Energy Efficient Compressed Air Systems

Size: px
Start display at page:

Download "Energy Efficient Compressed Air Systems"

Transcription

1 Energy Efficient Compressed Air Systems Introduction Compressed air systems generate, store and distribute energy in the form of compressed air for use throughout a plant. In a compressed air system, a single set of compressors can supply power to machines all over the plant, thus eliminating the need for numerous and dispersed electric motors. This advantage must be balanced against the relative poor energy efficiency of compressed air systems, which can be as low as 20% when leaks and part-load control losses are taken into account. On a national scale, air compressors rank only behind pumps in terms of industrial motor drive electricity consumption. Thus, increasing the efficiency of compressed air systems can result in significant energy savings. Principles of Energy-Efficient Compressed Air Systems Energy Balance Approach To compress air, the power delivered to the fluid (air) dwf is the integral of the product of the volume flow rate V and the pressure rise dp. dwf = V dp The electrical power supplied to an air compressor is: dwe = V dp / (motor compressor control) where motor is the motor efficiency, compressor is the compressor efficiency and control is the control efficiency. Three types of compression are shown below. The right compression line represents isentropic compression, in which air is compressed adiabatically with no internal reversibilities. The left compression line represents isothermal compression, in which the air is cooled to keep the air temperature constant during compression. Isentropic compression has no cooling and isothermal compression has the maximum cooling possible. Actual compression processes lie somewhere in between isentropic and isothermal compression, and are called polytropic compression. The area to the left of the compression lines represents the fluid work dwf = V dp. Thus, isothermal compression requires less compressor work because the cooling is responsible for part of the decrease in volume. Energy Efficient Compressed Air Systems 1

2 Source: Cengal, Y. and Boles, M., Thermodynamics, 1998, WGB-McGraw-Hill. Some air compressors utilize two stages of compression with intercooling between the stages to further reduce compressor power. The power savings from two-stage compression with intercooling are shown graphically below. Source: Cengal, Y. and Boles, M., Thermodynamics, 1998, WGB-McGraw-Hill. Assuming that air can be treated as an ideal gas, it can be shown that Pv n = constant during the compression process, where P = absolute pressure, v = specific volume, n = 1 for isothermal compression, n= k = Cp/Cv = for isentropic compression of air and 1.0 < n < for polytropic compression. Substituting (Pv n = constant) into the equation for fluid work (dwf = V dp) and solving the differential equation yields the following results: Wf = R T ln (P2/P1) for isothermal compression Wf = n R T1 [(P2/P1) (n-1)/n - 1] / (n - 1) for polytropic compression Energy Efficient Compressed Air Systems 2

3 Rair = Btu/lbm-R Example: Calculate specific capacities (cfm/hp) for isothermal and isentropic compression of 70 F air to 100 psig. Fluid work for to compress 70 F air to 100 psig isothermally Input Data: R (Btu/lbm-R) T 530 P1 (psia) 15 P2 (psia) 115 p at std cond (lb/ft3) Calculations: Wf = R T ln (P 2 /P 1 ) (Btu/lbm) Wf (hp/cfm) / Wf (cfm/hp) Fluid work for to compress 70 F air to 100 psig isentropically Input Data: R (Btu/lbm-R) T 530 P1 (psia) 15 P2 (psia) 115 p at std cond (lb/ft3) n 1.4 Calculations: Wf = n R T 1 [(P 2 /P 1 ) (n-1)/n - 1] / (n - 1) (Btu/lbm) Wf (hp/cfm) / Wf (cfm/hp) Actual compressors generate between 4 and 5 scfm/hp at 100 psig. The difference between the thermodynamic values of scfm/hp computed above and scfm/hp generated by actual compressors is due to the turbulence and friction generated within the compressor. Thus, this difference characterizes the efficiency of the compressor. Example: Calculate the efficiency of a compressor with an actual specific capacity of 4.2 cfm/hp if the polytropic specific capacity is 6.0 cfm/hp. dw = V dp / compressor compressor = V dp / dw compressor = 4.2 scfm / 6.0 scfm = 70% Energy Efficient Compressed Air Systems 3

4 Motor efficiency is the efficiency of the motor at converting electrical power into shaft power. The efficiency of a premium-efficiency 100-hp motor is about 92%. Motor efficiency can be improved by specifying premium-efficiency motors. Control efficiency is a measure of the losses incurred to vary compressed air output to match compressed air demand. In air compressors, control efficiency varies widely depending upon the type of part-load control employed. Understood in this light, the energy balance equation serves as a useful guide for energy saving opportunities. Thus, primary energy savings opportunities are: Reducing volume flow rate Reducing pressure rise Increasing control efficiency Increasing compressor efficiency Increasing motor efficiency. Opportunities for Improving The Energy-Efficiency of Compressed Air Systems These principles can be organized using the inside-out approach, which sequentially reduces enduse energy, distribution energy, and primary conversion energy. Combining the energy balance and inside-out approach, common energy-efficiency opportunities in compressed air systems include: End use Eliminate inappropriate uses of compressed air (reduce V) Install solenoid valves to shut off unnecessary air (reduce V) Install air saver nozzles (reduce V) Replace timed-solenoid with differential-pressure control (reduce V) Use blower instead of air compressor for low-pressure applications (reduce dp) Distribution Fix leaks (reduce V) Replace timed-solenoid drains with demand-control drains (reduce V) Decrease pressure drop in distribution system (reduce dp) Conversion Compress cooler outside air (increase compressor efficiency) Stage compressors with pressure settings or controller (increase control efficiency) Employ on/off, load/unload with auto shutoff, or variable-speed control for trim compressor (increase control efficiency) Add compressed air storage to decrease unload power and increase auto-shutoff (increase control efficiency) Replace desiccant with refrigerated dryer (reduce V) Use heat from compressors to heat building during winter Energy Efficient Compressed Air Systems 4

5 Recurring Energy-Efficiency Concepts Close inspection of these energy-efficiency opportunities illustrates three important and recurring energy efficiency concepts. The equation for air compressor energy use serves as a useful guide for comprehensively identifying energy saving opportunities. Like most systems, compressed air systems are designed for peak conditions, but spend the vast majority of time operating at off-peak conditions. Thus, several energy efficiency opportunities result from improving control to reduce unnecessary compressed air use and power consumption during off peak conditions. Careful attention to control efficiency is vital to achieving energy efficiency. To achieve energy savings, many end-use and distribution system savings opportunities must be coupled with modifications to the conversion equipment, which in this case is the air compressor plant. Thus, the whole-system inside-out approach is vital to maximizing energy-efficiency potential. Air Compressors The three basic types of air compressors are reciprocating, rotary screw and centrifugal compressors. Reciprocating Rotary Screw Centrifugal Reciprocating compressors use pistons to compress air in cylinders. Single-acting compressors compress air on one-side of piston, and double acting compressors compress on both sides of piston. Large reciprocating compressors may employ multiple stages with intercoolers and double acting pistons to achieve high compression efficiencies. Single-stage compressors control compressed air output by stopping the pistons when compressed air is not needed. Multi-stage compressors control compressed air output by sequentially reducing the number of stages in use. Energy Efficient Compressed Air Systems 5

6 Rotary-screw compressors compress air by forcing air between rotating screws with decreasing volume between the screws. Most rotary-screw compressors control compressed air output by modulating the air intake valve, and or alternating between full open and fully closed operation. Centrifugal compressors compress air by accelerating air from the tips of impellors rotating at high speeds into a volute. Centrifugal compressors are typically 250-hp or larger, and frequently employ multiple stages to achieve the desired compressed air output pressure. Centrifugal compressors control compressed air output by modulating an inlet valve or variable inlet vanes on the air intake, loading and unloading, or blowing off compressed air to atmosphere rather than into the compressed air system. Compressor Controls Compressor controls typically match compressed air output to compressed air demand by maintaining discharge air pressure within a specified range. There are five primary control strategies for maintaining the pressure within the desired range. On/Off Control In on/off control, the compressor turns on and begins to add compressed air to the system when the system pressure falls to the lower activation pressure. The compressor continues to run and add compressed air to the system until the system pressure reaches the upper activation pressure when the compressor shuts off. Typical lower and upper activation pressures would be 90 psig and 100 psig. On/off control may also employ a timer to reduce short-cycling. Reciprocating compressors typically employ on/off control. On/off control is the most efficient type of part-load control, since the compressor draws no power when it is not producing compressed air. Load/Unload Control In load/unload control, the compressor loads and begins to add compressed air to the system when the system pressure falls to the lower activation pressure. The compressor continues to run and add compressed air to the system until the system pressure reaches the upper activation pressure. It then unloads and does not add compressed air to the system until the system pressure drops to the lower activation pressure. Typical lower and upper activation pressures would be 90 psig and 100 psig. When unloaded, rotary screw compressors typically partially close the air inlet valve and bleed the remaining compressed air in the sump to atmosphere. Power draw when fully unloaded varies from about 60% of full load power to about 30% of fullload power, depending on compressor design and on the length of time the compressor runs unloaded. To fully unload, the load/unload cycle time must be long enough to allow the compressed air in the sump to bleed to atmosphere when the compressor unloads. Thus, load/unload control works best when coupled with adequate compressed air storage, which lengthens load/unload cycles while modulating pressure variation to end uses. Energy Efficient Compressed Air Systems 6

7 Most compressors with load/unload control also have an automatic shutoff option, in which the compressor shuts itself off if it runs unloaded for about 5 to 10 minutes. The compressor will remain off for a specified period of time before restarting to avoid short-cycling. Running the compressor in automatic shutoff mode can result in significant energy savings during periods of low compressed air demand. In addition, adequate compressed air storage increases load/unload cycle time, and the likelihood that the compressor shuts off after running unloaded for a few minutes. Modulation Control In modulation control, the position of the inlet air valve is modulated from full open to full closed in response to compressor output pressure. Modulation control typically employs PID control with a narrow control range about + 2 psig. Inlet modulation is a relatively inefficient method of controlling compressed air output. Variable-Speed Control Rotary-screw air compressors can be equipped with variable frequency drives to vary the speed of the screws and the corresponding compressed air output. As in other fluid flow applications, the variation of speed to vary output is extremely energy efficient. Blow-off Control In centrifugal compressors, the quantity of air flow through the compressor can only be controlled by modulating the inlet air valve over a relatively small range. When flow is reduced below this range, the flow becomes unstable in a surge condition. To avoid surge, centrifugal compressors may discharge compressed air to the atmosphere to control compressed air output to the system. Blow-off control is the least efficient method of controlling compressed air output, since input power remains constant as the supply compressed air to the system decreases. Power / Output Relationships by Control Type The following figure shows typical relationships between fraction input power to the compressor (FP) and fraction compressed air output (FC) for various types of control. At full output capacity (FC = 1.0), compressors draw full power (FP = 1.0). The power draw at less than full output capacity is a function of the type of part-load control. The figure shows that at part load, most energy efficient control mode is on/off, followed by variable speed, load/unload, modulation and blow-off control. Energy Efficient Compressed Air Systems 7

8 1.00 Fraction Power (FP) Blow Off Modulation Load/Unload Variable Speed On/Off Fraction Capacity (FC) Assuming linearity, fraction power, FP, can be calculated from fraction capacity, FC, and fraction power at no load, FP0, according to the following relationship: FP = FP0 + (1 FP0) FC Some compressors use a combination of basic control modes described above. For example, the figure below shows the relationship between fraction of full-load power and fraction of full-load output capacity for a compressor using a combination of modulation and load/unload control. The top line shows full modulation control, in which the compressor continues to draw 70% of full load power even when producing no compressed air. The bottom line shows a combination modulation and load/unload control, in which compressed air output is modulated by the inlet valve down to 40% of total capacity. Below 40% of full output capacity, the compressor loads and unloads to vary compressed air output. In this example, the compressor draws 25% of full-load power when fully unloaded. Energy Efficient Compressed Air Systems 8

9 Centrifugal compressors typically employ three primary methods to control compressed air output to meet demand: inlet modulation by a flow control valve or variable inlet vanes, load/unload and blow off. Inlet modulation by a flow control valve or variable inlet vanes varies the quantity or rotation of inlet air to the compressor, which reduces compressed air output and input power. In most cases, however, the control range using inlet modulation is limited to between about 70% and 100% of compressed air output. If flow is reduced below about 70% of full output capacity, an unstable flow condition called surge may result. To control flow below about 70% of full output capacity, some compressors can load and unload to match compressed air demand. When fully unloaded, the compressor generates no compressed air and can draw as little as 15% of full load power. Centrifugal compressors without load/unload capability continue to generate compressed air, but blow off the excess compressed air to the atmosphere. Because compressor power remains constant while compressed air output falls, blow-off control is the least efficient method of controlling compressed air output. Many centrifugal compressors employ some combination of these basic control options. For example, the figure below shows the fraction power to fraction capacity curves for a centrifugal compressor with Constant Pressure and Auto-dual control modes. In Constant Pressure mode, variable inlet vanes modulate inlet air to the compressors down to about 70% of full load capacity, and compressor power draw follows linearly. If compressed air demand falls below 70%, blow off valves discharge compressed air to the atmosphere and power draw remains constant. Alternately, the compressor could be set to run in Auto-dual mode. In Auto-dual mode, the variable inlet vanes modulate inlet air to the compressors down to about 70% of full load capacity, just as in Constant Pressure mode. However, in Auto-dual mode, the compressor will unload when compressed air demand falls below 70% of full-load capacity and compressor power draw will be reduced to about 15% of full load power. The plot below shows fraction of full load power draw (kw) on the vertical axis and fraction of full load capacity (cfm) on the horizontal axis for Constant Pressure and Auto-dual modes. Energy Efficient Compressed Air Systems 9

10 Fraction Power Fraction Capacity Constant Pressure Autodual Lubrication In reciprocating and flooded-screw compressors, lubricating oil comes in direct contact with the compressed air. Most the oil is removed from the compressed air stream in the sump and by a separator. However, trace amounts of oil are carried forward in the compressed air. In oil-free screw and centrifugal compressors, no oil comes in contact with the compressed air. Cooling The temperature of air increases during compression and from irreversibilities within an air compressor. Removing heat during compression reduces the work required to raise the pressure of the air. Heat can be removed from the air compressor to the surrounding air or to water. Air-cooled compressors pass the hot lubricating oil from the compressor and compressed air through finnedtube heat exchangers and force ambient air across the heat exchangers using a cooling air fan. Cooling fan horsepower is typically about 5% of the power of the compressor motor. Watercooled compressors use water-to-air heat exchangers to remove heat from the lubricating oil and compressed air. In many applications, this heat is eventually rejected to the atmosphere by a cooling tower. Increasing cooling by decreasing the temperature of the cooling air or water improves compressor efficiency and output capacity. In many cases, the relatively low temperature of the cooling air or water leaving an air compressor limits its usefulness for other process-heating applications. However, the temperature is typically high enough to provide useful space heating during winter. Thus, an excellent application for reclaiming heat from air compressors is to direct hot air into the plant during winter. About 70% of the electrical power input to an air compressor is typically removed by the cooling system. Energy Efficient Compressed Air Systems 10

11 Compressed Air Storage Tanks Stored compressed air dampens variation in supply and demand and stabilizes compressed air pressure within the system. Primary compressed air storage refers to tanks located near the air compressor that dampen pressure variations for the entire compressed air system. Secondary compressed air storage refers to tanks located near individual compressed air loads with variable demand. The typical price for compressed air storage tanks is about $4 per gallon. Primary compressed air storage tanks are generally sized to hold at least 10 seconds of compressor capacity. For example, the recommended minimum volume of the primary storage for a 25-hp air compressor generating 4 cfm/hp would be about: 25 hp compressor x 4 cfm/hp = 100 cfm x 10/60 min = 17 ft 3 Primary storage tanks can be located upstream or downstream of the dryer. Locating the primary storage tank downstream of the dryer reduces the variation in compressed air flow through the dryer caused by large variations in end-use demand. In many cases, this eliminates problems of excess water in the compressed air lines due to excess flow through the dryer during periods of high compressed air demand. Dryers The two most common types of dryers for removing moisture from compressed air lines are refrigerated dryers and desiccant dryers. Dryers are typically sized to handle the peak air compressor air flow. Refrigerated Dryer Desiccant Dryer Energy Efficient Compressed Air Systems 11

12 Refrigerated Dryers Refrigeration dryers cool the air to a dew-point temperature of about 35 F and remove the resulting condensate. According to manufacturer data, the typical power required for a refrigerated dryer is about 6 W/scfm. For example, assuming a 200-hp compressor generates 4.2 scfm of compressed air per horsepower, the output capacity of the compressor at full load is about 840 scfm. The power draw of a refrigerated dryer sized for this application would be about: 840 scfm x kw/scfm = 5.0 kw Desiccant Dryers Desiccant dryers adsorb water into desiccants and reduce the dew point temperature of the compressed air to about -40 F or lower, which is much dryer than the compressed air leaving refrigerant dryers. Desiccant dryers typically have two tanks. Compressed air flows upward through the left desiccant tank where moisture is adsorbed by the desiccant (in an exothermic reaction which warms the desiccant and air). After the desiccant becomes saturated with water, the flow of compressed air is directed upward through the right desiccant tank. The left desiccant tank is then purged of water. Desiccant dryers employ three methods to purged water from the desiccant: compressed air purge, heated compressed air purge and heated blower purge. In compressed air purge, about 15% of the dry compressed air leaving the dryer is expanded to about 45 psig and directed downward through the wet tank to purge moisture from the tank. Example Calculate the power requirement for compressed air purge for a 200 hp compressor generating 840 scfm of compressed air if the compressor generates 4 scfm/hp. Assuming the efficiency of the motor is 90%, the power required for purging the desiccant in an unheated purge-type dryer would be about: 840 scfm x 15% / 4.2 scfm/hp / 90% x 0.75 kw/hp = 25 kw 25,000 W / 840 scfm = 30 W/scfm This example shows that the drying power requirement or compressed air purge is about 30 W /scfm. This is about five times as much electricity as a refrigerated dryer would use; thus, desiccant dryers should be used only in applications that require very dry air. In heated compressed air purge, about 7% of the dry air leaving the left desiccant tank is expanded, then heated by electrical resistance heaters to about 375 F, and then directed downward through the right tank to purge moisture from the tank. According to product literature, heating requires about 7 W /scfm. Thus, the total power required for heated compressed air purge drying is about 22 W /scfm. Energy Efficient Compressed Air Systems 12

13 In heated blower purge, a blower supplies ambient air to an electric resistance heater that heats the air to about 375 F. The heated air is directed downward through the right tank to purge moisture from the tank. According to product literature, blowers require about 3 W/scfm and heaters require about 13 W /scfm. Thus, the total power required for heated blower purge drying is about 16 W /scfm. The purge cycles are initiated by a timer or by a humidity sensor that determines the whether the on-line tower has additional adsorptive capacity. Timers are generally set to handle peak conditions when the air is the most humid. In many parts of the country, the summer air contains 4 more times more humidity than winter air; thus, timed cycles typically use for more energy for purging than is necessary during much of the year. Condensate Drains As compressed air cools, water vapor can condense out of the air and should be removed from the compressed air system through drains. Condensate drains should be located: After the after cooler Underneath the receiver tank At low points in the system After filters, regulators and other devices that result in a large pressure drop. Condensate is typically removed from compressed air systems by timed-solenoid or demandactivated drains. Timed-solenoid drains are controlled by a solenoid valve on a timer that opens at a prescribed interval to discharge condensate. Although simple, reliable and inexpensive, timed solenoid drains typically discharge excess compressed air because the timer is typically set for peak condensate conditions during hot and humid summer months. Demand-activated drains function like steam traps and remove condensate only when needed. Energy Efficient Compressed Air Systems 13

14 If the condensate removal system does not function properly, cocks may be left partially open so water doesn t accumulate in the compressed air lines. This is a major waste of energy. The dryer and condensate drains should be inspected, evaluated, and repaired or replaced. Filters, Regulators and Lubricators Filters, regulators and lubricators are frequently located in a grouped F-R-L sequence. The filter removes particulates entrained in the compressed air and may have a trap or drain at the bottom. Filter cartridges should be replaced when the pressure drop across the filter exceeds about 7 psig. According to a compressed air service company, a filter cartridge for a filter on a 1- inch line passing about 170 scfm costs about $30 and takes about 10 minutes to replace. Most filters have float drains that open to discharge condensate when the condensate level reaches a set point in the filter. The seats on these drains can become damaged or dirty allowing compressed air to continually leak through the drain. According to a compressed air service company, replacement float drain assemblies cost about $18 and take about 10 minutes to replace. According to a compressed air service company, a good preventative maintenance program would replace filter cartridges about every 1 year or 8,000 hours of service. Regulators reduce downstream air pressure. Regulators have pressure gauges and valves to adjust the downstream pressure. Lubricators add lubricating oil. Lubricators look like filters, but have a clear bubble or screw assembly on top for adding oil. F-R-L groups are common locations for leaks and should be inspected regularly. In addition, if the all machines in a plant or area use regulators to reduce air pressure, it would save energy and compressor wear and tear to reduce the operating pressure of the compressor instead of reducing line pressure with regulators. Distribution System The air distribution system includes headers, branch lines, hoses, valves and fittings. The distribution system should be designed so that the total pressure drop from the compressor to the farthest air-using machine is no more than 10 psi. Large headers serve both to minimize pressure drop and increase storage. The most efficient layout utilizes a loop design for the header pipe and a single compressor entry location. Typical rules for sizing compressed air distribution lines are: Main line: size from average cfm to get P < 3 psi Branch line: size from cfm peak to get P < 3psi Feed lines: size from peak cfm to get P < 1 psi Hose: can generate P = 4 to 5 psi (proper selection of hoses is important!) Energy Efficient Compressed Air Systems 14

15 In addition, it is important to connect multiple compressors into the system using a piping design which does not cause excess turbulence. For example, the diagram below shows 10 psig of unnecessary pressure drop caused by a straight T-connection between compressors. The pressure drop could be eliminated using curved or 45-degree connections. Pneumatic Tools Most pneumatic tools are designed to operate at 90 psig. Operating at a higher pressure shortens tool life. Operating at a lower pressure may compromise the ability of the tool to perform its task. Low-Pressure Blowers Low pressure blowers provide compressed air at pressures up to 20 psig using much less electrical power than traditional air compressors, which generate 4-5 scfm/hp when compressing air to 100 psig. For example, a positive displacement blower requires 43 bhp to provide 310 scfm at 20 psig, and 17.7 bhp to provide 423 scfm at 5 psig. The The specific capacities (scfm/hp) at these operating conditions are: 20 psig: 310 scfm / 43 hp = 7.2 scfm /hp 5 psig: 423 scfm / 17.7 hp = 24 scfm /hp Compressor Sizing The determine the required output capacity of a compressor, find the sum of the scfm requirements of all the individual equipment, add 10% for leakage, and then size the compressor to meet this load. As an example, consider the following case: Energy Efficient Compressed Air Systems 15

16 Number Tools scfm/tool Diversity factor Total scfm Average scfm Tool Type A % Tool Type B % Total Most compressors deliver about 4 scfm per brake hp. Sizing for the average and peak loads results in very different compressors: Average load: 60 scfm / 4 scfm/hp = 15 hp Peak load: 250 scmf / 4 scfm/hp = 60 hp This example demonstrates why compressors are regularly oversized. Oversizing compressors typically results in large first costs and large operating costs since many compressors have poor part-load efficiencies. Partial solutions to the part-load dilemma are: Size AC for average load, but add storage capacity in system for peaks. Buy multiple smaller compressors so the baseload compressor is generally fully loaded and the part-load penalty is small for the trim compressor. This also adds redundancy for machine failure and servicing. Buy a variable-speed compressor or reciprocating compressor with excellent part-load efficiency. Inside-Out Approach to Energy Efficient Compressed Air Application of the whole-system inside-out approach leads to the greatest savings for the least first cost. First, develop a baseline of the current compressed air system. Next, minimize enduses of compressed air. Next, investigate the distribution system for leaks and excess pressure drops. Finally, investigate the compressors and dryers for energy saving opportunities. Minimize End Uses Of Compressed Air Is compressed air the best source of power for the job? Use blowers instead of compressed air. Use valves and sensors to shut of compressed air when not needed Use Venturi nozzles that amplify flow by up to 20 to 1 to reduce compressed air flow. Energy Efficient Compressed Air Systems 16

17 Fix Leaks In The Distribution System Leaks are expensive! Most compressed air systems lose between 5% and 20% of compressed air to leaks. We recommend inspecting the compressed-air system for leaks once a week by listening for leaks when all machinery is off except the air compressor. Tagged compressed air leak. To estimate leakage rates from compressed air systems at 100 psig, we use the following table. Equivalent Hole Diameter Leakage Rate scfm 1/64 " /32 " /16 " /8 " /4 " /8 " Source: Compressed Air Systems, DOE/CS/40520-T2, The values in this table were computed from the S.A. Moss equation (Ingersoll-Rand Condensed Air Power Data, 1998) W(lb/s) = x A (in 2 ) x C x P (psia) / T (R) where C = 0.97 for a smooth edged hole and C = 0.61 for a sharp edged orifice. The equation can be modified to show air leakage in standard cubic feet per minute at T = 70 F = 530 R and the density of air at 70 F is lb/ft3 such that: V (scfm) = x / 4 x [D (in)] 2 x 0.61 x P (psia) / [ 530( R) x lb/ft3] x 60 s/min V (scfm) = x [D (in)] 2 x P (psia) Energy Efficient Compressed Air Systems 17

18 Example: Calculate the annual electricity cost savings from fixing a leak if a) the compressor is a reciprocating compressor, and b) the compressor is a screw compressor running in modulation mode. Input Data: Leak: single 1/16-inch diameter Compressor that uses 0.25 hp per scfm of compressed air Compressor runs 8,000 hours per year Electricity costs $0.06 /kwh. Motor efficiency = 90% FP0 for reciprocating compressor = 0.0 FP0 for screw compressor with modulation control = 0.70 Calculations: Unadjusted: 4 scfm x 0.25 hp/scfm x 0.75 kw/hp / 90% x 8,000 hr/yr x $0.06 /kwh = $400 /yr Adjustment for part-load efficiency: = Unadjusted savings x (1-FP0) Savings for reciprocating compressor = $400 /yr x (1-0.00) = $400 /yr Savings for screw compressor with modulation control = $400 /yr x (1-0.70) = $120 /yr Use Outside Air For Compression Theory W = m cp (T2 - T1) For polytropic expansion: T2 = T1 (P2/P1) k W = m cp T1 [(P2/P1) k -1] Fraction savings = (WT1high - WT1low) / WT1high Fraction savings = (T1high - T1low) / T1high Example: Calculate savings and simple payback from compressing outside air instead of indoor air. Input Data: Avoided cost of demand $14.62 /kw-mo Avoided cost of energy = $0.02 /kwh 50-hp compressor running 5,000 hr/yr Measure: loaded (53 A) 60% of time and unloaded (40 A) 40 % of time at 480 V. Compress outside air if inside air = 90 F when outside air = 65 F and avg outside air = 50 F Cost of 16 ft of 3" PVC pipe w/ fg insulation = $50 + (4 hr x $25 /hr labor) = $150 Calculations: Wloaded = 53 A x 480 V x 3 x 84% PF = 37 kw Wunloaded = 40 A x 480 V x 3 x 78% PF = 26 kw Waverage = (60% x 37 kw) + (40% x 26 kw) = 33 kw Energy Efficient Compressed Air Systems 18

19 Tout = 65 F, Tin = 90 F, dt = = 25 F = constant Toa,avg = 50 F hence T1lo = 50 F, T1high = 75 F Fraction savings = [( ) R ( ) R ] / ( ) R = 4.7% Wloaded,new = 37 kw x ( ) =35.3 kw Waverage,new = (60% x 35.3 kw) + (40% x 26 kw) = 31.6 kw Demand savings = 33 kw 31.6 kw = 1.4 kw Demand savings = 1.4 kw x $14.62 /kw-mo x 12 mo/yr = $246 /yr Usage savings = 1.4 kw x 5,000 hr/yr x $0.02 /kwh = $140 /yr Total savings: $246 /yr + $140 /yr = $386 /yr Simple payback = $150 / $386 /yr x 12 mo/yr = 5 months Reduce Operating Pressure Theory W = m cp (T2 - T1) For polytropic expansion: T2 = T1 (P2/P1) k k = for isentropic expansion of air W = m cp T1 [(P2/P1) k -1] Fraction savings = (WPhigh - WPlow) / WPhigh = [(P2high/P1) k - (P2low/P1) k ] / [(P2high/P1) k - 1] Fraction savings = (P2high k - P2low k ) / (P2high k - P1 k ) Example: Calculate savings and simple payback from reducing operating pressure. Input Data: Avoided cost of demand $14.62 /kw-mo Avoided cost of energy = $0.02 /kwh 50-hp compressor running 5,000 hr/yr Measure: loaded (53 A) 60% of time and unloaded (40 A) 40 % of time at 480 V. Reduce pressure from 110 psig to 100 psig Calculations: Loaded power: 53 A x 480 V x 3 x 84% PF = 37 kw Unloaded power: 40 A x 480 V x 3 x 78% PF = 26 kw Average power: (60% x 37 kw) + (40% x 26 kw) = 33 kw Percent full-load power when unloaded: 26 kw / 37 kw = 70% P1 = 14.7 psia P2high = 110 psig psi = psia P2low = 100 psig psi = psia Fraction savings: ( ) / ( ) = 5.1% Loaded power, new: 37 kw x ( ) = 35.1 kw Average power, new: (60% x 35.1 kw) + (40% x 26 kw) = 31.5 kw Energy Efficient Compressed Air Systems 19

20 Demand savings: 33 kw 31.5 kw = 1.5 kw Demand savings: 1.5 kw x $14.62 /kw-mo x 12 mo/yr = $263 /yr Usage savings: 1.5 kw x 5,000 hr/yr x $0.02 /kwh = $150 /yr Total savings: $263 /yr + $150 /yr = $413 /yr Implementation cost: none Simple payback: immediate Reduce Unloaded Run Time Rotary screw, centrifugal and some reciprocating compressors run continuously, but only add air to the compressed air system when the pressure of the system is between the activation pressures (typically 100 psig to 110 psig). When a compressor is running, but not adding compressed air to the system, it is said to be unloaded. Unfortunately, rotary screw compressors typically draw between 50% and 70% of full-load power even when running unloaded. Thus, there is a huge energy penalty for running unloaded. The fraction of time a compressor runs unloaded is determined by the relationship between the capacity of the compressor and the demand for compressed air. If the compressor is under or properly sized, it will run loaded most of the time. If a compressor is oversized for the load, it will quickly raise the pressure to the upper bound of the activation pressure and then run unloaded for an extended period of time. There are two primary strategies for minimizing the time that compressors run unloaded. The first is simply to purchase or operate a smaller compressor. In our experience, this is frequently cost effective whenever a compressor is loaded less than half the time. Example: Calculate savings and simple payback for replacing 50-hp screw compressor with 25-hp reciprocating compressor. Input Data: Avoided cost of demand = $14.62 /kw-mo Avoided cost of energy = $0.02 /kwh 50-hp screw compressor generates 4 scfm/hp and runs 2,250 hr/yr Loaded 10 sec and unloaded 35 sec. Loaded = 71 Amps PF = 0.84 kw/kva Voltage = 480 Volts Unloaded = 45 Amps PF = 0.78 kw/kva Voltage = 480 Volts Calculations: Compressor loaded 10 sec / 45 sec = 25% of the time, thus compressor is oversized. Loaded power: 71 Amps x 480 Volts x x 0.84 kw/kva = 49.6 kw Unloaded power: 45 Amps x 480 Volts x x 0.78 kw/kva = 29.2 kw Average power: (25% x 49.6 kw) + (75% x 29.2 kw) = 34.3 kw Annual elec: 34.3 kw x 2,250 hr/yr = 77,175 kwh/yr Energy Efficient Compressed Air Systems 20

21 Percent full-load power when unloaded: 29.2 kw / 49.6 kw = 59% Power output at full load: 49.6 kw x 90% eff /.75 kw/hp = 59.5 hp Service Factor: 59.5 hp / 50 hp = 1.19 Average compressed air output: 59.5 hp x 4 scfm/hp x 25% = 59.5 scfm Percent time loaded for 25-hp recip to supply same output: 59.5 scfm / (25 hp x 4 scfm/hp) = 60% 25-hp recip power: 25 hp x.75 kw/hp / 88.5% = 21.2 kw 25-hp recip elec: 21.2 kw x 60% x 2,250 hr/yr = 28,620 kwh/yr Demand savings: (34.3 kw 21.2 kw) x $14.62 / kw-mo x 12 mo/yr = $2,298 /yr Elec savings: (77,175 kwh/yr 28,620 kwh/yr) x $0.02 /kwh = $971 /yr Total savings: $2,298 /yr + $971 /yr = $3,269 /yr Cost of 25-hp air cooled recip: $7,000 Simple payback = $7,000 / $3,269 /yr x 12 mo/yr = 26 months The second strategy for reducing the time that compressors run unloaded is to stage multiple compressors so that unneeded compressors are turned off when not needed, rather than running unloaded. To stage multiple compressors, set the lower activation pressure of the baseload compressor a few psi higher than the lower activation pressure of the lag compressor. Additional lag compressors should activate at increasingly lower pressures. For example, the baseload compressor may be set at 105 psig, the first lag compressor at 103 psig and the second lag compressor at 101 psig. If the compressors are staged in this manner, the lag compressors never load unless the baseload compressor cannot meet the plant s demand for air. This alone, will not result in energy savings since the lag compressors will continue to run unloaded while drawing a significant fraction of full-load power. However, most compressors have a sleep or automatic mode in which the compressor will turn off if it runs unloaded for 5 or 10 minutes. Staging activation pressures and setting the compressors to run in sleep mode can dramatically reduce energy use while delivering the same system performance. This can be done manually or using dedicated compressor control equipment, which can also be programmed to rotate baseload duty. Example: Calculate savings and simple payback for running 30-hp reciprocating as base compressor instead of 50-hp screw compressor. Input Data: Avoided cost of demand = $14.62 /kw-mo Avoided cost of energy = $0.02 /kwh Compressors generate 4 scfm/hp and run 6,000 hr/yr Energy Efficient Compressed Air Systems 21

22 Current: primary comp is 50-hp screw with 30-hp reciprocating backup. 50-hp cycle time: 5 minutes loaded and 10 minutes unloaded Fraction time loaded: 5 min / 15 min = 33% Recommend: baseload 30-hp and run 50-hp in automatic mode as lag for peaks Loaded power = 61 Amps x 480 V x 3 x 84% PF = 42.6 kw Unloaded power = 44 Amps x 480 V x 3 x 78% PF = 28.5 kw Average power: (33.3% x 42.6 kw) + (66.6% x 28.5 kw) = 33.2 kw Annual energy: 33.2 kw x 6,000 hr/yr = 199,200 kwh/yr Power output at full load: 42.6 kw x 90% eff / 0.75 kw/hp = 51.1 hp Service Factor: 51.1 hp / 50 hp = 1.02 Average compressed air output: 51.1 hp x 4 scfm/hp x 33% = 67.5 scfm Percent time loaded for 30-hp recip to supply same output: 67.5 scfm / (30 hp x 4 scfm/hp) = 56% 30-hp recip power: 30 hp x.75 kw/hp / 89% eff = 25.3 kw 30-hp recip elec: 25.3 kw x 56% x 6,000 hr/yr = 85,008 kwh/yr Demand savings: (33.2 kw 25.3 kw) x $14.62 / kw-mo x 12 mo/yr = $1,386 /yr Elec savings: (199,200 kwh/yr 85,008 kwh/yr) x $0.02 /kwh = $2,284 /yr Total savings if 50-hp lag never loads: $1,386 /yr + $2,284 /yr = $3,670 /yr Total savings if 50-hp lag loads and increases demand: $2,284 /yr Implementation cost: none Simple payback = immediate Use Cooling Air For Space Heating Adiabatic compression of air to 100 psig results in outlet air temperatures of 350 F to 500 F. When the air is cooled to room temperature, about 80% of the work added to the air is removed as waste heat. In air-cooled compressors, the temperature of the exiting cooling air is typically between 80 F and 120 F and can be used for space heating or other low-temperature heating applications. To use this heat for space heating, we recommend equipping air-cooled compressors with ducts and dampers to direct warm air from compressor into the plant during winter and out of the plant during summer. This damper system would also keep the compressor room cool, thereby increasing the lifetime and efficiency of the compressor. The net amount of heat added to a plant from an air compressor that is currently exhausting the cooling air depends on the way the air compressor is ventilated. For example, consider the two scenarios below where warm air from the compressor is being exhausted from the plant. The first scenario is shown below. Figure 1A is the current ventilation in which outside air is brought to the compressor then exhausted to the outside during winter. Figures 1B and 1C show Energy Efficient Compressed Air Systems 22

23 two possible ways of changing the ventilation system to use heat from the compressor to reduce the space cooling load. In Figure 1B, outside air is still used for cooling, and then directed into the plant. Figure 1C shows an alternate system with no outside air. O O P Qc Qc Qc Figure 1A, 1B and 1C. 1A is the current ventilation, 1B is proposed ventilation using outside air, and 1C is proposed ventilation with no outside air. If the compressor cooling air is currently coming from the outside and is exhausted to the outside as in Case 1A, then the net heat from the air compressor to the plant is zero. If the proposed ventilation system is to continue to draw cooling air from outside and then direct the warm air into the plant, as in 1B, then the net heat into the plant, Qnet, is Qnet = Qc [V x pcp x (Tp To)] where pcp is the product of air density and specific heat (0.018 Btu/ft3-F), V is the volume flow rate of cooling air through the compressor, Qc is the heat from the compressor, Tp is the temperature of air in the plant ad To is the outside air temperature. The second term in this expression, V x pcp x (Tp To), is a penalty for bringing more cold outside air into the plant. Depending on the outside and plant air temperatures, this penalty could exceed Qc, in which case the ventilation system would actually be increasing space heating requirements. The preferred system is shown in 1C. In this case, no additional outside air is brought into the plant and the Qnet heat gain from the compressor is simply Qc. Another scenario where warm air from the compressor is being exhausted from the plant is shown below. In Figure 2A, cooling air is supplied from inside the plant then exhausted to the outdoors. The recommended system is shown in Figure 2B, where plant air is recirculated through the compressor. Energy Efficient Compressed Air Systems 23

24 O Qc P Qc Figure 2A and 2B. 2A is the current ventilation system, and 2B is the proposed ventilation system that recirculates plant air through the compressor. In Figure 2A, the compressor is actually adding to the space heating load by increasing infiltration into the plant. The net space heating energy loss is: Qloss = V x pcp x (Tp To) If the ventilation system were changed to B, then the net heating energy gain would be the sum of the heat added by the compressor, Qc, and the elimination of the previous loss. Qnet = Qc + [V x pcp x (Tp To)] Example: Calculate savings and simple payback for using heat from air compressor to displace space heating. Input Data: 50 hp compressor running 5,000 hr/yr at 480 V Measure: loaded (53 A) 60% of time and unloaded (40 A) 40 % of time Initial ventilation as in 1A and proposed as in 1C. Assume can capture 70% of input energy for space heat for 2,500 hr/yr Natural gas costs $7 /mmbtu and gas furnace is 80% efficient Calculations: Loaded power: 53 A x 480 V x 3 x 84% PF = 37 kw Unloaded power: 40 A x 480 V x 3 x 78% PF = 26 kw Average power: (60% x 37 kw) + (40% x 26 kw) = 33 kw Space heat: 33 kw x 70% x 2,500 hr/yr x 3,413 Btu/kWh = 197 mmbtu/yr Gas cost savings: 197 mmbtu/yr / 80% x $7 /mmbtu = $1,724 /yr Energy Efficient Compressed Air Systems 24

25 Implementation cost for ducts and dampers: $1,000 Simple payback: $1,000 / $1,724 /yr x 12 mo/yr = 7 months References 1) Compressed Air Systems, U.S. Dept. of Energy, DOE/CS/40520-T2, ) Cengal, Y. and Boles, M., Thermodynamics, 1998, WGB-McGraw-Hill. 3) Condensed Air Power Data, Ingersoll-Rand, Energy Efficient Compressed Air Systems 25

Compressed Air Systems

Compressed Air Systems Compressed Air Systems February 27, 2018 - Reno, Nevada Instructor: Scott Wetteland Jared Carpenter, DNV GL July, 2016 1 Free Technology Smart Networked Thermostats Free equipment and installation Centralized

More information

Compressed Air Systems. Scott Wetteland, CEM, DNV GL July 2018

Compressed Air Systems. Scott Wetteland, CEM, DNV GL July 2018 Compressed Air Systems Scott Wetteland, CEM, DNV GL July 2018 1 Free technology Smart networked thermostats Free equipment and installation Centralized management of heating and cooling equipment Monitor

More information

Energy Impacts of Compressed Air

Energy Impacts of Compressed Air The Overlooked: Water 101/Plug Loads/Process Energy Impacts of Compressed Air Rusty Friend AMEC Foster Wheeler August 14, 2017 Tampa Convention Center Tampa, Florida Energy Impacts of Compressed Air Energy

More information

Compressed Air. Energy Efficiency Reference Guide

Compressed Air. Energy Efficiency Reference Guide Compressed Air Energy Efficiency Reference Guide DISCLAIMER: Neither CEA Technologies Inc. (CEATI), the authors, nor any of the organizations providing funding support for this work (including any persons

More information

A Primer for Air Dryer Selection

A Primer for Air Dryer Selection HYDRAULICS EXTRACTED FROM NOVEMBER 1980 & PNEUMATICS UPDATED JUNE 2015 A Primer for Air Dryer Selection Energy and maintenance costs are key factors in choosing these important components By Charles Henderson,

More information

OPERATING MANUAL MODEL AIR 1500TM AIR DRYER

OPERATING MANUAL MODEL AIR 1500TM AIR DRYER OPERATING MANUAL MODEL AIR 500TM AIR DRYER Puregas, LLC 226-A Commerce St. Tel: 800-52-535 Broomfield, Colorado Fax: 303-657-2205 P/N P0255 REV A, 02/9/4 TABLE OF CONTENTS.0 GENERAL... 3 2.0 SPECIFICATIONS...

More information

Ingersoll Rand. Rotary Screw Air Compressors 5-15 hp (4-11 kw)

Ingersoll Rand. Rotary Screw Air Compressors 5-15 hp (4-11 kw) Ingersoll Rand Rotary Screw Air Compressors 5-15 hp (4-11 kw) A New Standard of Performance Ingersoll Rand Welcome to Ingersoll Rand s rotary air solutions, a new standard of performance. Achieve highest

More information

Externally Heated Desiccant Air Dryer RP Series

Externally Heated Desiccant Air Dryer RP Series Externally Heated Desiccant Air Dryer RP Series Externally Heated Desiccant Compressed Air Dryers Reduce Purge Air Energy Costs For decades, compressed air users have relied on Deltechto deliver technology

More information

ORTEC HIGH CAPACITY REFRIGERATED AIR/GAS DRYERS

ORTEC HIGH CAPACITY REFRIGERATED AIR/GAS DRYERS ORTEC Compressed Air, Gas & Fluid Technologies HIGH CAPACITY REFRIGERATED AIR/GAS DRYERS Energy Lean Planet Green Cycling and Non-Cycling Design Energy Efficient s Fluctuating and Intermittent Loads Capacity,0

More information

Laboratory Enclosed Rotary Screw Air Compressor System with Air Treatment Center Package

Laboratory Enclosed Rotary Screw Air Compressor System with Air Treatment Center Package System with Air Treatment Center Package Specification General The Powerex Laboratory Screw Compressor Enclosure package shall include multiple oil-free rotary screw air compressors modules and associated

More information

Fred C. Gilbert Co. 106 Norris Road Bakersfield, Ca fax

Fred C. Gilbert Co. 106 Norris Road Bakersfield, Ca fax A R R O W P N E U M A T I C S Fred C. Gilbert Co. 106 Norris Road Bakersfield, Ca. 93308 661-399-9569 fax 661-393-9654 F I L T E R S R E G U L A T O R S L U B R I C A T O R S A C C E S S O R I E S H E

More information

Ingersoll Rand 5-15 hp. Rotary Screw Compressors

Ingersoll Rand 5-15 hp. Rotary Screw Compressors Ingersoll Rand 5-15 hp Rotary Screw Compressors A New Standard of Performance Ingersoll Rand Achieve Highest Productivity and Lowest Total Cost-of-Ownership. Boost Your Profitability Boosting your company

More information

SECTION AIR COMPRESSORS AND ACCESSORIES

SECTION AIR COMPRESSORS AND ACCESSORIES PART 1 GENERAL 1.01 WORK INCLUDED SECTION 11370 AIR COMPRESSORS AND ACCESSORIES A. This specification includes air compressors with air dryers. B. Furnish, install, start-up, and test air compressors and

More information

Hybrid Refrigerated/Desiccant Compressed Air Dryers

Hybrid Refrigerated/Desiccant Compressed Air Dryers Hybrid Refrigerated/Desiccant Compressed Air Dryers This paper first appeared at the 2013 World Energy Engineering Congress Wayne Perry, Senior Technical Director David Phillips, Air Treatment Product

More information

BASE LEVEL AUDIT REQUIREMENTS REFRIGERATION SYSTEMS 1. SITE DATA COLLECTION. Business Name. Site physical address (Street, Suburb, City)

BASE LEVEL AUDIT REQUIREMENTS REFRIGERATION SYSTEMS 1. SITE DATA COLLECTION. Business Name. Site physical address (Street, Suburb, City) BASE LEVEL AUDIT REQUIREMENTS REFRIGERATION SYSTEMS 1. SITE DATA COLLECTION Business Name Site physical address (Street, Suburb, City) Nature of site / business operation Electricity Supplier Power factor

More information

Thomas J Kelly. Fundamentals of Refrigeration. Sr. Engineering Instructor Carrier Corporation. August 20, Page number: 1.

Thomas J Kelly. Fundamentals of Refrigeration. Sr. Engineering Instructor Carrier Corporation. August 20, Page number: 1. Thomas J Kelly Sr. Engineering Instructor Carrier Corporation August 20, 2003 1 SESSION OBJECTIVES At the conclusion of this session you should be able to: 1. Describe the basics principles of refrigeration

More information

PRESSURE-ENTHALPY CHARTS AND THEIR USE By: Dr. Ralph C. Downing E.I. du Pont de Nemours & Co., Inc. Freon Products Division

PRESSURE-ENTHALPY CHARTS AND THEIR USE By: Dr. Ralph C. Downing E.I. du Pont de Nemours & Co., Inc. Freon Products Division INTRODUCTION PRESSURE-ENTHALPY CHARTS AND THEIR USE The refrigerant in a refrigeration system, regardless of type, is present in two different states. It is present as liquid and as vapor (or gas). During

More information

Air Compressor Efficiency Opportunities. Industrial Energy Efficiency Workshop December 11, 2007

Air Compressor Efficiency Opportunities. Industrial Energy Efficiency Workshop December 11, 2007 Air Compressor Efficiency Opportunities Industrial Energy Efficiency Workshop December 11, 2007 1 Types of Air Compressors Rotary Screw (most common) Oil lubricant (or not) Most economical Reciprocating

More information

SECTION AIR COMPRESSORS AND ACCESSORIES

SECTION AIR COMPRESSORS AND ACCESSORIES PART 1 GENERAL 1.01 WORK INCLUDED SECTION 11370 AIR COMPRESSORS AND ACCESSORIES A. This specification includes air compressors with air dryers. B. Furnish, install, start-up, and test air compressors and

More information

Dual Tower Heat Reactivated Desiccant Air Dryer

Dual Tower Heat Reactivated Desiccant Air Dryer Dual Tower Heat Reactivated Desiccant Air Dryer idhpe Dryer idbpe Dryer Eliminate Water from Your Compressed Air System Moisture in compressed air is damaging. Without proper treatment, this vital energy

More information

BASIC HEAT PUMP THEORY By: Lloyd A. Mullen By: Lloyd G. Williams Service Department, York Division, Borg-Warner Corporation

BASIC HEAT PUMP THEORY By: Lloyd A. Mullen By: Lloyd G. Williams Service Department, York Division, Borg-Warner Corporation INTRODUCTION In recent years air conditioning industry technology has advanced rapidly. An important byproduct of this growth has been development of the heat pump. Altogether too much mystery has surrounded

More information

Water Pumps. turbo-hydraulic pumps, positive-displacement pumps.

Water Pumps. turbo-hydraulic pumps, positive-displacement pumps. WATER PUMPS Water Pumps Water pumps are devices designed to convert mechanical energy to hydraulic energy. All forms of water pumps may be classified into two basic categories: turbo-hydraulic pumps, positive-displacement

More information

LABORATORY AIR COMPRESSORS AND VACUUM PUMPING SYSTEMS

LABORATORY AIR COMPRESSORS AND VACUUM PUMPING SYSTEMS SECTION 22 20 00 LABORATORY AIR COMPRESSORS AND VACUUM PUMPING SYSTEMS PART 1 - GENERAL 1.1 RELATED DOCUMENTS: A. The Conditions of the Contract and applicable requirements of Division 1, "General Requirements",

More information

Distributed by: 2008 Ingersoll-Rand Company CCN IRITS

Distributed by: 2008 Ingersoll-Rand Company CCN IRITS Ingersoll Rand Industrial Technologies provides products, services and solutions that enhance our customers energy efficiency, productivity and operations. Our diverse and innovative products range from

More information

Desiccant Air Dryers. Heatless, Heated and Heated Blower

Desiccant Air Dryers. Heatless, Heated and Heated Blower Desiccant Air Dryers Heatless, Heated and Heated Blower Desiccant Dryers... When we designed the Ingersoll Rand heatless, heated and heated blower desiccant dryers we set our sights on creating the most

More information

SECTION COMPRESSED AIR SYSTEM. A. Pipe and pipe fittings, including valves, unions and couplings.

SECTION COMPRESSED AIR SYSTEM. A. Pipe and pipe fittings, including valves, unions and couplings. SECTION 15481 COMPRESSED AIR SYSTEM PART 1 - GENERAL 1.1 SECTION INCLUDES A. Pipe and pipe fittings, including valves, unions and couplings. B. Air compressor. C. After cooler. D. Refrigerated air dryer.

More information

Desiccant Air Dryers. ABP Series. Blower Purge Desiccant Air Dryer 70-8,000 scfm

Desiccant Air Dryers. ABP Series. Blower Purge Desiccant Air Dryer 70-8,000 scfm Desiccant Air Dryers ABP Series Blower Purge Desiccant Air Dryer 70-8,000 scfm Since 1994, Aircel has been delivering quality, industry leading compressed air dryers and accessories for production lines

More information

OPTIMISE VACUUM TO IMPROVE PLANT PERFORMNCE

OPTIMISE VACUUM TO IMPROVE PLANT PERFORMNCE OPTIMISE VACUUM TO IMPROVE PLANT PERFORMNCE Vacuum Pumps and systems are widely used in the chemical process industry for various applications such as drying, solvent recovery, distillation, short path

More information

College of Technological Studies Department of Power & Refrigeration Technology. Course Contents

College of Technological Studies Department of Power & Refrigeration Technology. Course Contents College of Technological Studies Department of Power & Refrigeration Technology Course Contents Course Designation: Air Conditioning Control systems Course No. : 272 0463 Credit Hrs.: 3 Lecture Hrs.: 2

More information

OIL-INJECTED ROTARY SCREW COMPRESSORS. GA 7-37 VSD+ (7-37 kw/10-50 hp)

OIL-INJECTED ROTARY SCREW COMPRESSORS. GA 7-37 VSD+ (7-37 kw/10-50 hp) OIL-INJECTED ROTARY SCREW COMPRESSORS GA - VSD+ (- kw/- hp) Small compressor, big ideas Atlas Copco has turned the compressed air industry on its head by redesigning the conventional layout of a typical

More information

Heat of Compression Desiccant Dryers: Clearing up the Confusion

Heat of Compression Desiccant Dryers: Clearing up the Confusion Heat of Compression Desiccant Dryers: Clearing up the Confusion Sponsored by Hank van Ormer, Air Power USA Keynote Speaker For your free subscription, please visit www.airbestpractices.com/magazine/subscription.

More information

JCseries EVAPORATIVE CONDENSER. engineering data

JCseries EVAPORATIVE CONDENSER. engineering data JCseries EVAPORATIVE CONDENSER engineering data Recold JC Series Evaporative Condenser Contents 2 Construction... 3 Schematic... 4 Engineering Data... 5 Selection Procedure... 6-9 Multi-Circuited Selection

More information

Refrigeration Systems

Refrigeration Systems Refrigeration Systems COP COP = coefficient of performance Air conditioners, refrigerators: COP=QL/Wnet Heat pumps: COP=QH/Wnet Energy balance: Wnet+QL=QH From Cengel, Thermodynamics: An Engineering Approach,

More information

HR Heated HB Blower. Smart Solutions for Drying Compressed Air. Dual Tower Heat Reactivated Desiccant Air Dryer

HR Heated HB Blower. Smart Solutions for Drying Compressed Air. Dual Tower Heat Reactivated Desiccant Air Dryer Smart Solutions for Drying Compressed Air Dual Tower Heat Reactivated Desiccant Air Dryer HR Heated HB Blower 800.943.794 www.engineeredairproducts.com Engineered Air Products Moisture in compressed air

More information

Atlas Copco. Oil-injected Rotary Screw Compressors Variable Speed Drive + (7-15 kw/10-20 hp)

Atlas Copco. Oil-injected Rotary Screw Compressors Variable Speed Drive + (7-15 kw/10-20 hp) Atlas Copco Oil-injected Rotary Screw Compressors Variable Speed Drive + (7-15 kw/10-20 hp) Extreme savings No idling time Silent operation Small footprint The new revolutionary compressor from Atlas Copco

More information

(2) 325 tpd York Chlorine Liquefier Systems

(2) 325 tpd York Chlorine Liquefier Systems (2) 325 tpd York Chlorine Liquefier Systems The liquefier is a split bundle and serves as both the primary liquefier and the secondary liquefier. The total for each York system is 325 tons liquid Cl2,

More information

BRINE CIRCULATED ICE THERMAL STORAGE SYSTEM DESIGN - CASE ILLUSTRATION - Partial Ice Storage for Air Conditioning Application

BRINE CIRCULATED ICE THERMAL STORAGE SYSTEM DESIGN - CASE ILLUSTRATION - Partial Ice Storage for Air Conditioning Application 1 BRINE CIRCULATED ICE THERMAL STORAGE SYSTEM DESIGN - CASE ILLUSTRATION - Partial Ice Storage for Air Conditioning Application By: T. S. Wan Date: Oct. 7, 1995 Copy Right 1995 by T. S. Wan All rights

More information

HEATLESS DESICCANT AIR DRYER INSTRUCTION & MAINTENANCE MANUAL

HEATLESS DESICCANT AIR DRYER INSTRUCTION & MAINTENANCE MANUAL HEATLESS DESICCANT AIR DRYER INSTRUCTION & MAINTENANCE MANUAL H-Series & 203 THRU 223 SERIES ARROW PNEUMATICS, INC. REGENERATIVE DRYER DIVISION 2111 WEST 21ST STREET BROADVIEW, IL 60155 708-343-9595 708-343-1907

More information

Chapter 10 VAPOR AND COMBINED POWER CYCLES

Chapter 10 VAPOR AND COMBINED POWER CYCLES Thermodynamics: An Engineering Approach Seventh Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 10 VAPOR AND COMBINED POWER CYCLES Copyright The McGraw-Hill Companies, Inc. Permission

More information

Chapter-8 Capacity Control of Refrigeration Systems

Chapter-8 Capacity Control of Refrigeration Systems Chapter-8 Capacity Control of Refrigeration Systems Chapter-8 Capacity Control of Refrigeration Systems ၈.၁ Compressor Control Chiller Control and Chilled Water Plant Control Refrigeration system control

More information

ME 410 MECHANICAL ENGINEERING SYSTEMS LABORATORY MASS & ENERGY BALANCES IN PSYCHROMETRIC PROCESSES EXPERIMENT 3

ME 410 MECHANICAL ENGINEERING SYSTEMS LABORATORY MASS & ENERGY BALANCES IN PSYCHROMETRIC PROCESSES EXPERIMENT 3 ME 410 MECHANICAL ENGINEERING SYSTEMS LABORATORY MASS & ENERGY BALANCES IN PSYCHROMETRIC PROCESSES EXPERIMENT 3 1. OBJECTIVE The objective of this experiment is to observe four basic psychrometric processes

More information

Vacuum Booster for Distillation Process

Vacuum Booster for Distillation Process Vacuum Booster for 1.00 Introduction: Distillation at reduced pressures is a widely used process in the chemical industry, specially used in extraction / purification of essential oils, deodorisation of

More information

CENTRIFUGAL PUMPS. STATE the purposes of the following centrifugal pump components:

CENTRIFUGAL PUMPS. STATE the purposes of the following centrifugal pump components: Pumps DOE-HDBK-1018/1-93 CENTRIFUGAL PUMPS CENTRIFUGAL PUMPS Centrifugal pumps are the most common type of pumps found in DOE facilities. Centrifugal pumps enjoy widespread application partly due to their

More information

REFRIGERATED AIR DRYERS

REFRIGERATED AIR DRYERS QUINcy qpcd series CYCLING QUINcy qpnc series NON-CYCLING REFRIGERATED AIR DRYERS QPCD CYCLING DRYER, QPNC NON-CYCLING Cycling and non-cycling designs for maximum system efficiency Balanced refrigeration

More information

The Science of Compressed Air

The Science of Compressed Air QSI 245i-0i The Science of Compressed Air Quincy QSI 245i-0i Rotary Screw AIR COMPRESSOR 50-200 Hp QUINCY QSI SUPERIOR PERFORMANCE The Quincy QSI direct-drive rotary screw compressor is more than just

More information

S.A. Klein and G.F. Nellis Cambridge University Press, 2011

S.A. Klein and G.F. Nellis Cambridge University Press, 2011 12.A-1 A mixture of helium and water vapor is flowing through a pipe at T= 90 C and P = 150 kpa. The mole fraction of helium is y He = 0.80. a.) What is the relative humidity of the mixture? b.) What is

More information

AEP Ohio Compressed Air Expo

AEP Ohio Compressed Air Expo AEP Ohio Compressed Air Expo September 19, 2012 Hank van Ormer John Skelton Air Power USA airpowerusainc.com 1 Topic: Hands on Examples to Reduce Air System Costs (Demo Exhibit) Company: Air Power USA

More information

OIL-INJECTED ROTARY SCREW COMPRESSORS. GA 7-75 VSD+ (7-75 kw/ hp)

OIL-INJECTED ROTARY SCREW COMPRESSORS. GA 7-75 VSD+ (7-75 kw/ hp) OIL-INJECTED ROTARY SCREW COMPRESSORS GA - VSD (- kw/-0 hp) Innovative Atlas Copco has turned the compressed air industry on its head by redesigning the conventional layout of a typical air compressor.

More information

AIR COMPRESSOR Hp

AIR COMPRESSOR Hp Quincy QSI 245i-500i Rotary Screw AIR COMPRESSOR 50- Hp QUINCY QSI SUPERIOR PERFORMANCE The Quincy QSI direct-drive rotary screw compressor is more than just your typical box of air - it s the leader in

More information

QUINCY QPNC SERIES NON-CYCLING QUINCY QRHT SERIES HIGH TEMP

QUINCY QPNC SERIES NON-CYCLING QUINCY QRHT SERIES HIGH TEMP QUINCY QPNC SERIES NON-CYCLING QUINCY QRHT SERIES HIGH TEMP REFRIGERATED AIR DRYERS NON-CYCLING DESIGNS FOR MAXIMUM SYSTEM EFFICIENCY NON-CYCLING DRYERS 10 TO 3000 CFM Quincy refrigerated air dryers are

More information

HEATLESS REGENERATIVE DRYERS

HEATLESS REGENERATIVE DRYERS HEATLESS REGENERATIVE DRYERS PHL SERIES Pioneer Air Systems Inc. 210, Flatfork Road, Wartburg, TN - 37887 Tel. : (423) 346-6693 Fax : (423) 346-3865, (423) 346-7522 Email : sales@pioneerair.com Internet

More information

Guidelines for Optimizing Drying and Blow-Off Operations

Guidelines for Optimizing Drying and Blow-Off Operations Experts in Technology Nozzles Control Analysis Fabrication Guidelines for Optimizing Drying and Blow-Off Operations Changing your approach can slash operating costs and increase efficiency Jon Barber,

More information

Moisture can be very disruptive to a dust. Preventing moisture problems in your dust collector

Moisture can be very disruptive to a dust. Preventing moisture problems in your dust collector As appeared in March 2017 PBE Copyright CSC Publishing www.powderbulk.com Preventing moisture problems in your dust collector Brian Mathews Scientific Dust Collectors This article discusses how moisture

More information

Method to test HVAC equipment at part load conditions

Method to test HVAC equipment at part load conditions IPLV Method to test HVAC equipment at part load conditions For water cooled chillers: 100% load ( % hrs) + 75% ( Hrs ) + 50% ( Hrs ) + 25% ( Hrs ) = IPLV value Manufacturer can favor this number by tweaking

More information

industry revolves around VMMD Series Membrane Air Dryer

industry revolves around VMMD Series Membrane Air Dryer industry revolves around VMMD Series Membrane Air Dryer VMMD Series Membrane Drying VMMD Series membrane air dryer offers a pointofuse alternative for low dew point applications ( F) by using membrane

More information

Quality Components as a basis for Quality Equipment

Quality Components as a basis for Quality Equipment Above & Beyond Regenerative Type Compressed Air Dryers SPS - Heatless Regenerative Dryers SPEH - External Heated Regenerative Dryers SPBS - Heated Blower Purge Regenerative Dryers Quality Components as

More information

DRY AIR SYSTEMS, INC Metro Boulevard Maryland Heights, Missouri (314) fax (314)

DRY AIR SYSTEMS, INC Metro Boulevard Maryland Heights, Missouri (314) fax (314) DRY AIR SYSTEMS, INC. 2655 Metro Boulevard Maryland Heights, Missouri 63043 (314) 344-1114 fax (314) 344-0677 HD SERIES DRIERS TABLE OF CONTENTS WHY AN AIR DRYER 3 WHAT IS A DESICCANT AIR DRYER 3 Desiccant

More information

Pressure Swing Desiccant Dryers

Pressure Swing Desiccant Dryers Pressure Swing Desiccant Dryers Featuring Legendary Heat-Les TM Technology The Original Heat Les Drying Technology The DHA / CDA series dryer has been designed specifically to bring you reliable performance

More information

TECHNICAL BULLETIN SELECTING A COMPRESSED AIR DRYER INTRODUCTION

TECHNICAL BULLETIN SELECTING A COMPRESSED AIR DRYER INTRODUCTION TECHNICAL BULLETIN SELECTING A COMPRESSED AIR DRYER INTRODUCTION Having an understanding of why water forms in your compressed air piping system will help you in evaluating the type of air drying system

More information

HVAC Water chiller selection and optimisation of operation

HVAC Water chiller selection and optimisation of operation HVAC Water chiller selection and optimisation of operation Introduction Water-chiller is a broad term describing an overall package that includes an electrical control panel, refrigeration plant, water

More information

QUINCY QGS SERIES hp

QUINCY QGS SERIES hp QUINCY QGS SERIES Rotary screw air compressors 5-100 hp QGS 5-30 HP Belt Drive rotary screw technology for every application Quincy understands the critical nature of your compressed air system to maintain

More information

CMMD Series Membrane Air Dryer

CMMD Series Membrane Air Dryer CMMD Series Membrane Air Dryer NEW Engineered to Save CMMD Series Compressed Air Dry Air Membrane Drying CompAir s CMMD Series membrane air dryer offers a pointofuse alternative for low dew point applications

More information

MECHANICAL ENGINEERING ME.2017 FUNDAMENTAL OF REFRIGERATION AND AIR CONDITIONING. Sample Questions and Answers

MECHANICAL ENGINEERING ME.2017 FUNDAMENTAL OF REFRIGERATION AND AIR CONDITIONING. Sample Questions and Answers MECHANICAL ENGINEERING ME.2017 FUNDAMENTAL OF REFRIGERATION AND AIR CONDITIONING Sample Questions and Answers CHAPTER 5 EVAPORATORS 1. What is Evaporator? Classify the various types of evaporator. Evaporator

More information

Global Series Screw Air Compressors Life source of industries HP

Global Series Screw Air Compressors Life source of industries HP Global Series Screw Air Compressors Life source of industries - 200 HP ELGi, established in 1960, designs and manufactures a wide range of compressors. The company has gained its reputation for design

More information

Ingersoll Rand. Heatless and Heated Blower Desiccant Air Dryers ,900 m 3 /hr

Ingersoll Rand. Heatless and Heated Blower Desiccant Air Dryers ,900 m 3 /hr Ingersoll Rand Heatless and Heated Blower Desiccant Air Dryers 160-14,900 m 3 /hr Innovative Design is Now Within Reach Ingersoll Rand Ingersoll Rand heatless and heated blower desiccant dryers are engineered

More information

Compressed Air Systems: Load Reduction Approaches and Innovations. Abstract

Compressed Air Systems: Load Reduction Approaches and Innovations. Abstract Compressed Air Systems: Load Reduction Approaches and Innovations Mark D Antonio, Energy & Resource Solutions Inc. Gary Epstein, Energy & Resource Solutions Inc. Abstract The objective of this paper is

More information

DESICCANT AIR DRYERS. BD + CD + CD series

DESICCANT AIR DRYERS. BD + CD + CD series DESICCANT AIR DRYERS BD + CD + CD series AIR TREATMENT, A CRUCIAL INVESTMENT WHY YOU NEED QUALITY AIR Compressed air contains oil, solid particles and water vapors. Together, they form an abrasive, often

More information

WHY SULLAIR? For more information on the IHI-Sullair joint venture, please visit 2,000th IHI-Sullair centrifugal

WHY SULLAIR? For more information on the IHI-Sullair joint venture, please visit   2,000th IHI-Sullair centrifugal WHY SULLAIR? Since 2004 Sullair has been part of IHI-Sullair, a joint venture focused on developing and producing high performance centrifugal compressors. Those compressor models, with more than a decade

More information

Single Tower Heat Reactivated Desiccant Air Dryer

Single Tower Heat Reactivated Desiccant Air Dryer Single Tower Heat Reactivated Desiccant Air Dryer iste Dryer Understanding Compressed Air Moisture in compressed air is damaging. Using untreated air results in water and contaminants in your air lines,

More information

WILKERSON MODELS DE3, DE4 AND DE5 COMPACT HEATLESS AIR DRYERS

WILKERSON MODELS DE3, DE4 AND DE5 COMPACT HEATLESS AIR DRYERS INSTRUCTION MANUAL FOR WILKERSON MODELS DE3, DE4 AND DE5 COMPACT HEATLESS AIR DRYERS DE3 - DE5 OPERATIONS GENERAL This instruction manual covers the installation, operation, maintenance and troubleshooting

More information

PNEUMATIC & HYDRAULIC SYSTEMS

PNEUMATIC & HYDRAULIC SYSTEMS PNEUMATIC & HYDRAULIC SYSTEMS CHAPTER THREE AIR GENERATION, TREATMENT & DISTREBUTION Dr. Ibrahim Naimi Air preparation For the continuing performance of control systems and working elements it is necessary

More information

DESICCANT AIR DRYERS. BD + CD + CD series

DESICCANT AIR DRYERS. BD + CD + CD series DESICCANT AIR DRYERS BD + CD + CD series AIR TREATMENT, A CRUCIAL INVESTMENT WHY YOU NEED QUALITY AIR Compressed air contains oil, solid particles and water vapors. Together, they form an abrasive, often

More information

Adsorption Air Dryers

Adsorption Air Dryers Adsorption Air Dryers ADS 1 to 215 Clean and dry air. Prevent the risks, enjoy the benefits. AVAILABILITY PARTNERSHIP SERVICEABILITY TECHNOLOGY YOU CAN TRUST RELIABILITY SIMPLICITY AVAILABILITY PARTNERSHIP

More information

3 rd Edition z2000, Power Supply Industries Price: $ Introduction to Rotary Screw Air Compressors and Compressed Air Management

3 rd Edition z2000, Power Supply Industries Price: $ Introduction to Rotary Screw Air Compressors and Compressed Air Management 3 rd Edition z2000, Power Supply Industries Price: $ 55.00 Introduction to Rotary Screw Air Compressors and Compressed Air Management Introduction to Rotary Screw Air Compressors Section 2, Page 23 Evaluating

More information

A Treatise on Liquid Subcooling

A Treatise on Liquid Subcooling A Treatise on Liquid Subcooling While the subject of this article is Liquid Refrigerant Subcooling, its affect on the operation of the thermostatic expansion valve (TEV), and ultimately on system performance

More information

Filters & Centrifugal Separators

Filters & Centrifugal Separators www.kaeser.com s & Centrifugal Separators Flow rates 0.8 to 8 m³/min Why use compressed air filters? On average, a compressor sucks in up to 90 million particles of dirt, hydrocarbons, viruses and bacteria

More information

Global Series Screw Air Compressors Life source of industries

Global Series Screw Air Compressors Life source of industries Global Series Screw Air Compressors Life source of industries 125-200 HP series Global Series Elgi, established in 1960, designs and manufactures a wide range of compressors. The company has gained its

More information

Condenser Water Pump Calculator Guide

Condenser Water Pump Calculator Guide Condenser Water Pump Calculator Guide Table of Contents 1.0 Introduction... 3 1.1 Units... 3 2.0 Disclaimer... 3 3.0 Overall Condenser Water System... 3 4.0 Condenser Water Pump Calculator - Inputs...

More information

CPF PRODUCT DESCRIPTION

CPF PRODUCT DESCRIPTION CPF 175 340 PRODUCT DESCRIPTION The CHICAGO PNEUMATIC CPF 175-340 compressor is a quiet, complete and ready-for-use unit for the production of compressed air in industrial applications. OVERVIEW The CHICAGO

More information

Laboratory Open Scroll Air Compressor System with Premium NFPA Controls

Laboratory Open Scroll Air Compressor System with Premium NFPA Controls Laboratory Open Scroll Air Compressor System with Premium NFPA Controls Specification General The Powerex Laboratory Open Scroll Air Compressor System is designed to provide clean, dry air for applications

More information

Introduction to Fans. The Basics of Fan Principles and Terminology

Introduction to Fans. The Basics of Fan Principles and Terminology Introduction to Fans The Basics of Fan Principles and Terminology Airflow Principles A fan is a rotating device that creates pressure differential that results in air movement Pressure rise in a fan Downstream

More information

SSB Blower Purge Desiccant Dryers SSE Heat Reactivated Desiccant Dryers 220 to 10,500 scfm

SSB Blower Purge Desiccant Dryers SSE Heat Reactivated Desiccant Dryers 220 to 10,500 scfm SSB Blower Purge Desiccant Dryers SSE Heat Reactivated Desiccant Dryers 220 to 10,500 scfm Dry air as low as -100 F pressure dew point Clean, dry compressed air solves the problems of moisture contamination

More information

MANUFACTURED with high-quality components and innovative techniques. DESIGNED for economical, trouble-free performance and long-life reliability

MANUFACTURED with high-quality components and innovative techniques. DESIGNED for economical, trouble-free performance and long-life reliability Section 10 Bulletin A-7 DESIGNED for economical, trouble-free performance and long-life reliability MANUFACTURED with high-quality components and innovative techniques SUPPORTED by a world-wide distribution

More information

WHITE PAPER. ANSI/AHRI Standard for Fan and Coil Evaporators - Benefits and Costs

WHITE PAPER. ANSI/AHRI Standard for Fan and Coil Evaporators - Benefits and Costs Abstract Fan and coil evaporators as used in the industrial refrigeration industry can be certified for performance per ANSI/AHRI Standard 420-2008, Performance Rating of Forced-Circulation Free-Delivery

More information

Rotary Screw Compressors UP5 Series kw

Rotary Screw Compressors UP5 Series kw Rotary Screw Compressors UP5 Series 11-37 kw Rotary Screw Compressors UP5 Series 11-37 kw Boost Your Profitability Boosting your company s profits was the main goal that Ingersoll-Rand had in mind when

More information

Why to decide on a Rotorcomp compact unit screw compressor

Why to decide on a Rotorcomp compact unit screw compressor Why to decide on a Rotorcomp compact unit screw compressor Advantages of screw compressors versus piston compressors Advantages of compact units versus air ends 12.11.2008 Screw Compressors vs. Piston

More information

745 Clark Ave. Bristol, CT Toll Free: Fax: General Air Dryer Installation Guidelines and Design Considerations

745 Clark Ave. Bristol, CT Toll Free: Fax: General Air Dryer Installation Guidelines and Design Considerations Page 1 of 4 Subject: Applicable To: General Air Dryer Installation Guidelines and Design Considerations All McIntire Air Dryer Systems 1.0 General This bulletin presents general central office installation

More information

venting method will work for all pressure conveying systems, analyzing your available equipment, your material s characteristics, and your conveying c

venting method will work for all pressure conveying systems, analyzing your available equipment, your material s characteristics, and your conveying c Six practical ways to handle rotary leakage Jonathan O. Thorn MAC Equipment Because of the way a rotary is designed, it s normal for a small amount of conveying to leak back through the as it s bulk solid

More information

HX Series. Compressed Air Dryers 10 to 2400 scfm. Setting a new standard in Quality and Reliability DRYMAX DRYMAX DRYMAX

HX Series. Compressed Air Dryers 10 to 2400 scfm. Setting a new standard in Quality and Reliability DRYMAX DRYMAX DRYMAX HX Series Compressed Air Dryers 10 to 2400 scfm Setting a new standard in Quality and Reliability ELIMINATE WATER FROM YOUR COMPRESSED AIR SYSTEM Untreated compressed air is the unseen killer in all compressed

More information

ORTEC INDUSTRIAL FLUID CHILLERS FC SERIES ( TONS) Compressed Air, Gas & Fluid Technologies. i e n d. l y. t a. R e. f r. i g e.

ORTEC INDUSTRIAL FLUID CHILLERS FC SERIES ( TONS) Compressed Air, Gas & Fluid Technologies. i e n d. l y. t a. R e. f r. i g e. ORTEC Compressed Air, Gas & Fluid Technologies t a l r o n m e n i l y E n v F r i e n d t r a n l y R e i g e f r INDUSTRIAL FLUID CHILLERS FC SERIES (0-00 TONS) Application Flexibility Nortec Industrial

More information

How to Cut Chiller Energy Costs by 30%

How to Cut Chiller Energy Costs by 30% How to Cut Chiller Energy Costs by 30% Pre-packaged retrofit cuts centrifugal compressor chiller energy costs by 30% while reducing required maintenance and extending operating life at Duke Realty Corporation

More information

Heat Reclaim. Benefits,Methods, & Troubleshooting By Dave Demma, Manager Supermarket Sales, Sporlan Division - Parker Hannifin Corporation

Heat Reclaim. Benefits,Methods, & Troubleshooting By Dave Demma, Manager Supermarket Sales, Sporlan Division - Parker Hannifin Corporation Form 30-217 / January 2007 Heat Reclaim Benefits,Methods, & Troubleshooting By Dave Demma, Manager Supermarket Sales, Sporlan Division - Parker Hannifin Corporation While the vapor-compression cycle has

More information

Emerging Technologies: VFDs for Condensers. Douglas T. Reindl Director, IRC University of Wisconsin-Madison. University of Wisconsin-Madison

Emerging Technologies: VFDs for Condensers. Douglas T. Reindl Director, IRC University of Wisconsin-Madison. University of Wisconsin-Madison Emerging Technologies: VFDs for Condensers Douglas T. Reindl Director, IRC University of Wisconsin-Madison University of Wisconsin-Madison 1 We ve looked at VFDs on Evaporators and compressors, what is

More information

Industrial Oxygen Generation Plant

Industrial Oxygen Generation Plant Industrial Oxygen Generation Plant Operation Process Description : (Ref: P-I Diagram) Oxygen is generated from Compressed air by a separation process which uses the principle of selective adsorption. The

More information

AXICO ANTI-STALL CONTROLLABLE PITCH-IN-MOTION AND ADJUSTABLE PITCH-AT-REST VANEAXIAL FANS

AXICO ANTI-STALL CONTROLLABLE PITCH-IN-MOTION AND ADJUSTABLE PITCH-AT-REST VANEAXIAL FANS Twin City Fan INDUSTRIAL PROCESS AND COMMERCIAL VENTILATION SYSTEMS AXICO ANTI-STALL CONTROLLABLE PITCH-IN-MOTION AND ADJUSTABLE PITCH-AT-REST VANEAXIAL FANS FPAC FPMC FPDA CATALOG AX351 JULY 2001 WWW.TCF.COM

More information

Regenerative Desiccant Dryers. KAD, KED, KBD and Hybritec Series

Regenerative Desiccant Dryers. KAD, KED, KBD and Hybritec Series Regenerative Desiccant Dryers KAD, KED, KBD and Hybritec Series The Right Dryer For You Most compressed air applications require only refrigerated dryers; however, if your compressed air is exposed to

More information

150-3,000 scfm AEHD Series. Desiccant Air Dryers AEHD Series. Externally Heated Desiccant Air Dryer 150-3,000 scfm. Front Page

150-3,000 scfm AEHD Series. Desiccant Air Dryers AEHD Series. Externally Heated Desiccant Air Dryer 150-3,000 scfm. Front Page 150-3,000 scfm AEHD Series Desiccant Air Dryers AEHD Series Externally Heated Desiccant Air Dryer 150-3,000 scfm Front Page 1 AEHD Series Heated Dryer Externally Heated Desiccant Dryer 150-3,000 scfm Since

More information

energydesignresources

energydesignresources energydesignresources design brief Energy building Efficiency design Practices in Industrial Refrigeration Summary Energy costs are a significant expense for facilities that operate industrial refrigeration

More information

Nirvana. Cycling Refrigerated Dryers

Nirvana. Cycling Refrigerated Dryers Nirvana Cycling Refrigerated Dryers Nirvana Cycling Refrigerated Dryers Reliability Is Our Design Ingersoll Rand's Nirvana Cycling Refrigerated Dryer provides reliability like no other dryer in its class:

More information

Homework #4 (group) Tuesday, 27 by 4:00 pm 5290 exercises (individual) Tuesday, 27 by 4:00 pm extra credit (individual) Tuesday, 27 by 4:00 pm

Homework #4 (group) Tuesday, 27 by 4:00 pm 5290 exercises (individual) Tuesday, 27 by 4:00 pm extra credit (individual) Tuesday, 27 by 4:00 pm Homework #4 (group) Tuesday, 27 by 4:00 pm 5290 exercises (individual) Tuesday, 27 by 4:00 pm extra credit (individual) Tuesday, 27 by 4:00 pm Readings for this homework assignment and upcoming lectures

More information