility with other components of refrigeration systems. A U.S. refrigerator manufacturer has offered to participate in a joint program with Sonic Compressor Systems to adapt the Sonic Compressor to existing refrigerators. Other applications of interest include freezers, window air conditioners, dehumidifiers, and other small-scale cooling systems. THERMOACOUSTIC REFRIGERATION In conventional refrigeration systems, the evaporation of the CFC refrigerant produces the cooling. But evaporation is not the only physical effect that produces cooling. Thermoacoustic refrigeration relies on the heating and cooling that accompany the compression and expansion of a gas in a sound wave. Although ordinary, conversational-level sound produces only tiny heating and cooling effects, extremely loud sound waves confined in sealed cavities produce heating and cooling effects large enough to be useful. Thermoacoustic refrigeration works best with inert gases such as helium and argon, which are environmentally harmless, nonflammable, and nontoxic. The most reliable current estimates show that thermoacoustic refrigeration may be efficient enough to meet 1993 appliance efficiency standards. At the 4

5 current rate of progress, a year or two of further work will be required to determine the efficiency of thermoacoustic refrigeration more accurately. Thermoacoustic refrigeration requires no moving parts; it has only one flexing part much like a loudspeaker. Thus, we expect it to be a reliable, long-lived technology. We expect thermoacoustic refrigeration to be inexpensive to manufacture because it requires neither exotic materials nor exacting construction tolerances. However, thermoacoustic refrigeration would require considerable manufacturer retooling because all subsystems such as heat exchangers would be quite different from those of conventional refrigeration systems. Thermoacoustic refrigeration was invented at Los Alamos National Laboratory 10 years ago. Small proof-of-principle thermoacoustic cooling systems have been built at Los Alamos and more recently at the Naval Postgraduate School at Monterey. With mixed government and corporate support, the Naval Postgraduate School is ready to begin practical development of a model suitable for a kitchen refrigerator. MALONE REFRIGERATION Malone refrigeration relies on the cooling that accompanies the expansion of a liquid. Significant cooling accompanies the expansion of some pressurized liquids, without expanding them enough to produce the evaporation that is used for cooling in conventional refrigeration technology. This effect contrasts with the common misconception that liquids behave much like idealized hydraulic fluid and hence are thermodynamically useless. In fact, many liquids are significantly compressible and cool significantly when expanded, and they have other attractive properties such as large heat capacity. Malone refrigerators use such liquids in a closed cycle of expansion and compression, powered by electric-motor-driven pistons. Malone refrigerators can have extremely compact heat exchangers if the refrigerator cools a liquid stream, such as water, and transfers its waste heat to water. Thus, Malone 5

6 refrigeration is naturally suited to large-capacity applications in which water or other liquid streams are already involved for heat transfer. Such applications include air conditioning of large buildings and ground-coupled heat-pumping for residences. Our most reliable current estimates show that Malone refrigeration should be more efficient than large-capacity conventional refrigeration equipment. At the current rate of progress, several years of further work will be required to determine its efficiency accurately. Even if Malone refrigerators are only 10 per cent more efficient than conventional equipment, and if Malone technology is eventually used in half of all cooling applications nationwide, then about 1 per cent of the nation s electricity use will be eliminated, a reduction corresponding to millions of tons of fossil-fuel savings each year. Liquid carbon dioxide and dilute mixtures of methanol or ethanol in liquid carbon dioxide are efficient, safe, and environmentally benign working fluids for Malone refrigeration. The amount of carbon dioxide used has negligible environmental impact compared with the effect of the pounds per capita per day we each exhale; the amount of alcohol also has negligible environmental impact. Malone refrigeration equipment will be more compact, but heavier, than conventional equipment. It may be expensive to manufacture because some dimensional tolerances are critical. Malone refrigeration was. invented at the University of California at San Diego in the 1970s. The only proof-of-principle Malone refrigerator to date was built and studied at Los Alamos National Laboratory in the 1980s. Second prototypes are now under construction with government support at Los Alamos and at the David Taylor Research Center at Annapolis. SUMMARY The preceding examples are only three of many alternative cooling technologies. No new technology can be guaranteed successful before 6

7 development is complete, from either an economic or an engineering point of view. But enough alternative cooling technologies exist, and the probability for success of each technology is high enough, that manufacturers can almost certainly produce one or more of these technologies at reasonable cost, eliminate CFCs, and reduce the consumption of electricity. The Sonic Compressor and other, similarly mature alternatives could easily reach production in less than two years. Thermoacoustic refrigeration, Malone refrigeration, and other immature technologies require only a few million dollars each for development until their suitability for production can be assessed. FOR MORE INFORMATION Sonic Compressor: Tim Lucas, Sonic Compressor Systems, Inc., Glen Allen, VA (804) Thermoacoustic refrigeration: Thermoacoustic Steven L. Garrett and Thomas J. Hofler, Refrigeration, Proceedings of the Second National Technology Transfer Conference and Exposition, 5 December 1991, San Jose, California, and references therein; Gregory W. Swift, Thermoacoustic Engines, Journal of the Acoustical Society of America, Vol. 84, pp (1988)) and references therein. Malone refrigeration: Gregory W. Swift, Malone Refrigeration, ASHRAE Journal, November 1990, pp , and references therein; Gregory W. Swift, A Stirling Engine with a Liquid Working Substance, Journal of Applied Physics, Vol. 65, p , and references therein. 7

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION 1.1 CFC REFRIGERANTS Since the 1930s, chlorofluorocarbons (CFCs) have been widely used as foam blowing agents, aerosols and especially refrigerants due to their pre-eminent properties

More information

Main Anthropogenic Sources of Greenhouse Gases Refrigerants

Main Anthropogenic Sources of Greenhouse Gases Refrigerants Main Anthropogenic Sources of Greenhouse Gases Refrigerants Content Refrigerant definition Refrigerants Refrigerants as a source of GHG Refrigerant Definition A refrigerant is a substance or mixture, usually

More information

Campbell Soup Company Extends Use of CO2 Systems Into Their Operations

Campbell Soup Company Extends Use of CO2 Systems Into Their Operations Campbell Soup Company Extends Use of CO2 Systems Into Their Operations The Campbell Soup Company needed to expand their frozen operations at one of their Pepperidge Farm manufacturing plants in Pennsylvania

More information

Thermodynamics I. Refrigeration and Heat Pump Cycles

Thermodynamics I. Refrigeration and Heat Pump Cycles Thermodynamics I Refrigeration and Heat Pump Cycles Dr.-Eng. Zayed Al-Hamamre 1 Content Introduction The Reversed Carnot Cycle The Ideal Compression Refrigeration Systems Deviation from the ICRS Selection

More information

Chapter 11 REFRIGERATION CYCLES

Chapter 11 REFRIGERATION CYCLES Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Chapter 11 REFRIGERATION CYCLES Wan Rosli Wan Sulaiman Copyright The McGraw-Hill Companies, Inc.

More information

Thermodynamics II Chapter 5 Refrigeration

Thermodynamics II Chapter 5 Refrigeration Thermodynamics II Chapter 5 Refrigeration Mohsin Mohd Sies Fakulti Kejuruteraan Mekanikal, Universiti Teknologi Malaysia Objectives Introduce the concepts of refrigerators and heat pumps and the measure

More information

a. CFCs. b. HCFCs. c. Pressurized nitrogen. d. Compressed dry air. 17. The state of the refrigerant leaving the condenser of a refrigeration system

a. CFCs. b. HCFCs. c. Pressurized nitrogen. d. Compressed dry air. 17. The state of the refrigerant leaving the condenser of a refrigeration system Core 1. Ozone in the stratosphere above the earth consists of: a. Molecules containing 3 oxygen atoms. b. Molecules of 2 oxygen atoms. c. Radioactive particles. d. Pollutants that have risen from ground

More information

Chapter 11 REFRIGERATION CYCLES

Chapter 11 REFRIGERATION CYCLES Thermodynamics: An Engineering Approach Seventh Edition in SI Units Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 11 REFRIGERATION CYCLES Mehmet Kanoglu University of Gaziantep Copyright

More information

14. The center port of the manifold is used for evacuation, charging and refrigerant recovery.

14. The center port of the manifold is used for evacuation, charging and refrigerant recovery. HET- 190 ESL Support page 1 CORE Basic Refrigeration Circuit 1. Liquid refrigerant boils in the evaporator. Heat is absorbed. The heat energy absorbed converts refrigerant liquid into vapor. 2. Refrigerant

More information

a. CFCs. b. HCFCs. c. Pressurized nitrogen. d. Compressed dry air. 17. The state of the refrigerant leaving the condenser of a refrigeration system

a. CFCs. b. HCFCs. c. Pressurized nitrogen. d. Compressed dry air. 17. The state of the refrigerant leaving the condenser of a refrigeration system Core 1. Ozone in the stratosphere above the earth consists of: a. Molecules containing 3 oxygen atoms. b. Molecules of 2 oxygen atoms. c. Radioactive particles. d. Pollutants that have risen from ground

More information

1.1. SCOPE OF THE WORK:

1.1. SCOPE OF THE WORK: Chapter 1: Introduction 1 1. INTRODUCTION 1.1. SCOPE OF THE WORK: Multi-stage refrigeration systems are an area of growing industrial importance in large plants. These systems are known to be large power

More information

a. CFCs. b. HCFCs. c. Pressurized nitrogen. d. Compressed dry air. 17. The state of the refrigerant leaving the condenser of a refrigeration system

a. CFCs. b. HCFCs. c. Pressurized nitrogen. d. Compressed dry air. 17. The state of the refrigerant leaving the condenser of a refrigeration system Core 1. Ozone in the stratosphere above the earth consists of: a. Molecules containing 3 oxygen atoms. b. Molecules of 2 oxygen atoms. c. Radioactive particles. d. Pollutants that have risen from ground

More information

Fundamental Principles of Air Conditioners for Information Technology

Fundamental Principles of Air Conditioners for Information Technology Fundamental Principles of Air Conditioners for Information Technology By Tony Evans White Paper #57 Revision 2 Executive Summary Every Information Technology professional who is responsible for the operation

More information

Refrigeration Cycles MOHAMMAD FAISAL HAIDER. Bangladesh University of Engineering and Technology

Refrigeration Cycles MOHAMMAD FAISAL HAIDER. Bangladesh University of Engineering and Technology Refrigeration Cycles MOHAMMAD FAISAL HAIDER LECTURER Department of Mechanical Engineering Department of Mechanical Engineering Bangladesh University of Engineering and Technology Objectives Introduce the

More information

HFCs or the Old Refrigerants - what is the best Choice?

HFCs or the Old Refrigerants - what is the best Choice? HFCs or the Old Refrigerants - what is the best Choice? Hermann Halozan Institute of Thermal Engineering, Graz University of Technology Inffeldgasse 25 / B, A-8010 Graz, Austria, Phone: +43 316 873-7303

More information

PERFORMANCE OF A VERY LOW TEMPERATURE REFRIGERATION SYSTEM OPERATING WITH NATURAL FLUIDS

PERFORMANCE OF A VERY LOW TEMPERATURE REFRIGERATION SYSTEM OPERATING WITH NATURAL FLUIDS RIO 3 - World Climate & Energy Event, 1-5 December 23, Rio de Janeiro, Brazil 275 PERFORMANCE OF A VERY LOW TEMPERATURE REFRIGERATION SYSTEM OPERATING WITH NATURAL FLUIDS G. Venkatarathnam, V. Ravindranatha

More information

A/C Refrigerant. Air Conditioning systems use refrigerant to move heat from air inside the car to air outside the car

A/C Refrigerant. Air Conditioning systems use refrigerant to move heat from air inside the car to air outside the car A/C Refrigerant Air Conditioning systems use refrigerant to move heat from air inside the car to air outside the car Refrigerants are HAZARDOUS to you and the environment Motor Vehicle Air Conditioning

More information

Comparative assessment for drop in replacement of R134a in domestic refrigerator.

Comparative assessment for drop in replacement of R134a in domestic refrigerator. Comparative assessment for drop in replacement of R134a in domestic refrigerator. Pravin K. Katare Research Scholar, Department of Mechanical Engineering, G.H.Raisoni College of Engineering Digdoh Hill,

More information

ASSESSMENT OF R430A REFRIGERANT AS A POSSIBLE SUBSTITUTE TO R134A REFRIGERANT IN LARGE CAPACITY FREEZER

ASSESSMENT OF R430A REFRIGERANT AS A POSSIBLE SUBSTITUTE TO R134A REFRIGERANT IN LARGE CAPACITY FREEZER University of Maiduguri Faculty of Engineering Seminar Series Volume 6, december 5 ASSESSMENT OF REFRIGERANT AS A POSSIBLE SUBSTITUTE TO R34A REFRIGERANT IN LARGE CAPACITY FREEZER S. Shodiya*, M.B. Oumarou

More information

Review of flow-through design in thermoacoustic refrigeration

Review of flow-through design in thermoacoustic refrigeration Review of flow-through design in thermoacoustic refrigeration ABSTRACT Bammann T.C., Howard C.Q., Cazzolato B.S. School of Mechanical Engineering, The University of Adelaide, Australia The design and functionality

More information

THERMOACOUSTIC REFRIGERATION. Presented by: MANOJ KUMAR PODDAR

THERMOACOUSTIC REFRIGERATION. Presented by: MANOJ KUMAR PODDAR THERMOACOUSTIC REFRIGERATION Presented by: MANOJ KUMAR PODDAR http://ajourneywithtime.weebly.com OUTLINE INTRODUCTION DEFINITION DESIGN DESCRIPTION APPLICATIONS CONCLUSION REFERENCES INTRODUCTION Thermoacoustic

More information

A Comparison Between Refrigerants Used In Air Conditioning

A Comparison Between Refrigerants Used In Air Conditioning A Comparison Between Refrigerants Used In Air Conditioning Derya Özkan, Özden Agra and Özlem Çetin University of Yildiz Technical University, Turkey Corresponding email: tumer@yildiz.edu.tr SUMMARY It

More information

Chapter 10. Refrigeration and Heat Pump Systems

Chapter 10. Refrigeration and Heat Pump Systems Chapter 10 Refrigeration and Heat Pump Systems Learning Outcomes Demonstrate understanding of basic vaporcompression refrigeration and heat pump systems. Develop and analyze thermodynamic models of vapor-compression

More information

(1) Field of invention and containing the background of the invention:-

(1) Field of invention and containing the background of the invention:- (1) Field of invention and containing the background of the invention:- This invention is related to energy conversion from environmental heat or atmosphere thermal energy to mechanical/electrical, without

More information

Experimental Study on Compact Heat Pump System for Clothes Drying Using CO 2 as a Refrigerant. Abstract

Experimental Study on Compact Heat Pump System for Clothes Drying Using CO 2 as a Refrigerant. Abstract Experimental Study on Compact Heat Pump System for Clothes Drying Using CO 2 as a Refrigerant M. Honma, T. Tamura, Y. Yakumaru and F. Nishiwaki Matsushita Electric Industrial Co., Ltd. Living Environment

More information

Chapter 11 REFRIGERATION CYCLES. Department of Mechanical Engineering

Chapter 11 REFRIGERATION CYCLES. Department of Mechanical Engineering Chapter 11 REFRIGERATION CYCLES Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University it Objectives Introduce the concepts of refrigerators and heat pumps and the measure of their performance.

More information

Ammonia. Background on ammonia as a refrigerant

Ammonia. Background on ammonia as a refrigerant Ammonia Danfoss Industrial refrigeration has written a technical paper on things to consider when changing from HFC/HCFC s to ammonia. It outlines some of the main differences between the different plant

More information

5. MVAC-like appliance include appliances using R22 refrigerant a. True b. False

5. MVAC-like appliance include appliances using R22 refrigerant a. True b. False 1. Reductions in stratospheric ozone levels lead to higher levels of reaching the Earths surface. a. Infrared radiation b. Microwave radiation c. Ultraviolet radiation d. Visible light 2. UVB can have

More information

Assessment of LPG as a possible alternative to R-12 in domestic refrigerators

Assessment of LPG as a possible alternative to R-12 in domestic refrigerators Energy Conversion and Management 44 (2003) 381 388 www.elsevier.com/locate/enconman Assessment of LPG as a possible alternative to R-12 in domestic refrigerators Bilal A. Akash a, *, Salem A. Said b a

More information

Design of LPG Refrigeration System

Design of LPG Refrigeration System Design of LPG Refrigeration System Sethu Sathayan 1, Gopakumar M G 2, Jaya Krishnan S 3, Nanda Gopan 4, Nithin S 6 Assistant Professor, Department of Mechanical Engineering, SNIT Adoor, Kerala, India 1

More information

HVAC/R Refrigerant Cycle Basics

HVAC/R Refrigerant Cycle Basics HVAC/R Refrigerant Cycle Basics This is a basic overview of the refrigeration circuit and how it works. It isn t a COMPLETE description by any means, but it is designed to assist a new technician or HVAC/R

More information

Natural refrigerants - naturally efficient

Natural refrigerants - naturally efficient Natural refrigerants - naturally efficient Operating systems with natural refrigerants for energy efficiency Frankfurt (Main), 10/11/2016. Whether energy transition in Germany or Energy Efficiency Act

More information

Under Section 608 of the CAA, EPA has established regulations (40 CFR Part 82, Subpart F) that:

Under Section 608 of the CAA, EPA has established regulations (40 CFR Part 82, Subpart F) that: Overview Under Section 608 of the CAA, EPA has established regulations (40 CFR Part 82, Subpart F) that: Require service practices that maximize recycling of ozone-depleting compounds (both chlorofluorocarbons

More information

PRESSURE-ENTHALPY CHARTS AND THEIR USE By: Dr. Ralph C. Downing E.I. du Pont de Nemours & Co., Inc. Freon Products Division

PRESSURE-ENTHALPY CHARTS AND THEIR USE By: Dr. Ralph C. Downing E.I. du Pont de Nemours & Co., Inc. Freon Products Division INTRODUCTION PRESSURE-ENTHALPY CHARTS AND THEIR USE The refrigerant in a refrigeration system, regardless of type, is present in two different states. It is present as liquid and as vapor (or gas). During

More information

Chapter 2. Alternatives to HCFCs and their Characteristics

Chapter 2. Alternatives to HCFCs and their Characteristics Alternatives to HCFCs and their Characteristics Refrigerant - General Chemical used in a cooling system, such as an air conditioner or refrigerator, as the heat carrier which changes from vapour to liquid

More information

FABRICATION OF REFRIGERANT FLOW RATE WITH SPIRALLY COILED CAPILLARY TUBE

FABRICATION OF REFRIGERANT FLOW RATE WITH SPIRALLY COILED CAPILLARY TUBE FABRICATION OF REFRIGERANT FLOW RATE WITH SPIRALLY COILED CAPILLARY TUBE PRESENTED BY J.SARAVANA PERUMAL 1 Saravananjsp005@gmail.com D.SATHEESH 2 Satheeshd123@gmail.com Contact no: 9789080381 DEPARTMENT

More information

Performance Evaluation of Eco- Friendly Alternate Refrigerants for VCRS

Performance Evaluation of Eco- Friendly Alternate Refrigerants for VCRS Performance Evaluation of Eco- Friendly Alternate Refrigerants for VCRS Lalit Narayan, Abhishek Arya 2,2 M. Tech. Scholar, Associate Professor,,2 Scope College of Engineering, Bhopal, India Abstract: The

More information

An Overview of Extinguishing Systems for Computer Equipment

An Overview of Extinguishing Systems for Computer Equipment Risk Solutions An Overview of Extinguishing Systems for Computer Equipment Various types of automatic suppression systems are available for protecting computer equipment. This report discusses the uses

More information

Waste Heat Utilization of Vapor Compression Cycle for Operation of Vapor Absorption System

Waste Heat Utilization of Vapor Compression Cycle for Operation of Vapor Absorption System Waste Heat Utilization of Vapor Compression Cycle for Operation of Vapor Absorption System 1 Avnish Chandra Pandey, 2 M. Akash Rao, 3 Sabyasachi Sahoo, 4 Narendra Kumar Students, Department of Mechanical

More information

Emerging Refrigeration Technologies

Emerging Refrigeration Technologies Emerging Refrigeration Technologies Brandon F Lachner, Jr Research & Technology Forum Madison, WI January 20-21, 2005 University of Wisconsin-Madison 1 Today Current Industrial Refrigeration Ammonia in

More information

An Investigation Into The Influence Of Improved Refrigeration Cycle And Refrigerants On An Energy Efficient Domestic Refrigerator

An Investigation Into The Influence Of Improved Refrigeration Cycle And Refrigerants On An Energy Efficient Domestic Refrigerator Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2002 An Investigation Into The Influence Of Improved Refrigeration Cycle And

More information

New Chemical Alternative Refrigerants

New Chemical Alternative Refrigerants Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 1990 New Chemical Alternative Refrigerants J. L. Adcock University of Tennessee

More information

Making equipment decisions

Making equipment decisions Making equipment decisions in a changing landscape of refrigerant legislation A QUICK GUIDE As the HVAC and building management industry navigates the complex and ever-changing refrigerant landscape, many

More information

March 10, 2016 San Joaquin Valley RETA Meeting

March 10, 2016 San Joaquin Valley RETA Meeting March 10, 2016 San Joaquin Valley RETA Meeting Refrigerant Selection Peter Thomas, P.E., CSP Resource Compliance, Inc. Background and History Simple, dangerous Compounds Safer, more complex refrigerants

More information

Refrigerants for commercial refrigeration applications

Refrigerants for commercial refrigeration applications Refrigerants for commercial refrigeration applications March 2015 Contents Executive summary... 2 Introduction and background... 2 Environmental drivers... 3 Regulations and timing... 5 Criteria for refrigerant

More information

Chapter 9. Refrigeration and Liquefaction

Chapter 9. Refrigeration and Liquefaction Chapter 9 Refrigeration and Liquefaction Refrigeration is best known for its use in the air conditioning of buildings and in the treatment, transportation, and preservation of foods and beverages. It also

More information

Design and Construction of a Simple Standing Wave Thermoacoustic Refrigerator

Design and Construction of a Simple Standing Wave Thermoacoustic Refrigerator Design and Construction of a Simple Standing Wave Thermoacoustic Refrigerator Mark Peterson Yap 1 and Efren Dela Cruz 2 Mechannical Enginering Department, De La Salle University 2 efren.delacruz@dlsu.edu.ph

More information

Refrigerants for residential and commercial air conditioning applications

Refrigerants for residential and commercial air conditioning applications Refrigerants for residential and commercial air conditioning applications January 2012 Contents Executive summary... 2 Refrigerants and environmental drivers... 3 Regulations and timing... 5 Refrigerant

More information

we will examine only the vapour compression systems transfers to the Carnot cycle can serve as the initial model of the ideal refrigeration cycle.

we will examine only the vapour compression systems transfers to the Carnot cycle can serve as the initial model of the ideal refrigeration cycle. Refrigeration Cycle Reading Problems 10-1 10-5, 10-7, 10-9 10-11, 10-14, 10-39 Definitions a refrigeration system removes thermal energy from a low-temperature region and transfers heat to a high-temperature

More information

Sustainability of Automobile Air- Conditioning System Using Refrigerant R1234yf Instead of R134a

Sustainability of Automobile Air- Conditioning System Using Refrigerant R1234yf Instead of R134a Sustainability of Automobile Air- Conditioning System Using Refrigerant R1234yf Instead of R134a Gaurav 1 and Raj Kumar 2 1,2Department of Mechanical Engineering, YMCA University of Science & Technology,

More information

Experimental Investigation of a Hybrid Evacuated Tube Solar Collector

Experimental Investigation of a Hybrid Evacuated Tube Solar Collector International Conference on Mechanical, Industrial and Materials Engineering 2015 (ICMIME2015) 11-13 December, 2015, RUET, Rajshahi, Bangladesh Paper ID: ET-46 Experimental Investigation of a Hybrid Evacuated

More information

Role of Nano-technology for improving of thermal performances of vapour compression refrigeration system (VCRS): An Overview

Role of Nano-technology for improving of thermal performances of vapour compression refrigeration system (VCRS): An Overview International Journal of Research in Engineering and Innovation Vol-2, Issue-1 (2018), 21-28 International Journal of Research in Engineering and Innovation (IJREI) journal home page: http://www.ijrei.com

More information

HFO-1234yf Performance in a Beverage Cooler

HFO-1234yf Performance in a Beverage Cooler 2422 Page 1 HFO-1234yf Performance in a Beverage Cooler Barbara MINOR 1 *, Carlos MONTOYA 2, Francisco Sandoval KASA 3 1 DuPont Fluoroproducts, Wilmington, DE, USA Phone: 302-999-2802, E-mail: barbara.h.minor@usa.dupont.com

More information

Requirements for Labelling: Labelling of Refrigerant Containers

Requirements for Labelling: Labelling of Refrigerant Containers DRAFT GRENADA NATIONAL STANDARD Requirements for Labelling: Labelling of Refrigerant Containers Copyright GDBS 2016 This is a draft standard for Public Comments only. No part of this draft may be reproduced

More information

Assessment of Alternatives to Refrigerant R134a in Automotive Air Conditioning System

Assessment of Alternatives to Refrigerant R134a in Automotive Air Conditioning System Available online at www.ijapie.org International Journal of Advanced Production and Industrial Engineering IJAPIE-SI-IDCM 606 (2017) 24 30 Special Issue on INNOVATIVE DESIGN & COMPUTATIONAL MODELLING Assessment

More information

Responsible Care Product Stewardship for Refrigerants

Responsible Care Product Stewardship for Refrigerants 1 ABSTRACT Responsible Care Product Stewardship for Refrigerants Christoph Meurer; Ewald Preisegger Solvay Fluor und Derivate GmbH Hans-Böckler-Allee 20 30161 Hannover Germany Product stewardship summarizes

More information

FABRICATION OF SOLAR ENERGY FOR AIR CONDITIONING SYSTEM

FABRICATION OF SOLAR ENERGY FOR AIR CONDITIONING SYSTEM FABRICATION OF SOLAR ENERGY FOR AIR CONDITIONING SYSTEM Mohankumar.G 1, Vijay.A 2, Sasikumar R 3, Kanagaraj.M 4 1,2,3,4 PG Scholars, Department of Mechanical Engineering, Gnanamani College of Technology,

More information

Due to its low temperature glide about 1.5 approx. (75% less than R-407C and R-427A), it is suitable for a wide range of applications.

Due to its low temperature glide about 1.5 approx. (75% less than R-407C and R-427A), it is suitable for a wide range of applications. TECHNICAL DATA SHEET R434A () Features and uses of R-434A () is a non-flammable HFC mixture. ODP = 0, compatible with traditional mineral lubricants, alkyl benzene and also with synthetic POE, so there

More information

Q. Which hydrocarbons can be used as a refrigerant? The following hydrocarbons can be used as a refrigerant in cooling & heating applications:

Q. Which hydrocarbons can be used as a refrigerant? The following hydrocarbons can be used as a refrigerant in cooling & heating applications: Basic Facts About Hydrocarbons Q. What are hydrocarbons? Hydrocarbon refrigerants are environmentally friendly, non-toxic, non-ozone-depleting replacement for chlorofluorocarbons (CFCs), hydrochlorofluorocarbons

More information

AIR CONDITIONING. Carrier Corporation 2002 Cat. No

AIR CONDITIONING. Carrier Corporation 2002 Cat. No AIR CONDITIONING Carrier Corporation 2002 Cat. No. 020-016 1. This refresher course covers topics contained in the AIR CONDITIONING specialty section of the North American Technician Excellence (NATE)

More information

Effectively Managing the Transition to Lower GWP Refrigerants

Effectively Managing the Transition to Lower GWP Refrigerants Effectively Managing the Transition to Lower GWP Refrigerants Karim Amrane a, * a Air-Conditioning, Heating, and Refrigeration Institute, 2111 Wilson Blvd. Suite 500, Arlington, VA, USA Abstract Environmental

More information

Design and Fabrication of Liquefied Petroleum Gas Refrigeration System and Comparison with Domestic Refrigerator

Design and Fabrication of Liquefied Petroleum Gas Refrigeration System and Comparison with Domestic Refrigerator International Journal of Innovation and Scientific Research ISSN 2351-8014 Vol. 25 No. 2 Jul. 2016, pp. 637-645 2015 Innovative Space of Scientific Research Journals http://www.ijisr.issr-journals.org/

More information

Refrigerant & Energy Regulations Update

Refrigerant & Energy Regulations Update Refrigerant & Energy Regulations Update Focus on Refrigeration Applications Rajan Rajendran Emerson Climate Technologies Agenda A Quick History on Refrigerant Progression Environmental Protection Agency

More information

Development and Performance Measurements of a Small Compressor for Transcritical CO2 Applications

Development and Performance Measurements of a Small Compressor for Transcritical CO2 Applications Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2004 Development and Performance Measurements of a Small Compressor for Transcritical CO2

More information

Air Conditioning and process cooling Energy Components at a Glance

Air Conditioning and process cooling Energy Components at a Glance Energy Components at a Glance What is it? A means of providing cooling with mechanical refrigeration equipment. Where is it found? Chilled water is found in many plants, non-existent in others. Essential

More information

The natural solution for domestic refrigeration

The natural solution for domestic refrigeration The natural solution for domestic refrigeration 1300 492 445 info@hychill.com.au Minus 10 is a high-purity R600a (isobutane), the dominant single-ingredient refrigerant used in state-of-the-art light commercial

More information

Scroll Chillers: Conversion from HCFC-22 to HFC-410A and HFC-407C

Scroll Chillers: Conversion from HCFC-22 to HFC-410A and HFC-407C Scroll Chillers: Conversion from HCFC-22 to HFC-410A and HFC-407C McQuay International (A Member of the DAIKIN Group) Hydrofluorocarbon (HFC) refrigerants are critical to the safe and cost-effective phase-out

More information

Thermodynamics II Chapter 6 Mixtures & Psychrometry

Thermodynamics II Chapter 6 Mixtures & Psychrometry Thermodynamics II Chapter 6 Mixtures & Psychrometry Mohsin Mohd Sies Fakulti Kejuruteraan Mekanikal, Universiti Teknologi Malaysia Objectives Differentiate between dry air and atmospheric air. Define and

More information

Department of MCE, Islamic University of Technology 2. Abstract

Department of MCE, Islamic University of Technology 2. Abstract Paper ID: TE-85 Study of power consumption characteristics of LPG and R134a in a vapor compression refrigeration system Md. Abu Shaid Sujon 1, Rakibul Hossain Ahmed 2, Dr. A.K.M. Sadrul Islam 3, Sk. Suzauddin

More information

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 12, December

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 12, December Performance Analysis of Eco-Friendly HC Mixture (R290/R600a) Refrigerant as an Alternative to in a Vapour Compression Refrigeration System for Sub-cooling using Heat Exchanger at Condenser Outlet and Diffuser

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION 1.1 Background The science which deals with creating a controlled climate in indoor space is called air conditioning. Earlier days the air-conditioning was treated as a luxury,

More information

High Efficiency R-134a Compressor for Domestic Refrigerator

High Efficiency R-134a Compressor for Domestic Refrigerator Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 1996 High Efficiency R-134a Compressor for Domestic Refrigerator D. S. Kim Samsung Electronics

More information

Oyelami S., Bolaji B. O.

Oyelami S., Bolaji B. O. International Journal of Scientific & Engineering Research, Volume 6, Issue 6, June-2015 1158 Experimental Investigation of the Performance of Liquefied Petroleum Gas (LPG) Refrigerant in A Vapour Compression

More information

PRACTICAL EXPERIENCE WITH AN ALTERNATIVE TO R-22 BASED ON R-32lR /R a. R E Low, B E Gilbert, T W Dekleva.

PRACTICAL EXPERIENCE WITH AN ALTERNATIVE TO R-22 BASED ON R-32lR /R a. R E Low, B E Gilbert, T W Dekleva. PRACTICAL EXPERIENCE WITH AN ALTERNATIVE TO R-22 BASED ON R-32lR- 1 2 5/R- 1 34 a R E Low, B E Gilbert, T W Dekleva IC1 Klea ABSTRACT IC1 Klea has developed HFC alternatives to R-22 and R-502 which include

More information

Refrigerants for residential and commercial air conditioning applications

Refrigerants for residential and commercial air conditioning applications Refrigerants for residential and commercial Refrigerants for air residential conditioning and commercial air conditioning applications applications August January 2016 2017 June 2016 Contents Executive

More information

A: RS-45 is a non ozone depleting Drop-in replacement for R22 in most applications. A: RS-45 is a blend of R143a, R125, R134a and isobutane.

A: RS-45 is a non ozone depleting Drop-in replacement for R22 in most applications. A: RS-45 is a blend of R143a, R125, R134a and isobutane. 1/1/12 RS-45 (R434A): Q & A 1 Q: What is RS-44? 1.Q: What is RS-45 A: RS-45 is a non ozone depleting Drop-in replacement for R22 in most applications. 2 Q: Yes, but what does RS-45 contain? A: RS-45 is

More information

R&D ON HEAT PUMPS WITH NATURAL WORKING FLUIDS IN JAPAN

R&D ON HEAT PUMPS WITH NATURAL WORKING FLUIDS IN JAPAN R&D ON HEAT PUMPS WITH NATURAL WORKING FLUIDS IN JAPAN E. Hihara, Professor, Institute of Environmental Studies, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan The conventional refrigerant

More information

Performance Analysis of Domestic Refrigeration System with Thermoelectric Module

Performance Analysis of Domestic Refrigeration System with Thermoelectric Module Performance Analysis of Domestic Refrigeration System with Thermoelectric Module #1 Suyog S. Bajaj, #2 S. H. Barhatte #1 Department of Mechanical Engineering, Savitribai Phule Pune University, MIT College

More information

Low GWP alternative refrigerants to R404A

Low GWP alternative refrigerants to R404A HUAYI Statement: Low GWP alternative refrigerants to R404A Live the cooling experience The Company: HUAYI COMPRESSOR BARCELONA (HCB) The HCB of today started out with Spanish and French capital in 1962,

More information

Nova Movie: Absolute Zero

Nova Movie: Absolute Zero Nova Movie: Absolute Zero On a scale of 1 to 5 (1 being the best), how do you rank the Nova movie Absolute Zero compared to all other Nova presentations you have watched? A. 1 B. 2 C. 3 D. 4 E. 5 Gas Expansion

More information

NUMERICAL SIMULATION OF VAPOUR COMPRESSION REFRIGERATION SYSTEM USING REFRIGERANT R152A, R404A AND R600A

NUMERICAL SIMULATION OF VAPOUR COMPRESSION REFRIGERATION SYSTEM USING REFRIGERANT R152A, R404A AND R600A NUMERICAL SIMULATION OF VAPOUR COMPRESSION REFRIGERATION SYSTEM USING REFRIGERANT R152A, R404A AND R600A [1] Ranendra Roy, [2] Madhu Sruthi Emani, [3] Bijan Kumar Mandal [1], [2],[3] Department of Mechanical

More information

Week 9. Refrigeration Cycles I. GENESYS Laboratory

Week 9. Refrigeration Cycles I. GENESYS Laboratory Week 9. Refrigeration Cycles I Objectives 1. Introduce the concepts of refrigerators and heat pumps and the measure of their performance. 2. Analyze the ideal vapor-compression refrigeration cycle. 3.

More information

Comparison of CFC-114 and HFC-236ea Performance in Shipboard Vapor Compression Systems

Comparison of CFC-114 and HFC-236ea Performance in Shipboard Vapor Compression Systems United States National Risk Management Environmental Protection Research Laboratory Agency Research Triangle Park, NC 27711 Research and Development EPA/600/SR-97/058 July 1997 Project Summary Comparison

More information

FS 231: Final Exam (5-6-05) Part A (Closed Book): 60 points

FS 231: Final Exam (5-6-05) Part A (Closed Book): 60 points Name: Start time: End time: FS 231: Final Exam (5-6-05) Part A (Closed Book): 60 points 1. What are the units of the following quantities? (10 points) a. Enthalpy of a refrigerant b. Dryness fraction of

More information

THE DEVELOPMENT OF THE ISOPROPYL ALCOHOL/PFC CLEANING SYSTEM. presented by

THE DEVELOPMENT OF THE ISOPROPYL ALCOHOL/PFC CLEANING SYSTEM. presented by THE DEVELOPMENT OF THE ISOPROPYL ALCOHOL/PFC CLEANING SYSTEM. presented by B. H. Baxter Senior environmental Technolosist British Aerospace Defence DynamiGs Ltd Stevenage England abstract p=@3%34 2 747

More information

EXERGY ANALYSIS OF DOMESTIC REFRIGERATOR WITH DIFFERENT REFRIGERANTS

EXERGY ANALYSIS OF DOMESTIC REFRIGERATOR WITH DIFFERENT REFRIGERANTS International Journal of Scientific & Engineering Research Volume 3, Issue 7, July-2012 1 EXERGY ANALYSIS OF DOMESTIC REFRIGERATOR WITH DIFFERENT REFRIGERANTS Rahul ukey, Sharad chaudhary Abstract Electricity

More information

REPLACING HARMFUL CFC 12 BY ECO-FRIENDLY REFRIGERANT IN MILK CHILLER

REPLACING HARMFUL CFC 12 BY ECO-FRIENDLY REFRIGERANT IN MILK CHILLER REPLACING HARMFUL CFC 12 BY ECO-FRIENDLY REFRIGERANT IN MILK CHILLER Alka Bani Agrawal* and A.C.Tiwari 1 Department of Mechanical Engineering, R.G.T.U., Bhopal M. P. (INDIA) *E-mail : alk_agr@yahoo.co.in

More information

COMPRESSOR LESS SOLAR REFRIGERATOR

COMPRESSOR LESS SOLAR REFRIGERATOR COMPRESSOR LESS SOLAR REFRIGERATOR Om Prakash Umrao (Assistant Professor, ME) & Rajat Kumar Rajpoot, Siddhartha Verma, Shubham Tyagi, Yash Gupta, Yash Mishra Department Of Mechanical Engineering IMS Engineering

More information

Improving and Comparing the Coefficient of Performance of Domestic Refgirator by using Refrigerants R134a and R600a

Improving and Comparing the Coefficient of Performance of Domestic Refgirator by using Refrigerants R134a and R600a ISSN (e): 0 00 Vol, 0 Issue, 8 August 0 International Journal of Computational Engineering Research (IJCER) Improving and Comparing the Coefficient of Performance of Domestic Refgirator by using Refrigerants

More information

DESIGN AND FABRICATION OF THERMO ACOUSTIC REFRIGERATOR

DESIGN AND FABRICATION OF THERMO ACOUSTIC REFRIGERATOR DESIGN AND FABRICATION OF THERMO ACOUSTIC REFRIGERATOR T. Kumar Teja 1 and V. Vijaya Kumar 2 1 Department of mechanical Engineering, ASRCE, Tanuku, JNTU Kakinada, India 2 Assistant Professor, ASRCE, Tanuku,

More information

HOW IT RELATES TO PERFORMANCE IN REFRIGERATED COMPRESSED AIR DRYERS

HOW IT RELATES TO PERFORMANCE IN REFRIGERATED COMPRESSED AIR DRYERS ENERGY CONSUMPTION HOW IT RELATES TO PERFORMANCE IN REFRIGERATED COMPRESSED AIR DRYERS Introduction Those in charge of specifying and purchasing equipment for industrial compressed air systems have many

More information

AE R1 March 1993 Reformatted November Compressor Overheating

AE R1 March 1993 Reformatted November Compressor Overheating AE17-1260 R1 March 1993 Reformatted November 2010 Compressor Overheating It is ironic that in an industry whose product is cooling and refrigeration, the most serious field problems arise from overheating

More information

Performance Evaluation of the Energy Efficiency of Crank-Driven Compressor and Linear Compressor for a Household Refrigerator

Performance Evaluation of the Energy Efficiency of Crank-Driven Compressor and Linear Compressor for a Household Refrigerator Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2010 Performance Evaluation of the Energy Efficiency of Crank-Driven Compressor and Linear

More information

How to deal with ...R410A MITSUBISHI ELECTRIC R32 R125 R410A AIRCONDITIO NING

How to deal with ...R410A MITSUBISHI ELECTRIC R32 R125 R410A AIRCONDITIO NING How to deal with R32 R125 R410A...R410A MITSUBISHI ELECTRIC AIRCONDITIO NING R410A Contents What is R410A?......................................... 3 Expressions...........................................

More information

Chapter 10 Lyes KADEM [Thermodynamics II] 2007

Chapter 10 Lyes KADEM [Thermodynamics II] 2007 Refrigeration Cycles The objective of refrigeration cycles is to transfer the heat from a low temperature region to a high temperature region. - if the objective of the cycle is to decrease the lowest

More information

Practical Fundamentals of Heating, Ventilation and Air Conditioning (HVAC) for Engineers and Technicians

Practical Fundamentals of Heating, Ventilation and Air Conditioning (HVAC) for Engineers and Technicians Presents Practical Fundamentals of Heating, Ventilation and Air Conditioning (HVAC) for Engineers and Technicians Revision 11.2 Website: www.idc-online.com E-mail: idc@idc-online.com IDC Technologies Pty

More information

Institute of Aeronautical Engineering (Autonomous) Dundigal, Hyderabad B.Tech (III II SEM) MECHANICAL ENGINEERING

Institute of Aeronautical Engineering (Autonomous) Dundigal, Hyderabad B.Tech (III II SEM) MECHANICAL ENGINEERING Institute of Aeronautical Engineering (Autonomous) Dundigal, Hyderabad- 500 043 B.Tech (III II SEM) MECHANICAL ENGINEERING REFRIGERATION AND AIR CONDITIONING Prepared by, Dr. CH V K N S N Moorthy, Professor

More information

ENVIRONMENTALLY SAFE R-410A SERVICE TECHNIQUES

ENVIRONMENTALLY SAFE R-410A SERVICE TECHNIQUES ENVIRONMENTALLY SAFE R-410A SERVICE TECHNIQUES R-410A Training Supplement to the Desktop Reference and Training Guide Written by: Robert P. Scaringe Edited by: Michael Amato Eleventh Edition April 2004

More information

Experimental Study on Performance Parameters for Refrigerants R22, R410a and R404a at Various Air Outlet Temperatures

Experimental Study on Performance Parameters for Refrigerants R22, R410a and R404a at Various Air Outlet Temperatures Experimental Study on Performance Parameters for Refrigerants, R41a and R44a at Various Air Outlet Temperatures P. Nagaraju P. G. Student Sanketika Institute of Technology and Management Ch. Kiran Kumar

More information

Refrigerant Transfer and Compressor Damage

Refrigerant Transfer and Compressor Damage Refrigerant Transfer and Compressor Damage While a piston or scroll compressor refrigeration system with a low-side oil sump is shut down, all is not at rest in the refrigerant circuit. Cutaway views of

More information