RTP Technical Bulletin

Size: px
Start display at page:

Download "RTP Technical Bulletin"

Transcription

1 RTP Technical Bulletin Category: REFRIGERATION REGISTERED TECHNICIANS PROGRAM Volume 1 Bulletin 2 the information contained in this bulletin contains some important c o n c e p t s regarding pressure/ temperature conditions throughout the circuit. if you have a good q u a l i t y thermocouple or temperature probe we would encourage you to reinforce the concepts presented here with some practical testing. this testing will not be required on all systems (although many professionals do) but is vital for conceptual understanding you can apply in p r o b l e m systems or w h e n performance is below standard PRINCIPLES OF REFRIGERATION (Stage 2) In Bulletin 1 we discussed the basics of refrigeration. In this bulletin we will continue with that theme and introduce the more complex aspects of system operation. In particular we will focus on specific pressure and temperature conditions that may be exhibited throughout the system. It must be stated at this point that some of the concepts and readings presented here may be foreign to you. The modern automotive air conditioning system is significantly different in many areas from those of bygone eras. The second point is that not all systems are the same when in operation. We are not talking about system designs here (TX Valve/Orifice Tube etc.), we are talking about system dynamics - the actual behaviour of refrigerants through the system. If the contents of this Bulletin are understood the identification of system limitations and system faults becomes much clearer, particularly when reinforced by workplace learning/experiences. Pressure/Temperature Relationships Bulletin 1 presented the pressure/temperature (P/T) relationship of refrigerants and the concepts of change of state and change of temperature. The relationship was shown on graph form. Please review the graph (Bulletin 1) at this point if required. The more common way to present the P/T relationship of refrigerants is not with a graph but with a table or chart. There are 2 P/T charts included in this bulletin as Technical Data Sheets 4 & 5. Please refer to them when reading this Bulletin. With reference to R12 and R134a charts it can be seen that the relationship is as Bulletin 1 P/T graph indicated. 1

2 ie: R134a - at 191 kpa (28 PSIG) pressure the temperature of the refrigerant is 0 C - at 1580 kpa (229 PSIG) the temperature of the refrigerant is 60 C. Further discussion in Bulletin 1 highlighted that this is not only the pressure/ temperature relationship, but it is also the change of state temperature or liquid saturation temperature. Therefore when we read the gauges what can we deduce from the readings? Low Side Gauge = 191 kpa = 0 C refrigerant inside the evaporator that is changing state at this temperature (as the name evaporator suggests - LIQUID to a VAPOUR). High Side Gauge = 1580 kpa = 60 C Refrigerant inside the condenser that is changing state at this temperature (as the name condenser suggests - VAPOUR to a LIQUID). The change of state is facilitated by absorbing heat into the cold refrigerant in the evaporator and releasing heat from the hot refrigerant in the condenser. The gauges tell you the conditions that exist inside the heat exchangers. Now let s go one step further: The reality is the pressure temperature graph/chart only relates to the refrigerant undergoing a change of state inside the two heat exchangers (the evaporator and the condenser). The pipes entering and exiting the heat exchangers may be (and in some cases must be) at significantly different temperatures than the gauges indicate. It is the concepts of Superheating and Subcooling that we now need to identify. These concepts are best demonstrated with the use of a basic form ENTHALPY DIAGRAM. Enthalpy The pipe temperatures may not be in accordance with what the gauges indicate - let s find out why! Enthalpy can be defined as the total heat content of a substance -otherwise defined as the sum of the energy applied to a medium. (Heat is a form of energy). Let s clarify what actually happens as we heat up and cool down a liquid, We will use water as an example since it has a familiar boiling point (or change of state temperature), or as we identified Liquid Saturation Temperature. 2

3 Between 0 C and 100 C adding heat to water causes a rise in temperature (the water gets hotter), THIS IS KNOWN AS SENSIBLE HEAT (add heat to water, it gets hotter - it makes sense - hence the name sensible heat). 100 C is the boiling point of water - in refrigeration terms this would be referred to as its Saturation Temperature. At 100 C we have reached a SATURATED LIQUID CONDITION. Water has absorbed as much heat as it can in liquid form and any further heat added will cause a CHANGE OF STATE. This extra heat to cause a change of state from Saturated Liquid to a Saturated Vapour is known as LATENT HEAT. Whist this change of state occurs there is no change in temperature. The extra head added is the energy to cause a change of state - not a change in temperature. If a complete change of state occurs and extra heat is added past this point the vapour becomes SUPERHEATED. Let s show this in diagrammatic form. Added heat will do one of two things - it will either raise temperature OR cause a change of state. Period A to B = Heating a liquid up to its boiling point = Adding Sensible Heat Period B to C = Saturated Liquid to Saturated Vapour = Change of State = Adding Latent Heat (no temperature rise during this phase) Period C to D = Adding heat to Saturated Vapour (Change of state has finished). = SUPERHEATING OF VAPOURS. Let s define the phases. 3

4 A liquid that is at below its boiling point is known as a SUBCOOLED LIQUID. A liquid that is boiling off is called a SATURATED LIQUID undergoing a change of state to a SATURATED VAPOUR (LATENT HEAT PHASE). A vapour that has extra heat added to it after the change of state phase is known as SUPERHEATED. QUANTITIES OF HEAT Strictly we can t simply measure heat with a thermometer. The only readily measurable heat is Sensible Heat which we see as a change in temperature. The head added during a change of state (Latent Heat) is otherwise referred to as Hidden Heat. Large quantities of heat are present in vapours in the form of Molecular Activity which we cannot readily measure or feel. Latent heat present in vapours we cannot measure because it is in the form of increased Molecular Activity. The true measurement of heat is the previously mentioned ENTHALPY. You have probably heard of the Imperial Measurement of heat - The British Thermal Unit (BTU). 1 BTU is the heat required to raise 1 pound of water by 1 F. The metric unit of heat is the kilojoule or kilocalorie. We will use kilocalories (KCal) because of their ease of use in these examples. 1 kcal is the heat required to raise 1 kg of water by 1 C. Technical data will normally refer to kilojoules of heat energy since joules/kilojoules are the true units of energy. Since we cannot simply measure heat content with a thermometer we need to go one step further and incorporate enthalpy into the equation. 1 kcal = 4.17 kj. 4

5 Let s now review and add to our previous example and view the heat quantities during the Sensible Heat and Latent Heat ranges. 100 kcal of heat energy is required to raise 1kg of water from 0 C to 100 C (from its freezing point to its boiling point)... Whereas kcal of heat energy is required to get that 100 C water to boil off to a vapour. In the period of Sensible Heat - raising the temperature of the liquid up to its boiling point (100 C) from 0 C we add 100 kcal of heat energy: 1 kcal = 1 C rise for the 1 kg water 100 kcal = 100 C rise for the 1 kg water. We now have a liquid at its boiling point - a saturated liquid. If we look at the next phase (evaporation) a further 539 kcal of heat is required to get that 1 kg of liquid to all change to a vapour. THIS IS A VITAL ASPECT OF AIR CONDITIONING. TO CAUSE A CHANGE OF STATE FROM A LIQUID TO A VAPOUR LARGE AMOUNTS OF HEAT MUST BE ADDED WITH NO CHANGE IN TEMPERATURE. THE HEAT ENERGY IS HIDDEN IN THE FORM OF MOLECULAR ENERGY (INCREASED MOLECULAR ACTIVITY) CONTAINED IN THE VAPOURS. THIS IS WHAT OCCURS IN THE EVAPORATOR. 5

6 If extra heat is added past the point of a Saturated Vapour (ie all the liquid has boiled off) we will cause the temperature of the vapour to rise - that is we will now have a Superheated Vapour. Notice the heat quantity - only 9kCal of added heat energy will drive the temperature of the vapour up by 20 C. THE SECOND VITAL POINT - PARTICULARLY APPLICABLE TO MODERN SYSTEMS: IF HEAT IS ADDED PAST THE SATURATED VAPOUR POINT THE VAPOUR WILL GET HOTTER. ie IT WILL BECOME SUPERHEATED. SMALL HEAT INPUT WILL GENERATE LARGE SUPERHEAT LEVELS. If heat is applied to a vapour it will rapidly increase in temperature. This is known as Superheat. Now let s look at the reverse of evaporation - the condensation phase. If we have a vapour it contains large quantities of heat locked in it in the form of Latent Heat Energy. This vapour therefore has high levels of molecular activity. The way to get a vapour to condense back into a liquid is to remove heat from it. This will reduce molecular activity (cause the molecular to slow down) to a level where the vapours can reform into a liquid. With reference to the diagram below, if we take heat our of a Saturated Vapour it will return to a Saturated Liquid. But remember the vapours have large quantities of heat that must be removed in order for condensation to occur. (539 kcal/kg). The place where this change of state occurs is the condenser. Condensing efficiencies must be at an optimum to ensure enough heat is dumped off to allow complete condensation to occur. The latent heat present in vapours must ALL be removed if the vapour is to condense back into a liquid. 6

7 ENTHALPY IN THE AIR CONDITIONING SYSTEM Now it s time to relate enthalpy to an Air Conditioning System. The refrigerant exiting the TX valve is just like water at 100 C - if we add extra heat it will begin to boil off. We know that refrigerants are a naturally cold substance. In fact we know that R134a is approximately - 26 C at atmospheric pressure and that is also its boiling point (liquid saturation temperature), (Refer to graph. chart). We also know that if we raise the pressure of the refrigerant not only do we raise its temperature but also its boiling point (liquid saturation point). That is the three way relationship for pure refrigerants. Let s now analyse the thermodynamic properties of the refrigerant as it flows through the system. This will be done in two stages - a basic explanation then a detailed analysis including superheating and subcooling. IN THE EVAPORATOR Exiting the TX Valve we have a low pressure, low temperature/low boiling point liquid refrigerant. (Refer to P/T chart.) Example Pressure = 190 kpa Temperature = 0 C Boiling Point = 0 C The conditions that allow the refrigerant to boil off so readily in the evaporator is that it is cold and has a low boiling point. Both as a result of its low This is just like water at 100 C. If we add any more heat we enter into the latent heat phase. Where does the heat come from? The cabin. How much heat does it absorb? Massive amounts. What does this heat do? Causes the refrigerant to boil off or evaporate inside the evaporator. What happens to the temperature of the refrigerant as it boiled off? No Change. the whole evaporator will be at 0 C (refrigerant temperature) whilst the change of state is occurring. (Disregard pressure drop across the evaporator coil - we will discuss this later.) All that has happened in the evaporator is we have absorbed massive amounts of heat from the cabin to boil off the refrigerant. The conditions that allowed this to happen are: the refrigerant is at a low pressure hence it is cold hence it already absorbs heat from the cabin. 7

8 In addition: At low pressure it has a low boiling point otherwise known as saturated liquid temperature, therefore: as the cold refrigerant absorbs cabin heat it boils off or more correctly turns to a saturated vapour whilst no change in refrigerant temperature occurs. You can test this simply on a system where in inlet and outlet pipes from the evaporator are accessible. Feel (or better still, measure with a good quality thermometer) the pipes entering and exiting the evaporator. You will find on a correctly operating system they are very close to the same temperature. Under test you will find the entry and exit pipes of the evaporator will be at near the same temperature if the system is operating correctly. IN THE COMPRESSOR The low pressure, low temperature Vapour now enters the compressor via the suction pipe. The important concept to grasp here is that the vapour contains heat energy - even though it is still cold - it contains LATENT HEAT absorbed from the cabin. The compressor, acting against the restriction of the TX Valve raises the temperature of the vapour to say 1580 kpa (229 PSI) with a corresponding temperature of 60 C (134a) (Refer to P/T chart) by pressurizing the vapours. IN THE CONDENSER The heat laden, high temperature vapour now enters the condenser. With a refrigerant temperature much higher than the surrounding air ie: refrigerant at 60 C, air at say 35 C the condenser will readily remove heat from the refrigerant to the cooler air providing airflow is adequate. If sufficient quantities of heat are removed at the condenser then the vapours will condense back into a liquid. Therefore the refrigerant has been cleaned of latent heat that was absorbed in the evaporator, and is ready to be reloaded with heat as it next passes through the evaporator coil. THROUGH THE TX VALVE/ORIFICE TUBE The high pressure, high temperature liquid is next fed to the TX Valve/ Orifice Tube where its pressure and temperature are dramatically reduced back to 190 kpa - 0 C (example only). The cold liquid refrigerant is sprayed into the evaporator where it can once again absorb heat. Even though the suction pipe is cold to touch it contains heat energy - Latent Heat hidden in the vapours. The refrigerant MUST be cleaned of latent heat to allow it to condense back into a liquid. 8

9 SUMMARY OF THE BASIC OPERATION Cold liquid refrigerant is sprayed into the evaporator via the TX Valve/ Orifice Tube. For a system to be balanced the condenser must be capable of dumping off the heat absorbed in the evaporator. Large quantities of latent heat are absorbed to cause a change of state to a vapour. The heat laden vapours are then fed to the compressor via the suction pipe. Note: The Suction pipe will be cold to touch - remember this is latent or hidden heat, we cannot feel or measure with a thermometer. The compressor raises vapour temperatures by pressurizing the refrigerant to ensure the refrigerant inside the condenser is much hotter than the surrounding air. The condenser will then dump off the latent heat that was absorbed in the cabin to the correspondingly cooler air, allowing condensation to occur. The heat cleaned liquid is then returned to the TX Valve/Orifice Tube (via the receiver drier for TX Valve systems) where its pressure and temperature are reduced. The low pressure cold refrigerant is the re-fed into the evaporator and the cycle starts over again. Superheating And Subcooling Air conditioning systems work in the change of state phase that occurs in both heat exchangers. The next phase in understanding air conditioning operation is to identify SUPERHEATING and SUBCOOLING characteristics. As has been explained in Bulletin 1 and in the preceding part of this Bulletin, air conditioning systems principally operate in the change of state phase in both heat exchangers. Up until recently with R12 and relatively simple systems this is all we have needed to be concerned with, but it is becoming increasingly obvious we need a deeper understanding of what actually occurs in a system including the subcooling of liquids and the superheating of vapours. 9

10 If the dynamics of Superheating are fully understood we can identify (together with other indicators): correct TX Valve operation the need for suction line insulation (lagging) the causes of thermal limiter (superheat) switch activation the possible causes of premature compressor failure or wear identify recompression (internal bypass) in compressors identify possible system contamination If we understand the principles of liquid subcooling it can identify (together with other indicators): The concepts of superheating must be understood for the technician to fully appreciate the possible causes of premature compressor failure. inadequate condensing efficiencies causes of inadequate condensing (ie airflow) incorrect charge rates causes of sight glass foaming/bubbling possible system contamination excessive pressure drops (in conjunction with gauge analysis) Subcooling directly relates to the condensing efficiency of the system. SUPERHEATING We will split superheating into 2 categories: 1. Superheating in the evaporator coil/suction line 2. Superheating in the discharge line (exiting compressor) As previously explained when a liquid boils off from a saturated liquid to a saturated vapour it does not change temperature - but it any further heating occurs the saturated vapour will become superheated. In the evaporator a small amount of superheating must occur. This is the superheat setting of the TX Valve, and is the safety margin that is built in to ensure liquid slugging of the compressor does not occur. How Does This All Work? The refrigerant is sprayed into the evaporator as a saturated liquid and immediately starts taking on heat from the cabin air. This heat (as previously explained) is used to facilitate a change of state to a saturated vapour. There are two categories of superheat we need to consider - superheat in the suction line and superheat in the discharge line. 10

11 The TX valve capillary tube/ internal sensor checks a predetermined amount of superheat is present in the vapours exiting the evaporator. If however this change of state is only just completed as the refrigerant exits the evaporator there is too much risk that a liquid may get back to the compressor with varying heat loads and TX valve openings. What actually happens is a complete change of state occurs a little bit back in the evaporator. Therefore in the last portion of the evaporator coil the vapours will heat up or become superheated. It is superheated vapours (normally 2ºC - 6ºC) that are sampled by the TX valve - sensing bulb, to calibrate flow into the evaporator coil. (This sensing is done internally in block valves.) If the vapours leaving the evaporator are superheated to above normal levels the sensing bulb will drive the TX open to provide for more refrigerant flow. If the vapours leaving the evaporator have no superheat present there is a risk of liquid slugging (we are still in the change of state phase). In this case the TX sensing bulb will shut down the TX valve to restrict flow to reintroduce some superheating. By sampling superheat content the TX valve will critically control flow in exact proportion to the heat load placed on the evaporator. A detailed explanation of TX valve operation and calibration will be presented in future bulletins. CHECKING EVAPORATOR SUPERHEAT LEVELS (BASIC GUIDELINES) The refrigerant inside the evaporator will normally be colder than the actual fins and tubes. Things are not as easy as they might appear in checking evaporator superheat levels. In theory if a TX valve is set at 4ºC superheat one could imagine that if we were to check the inlet and outlet pipes to the evaporator (where accessible) the pipe leaving the evaporator coil would be 4ºC warmer than when it entered. This is not the case due to the existence of a pressure drop across the evaporator coil. In reality many automotive evaporator coils have approximately 3ºC to 4ºC temperature drop as the refrigerant boils off due to a reduction in pressure cause by a restriction to flow. This pressure drop varies significantly with the coil design but lets work with 4ºC for this example. Refer to P/T chart - the temperatures given in this example (as with our discussions thus far) relates to refrigerant temperature. The external surfaces of the evaporator will be above 0ºC due to heat gains through the tubes/fins. Refrigerant to evaporator differentials will be discussed in detail in advanced analysis. 11

12 If the refrigerant entered the evaporator at say 170 kpa (25 PSIG) its temperature would be -2ºC. PRINCIPLES OF REFRIGERATION As the refrigerant flows through the evaporator coil loses some pressure - let s say it drops to 133 kpa (19 PSIG) therefore its vaporisation temperature drops to -6ºC. It actually gets 4ºC colder as it boils off. Once it has all vaporised (at -6ºC) it then superheats by 4ºC before exiting the evaporator coil. The result is the vapour temperature exiting the evaporator is -2ºC - exactly the same temperature as it was when entering the coil in liquid form. HOW IS THIS OF USE TO US? If we were to externally measure pipe temperatures on the entry and the exit of the evaporator (when accessible) what would we expect to get? Answer - nearly the same temperature if the TX valve is controlling flow correctly. Of course to do this accurately you need to know the exact pressure drop across the evaporator coil, at a certain flow rating, and also the superheat setting of the TX valve. But as a general field test guideline most automotive systems run + 2ºC inlet to outlet variation. The refrigerant will actually get colder as it travels through the evaporator due to a pressure drop. This is what causes the cold spot of the evaporator some technicians may have observed. We can now do some basic fault diagnosis using this principle. If the pipe leaving the evaporator is much warmer than when it enters what does it indicate? Answer - A partially filled coil with a longer than normal superheat run. This is normally a result of low charge, blocked liquid line, blocked TX valve/orifice tube, all of which will starve the coil. If the pipe leaving the evaporator is much colder than when it enters what does it indicate? Answer - A flooded coil with a significant risk of liquid floodback. This may be accompanied by frosting of the suction line but there are other causes of frosting which will be discussed in detail in future editions of RTP. If frosting exists basic tests would include a check of thermostat setting (set too low) or partial internal blockage of the evaporator (causing an excessive pressure drop across the coil), poor airflow or inoperative blower fan (evaporator). Pressure drops vary dramatically with the design and flow ratings. We are only presenting some general guidelines here - but the concepts are CRITICAL. 12

13 The capillary tube/ upper diaphragm force directly controls the opening and closing of the valve to control flow... What causes the valve to open? EXCESS Of course in many (most) cases you cannot readily access the inlet and outlet pipes of the evaporator to do this testing, so in future Bulletins we will be presenting guidelines for comparing gauge readings to pipe temperatures, analysing frost lines, and setting of TX valves when applicable. This edition has presented the concepts of evaporator superheat only. DISCHARGE LINE SUPERHEAT vs EVAPORATOR SUPERHEAT. When the valve opens we more effectively fill the coil. As air conditioning technicians many of you have probably touched the discharge line of the compressor to find it is extremely hot - yet the gauge may not indicate a high temperature/pressure. Remember though the gauge only indicates the conditions that exist within the heat exchangers. The reality is the superheating that occurred in the evaporator will not be shown on the low side gauge. That is the gauge may read 190 kpa = 0ºC but the refrigerant in the suction line may be 5ºC as it leaves the evaporator (5ºC superheating). Superheat cannot be read on a gauge - it can only be measured with a thermometer. Superheated vapours have increased molecular activity to cause them to rise in temperature - not to rise in pressure. 13

14 The superheated vapours travelling down the suction line may absorb further heat from the engine bay causing them to rise even further in temperature (increased superheat). The vapours may be 15ºC when they enter the compressor - even though the gauge reads 190 kpa = 0ºC. These vapours returning to the compressor are critical to provide cooling and for oil return. If the vapours returning to the compressor are excessively superheated (compounded evaporator superheat and suction line superheat) then discharge line temperatures may rise to unacceptably high levels, together with insufficient oil return. This is the role of the superheat switch/thermal limiting switch/thermal fuse. Discharge line superheat levels vary from system to system dependent on a number of factors but in simple terms if a thermal switch is activating we must ask ourselves the question. Is the compressor being fed with cold vapours to prevent excessive superheat generation? If the vapours returning to the compressor are cold then there is nothing we can do about the high superheat levels. At excessive highway speeds some compressors/ systems will experience thermal switch activation particularly under high ambient conditions. If a customers complaint suggests the activation of the thermal switch (air conditioner cuts out on highway cycle) then all we can do is ensure evaporator superheat levels are okay and that excessive heat loading of the suction line is not present (most manufacturers now insulate the suction line, and in some cases the accumulator on CCOT/FOT systems to limit suction line superheat). If the evaporator is full (with normal superheat levels) and the suction line is cold then high discharge line superheat levels are probably a normal condition for the system under question. Many modern systems run high discharge line temperatures as a normal operating condition - whereas in older systems superheating did not exist. It is becoming increasingly important to ensure excessive superheating does not exist as this is an extremely common cause of compressor failure - particularly in systems that have no superheat switch protection and work in high ambient conditions/highway cycles. The vapours returning to the compressor not only provide cooling, but also are responsible for carrying sufficient oil back to Excessive suction line superheat will be directly reflected as discharge line superheat on most modern systems. The most common causes of excessive superheat are partially blocked TX valves/orifice tubes, undercharged systems (common in retrofit) and partial restrictions of the liquid line/drier. (Check gauges for verification of these faults.) High discharge line superheat levels existing in modern systems are generated by high under bonnet temperatures, compressor placement, compressor design etc. 14

15 SUMMARY Remember: superheat cannot be read on the gauge - that is evaporator and condensing temperature - superheat is an overheating of the vapours to above the normal pressure/ If the discharge line appears extremely hot, or hotter than normal, then check the suction line temperature - it should be cold to touch to ensure the compressor is being adequately cooled. If it is cold at the evaporator outlet, and warm at the compressor then insulating (lagging) of the suction line may be necessary - this is often recommended on long hose run systems. IMPORTANT WARNING CONTAMINATED REFRIGERANTS (EITHER AIR AND OTHER NON CONDENSABLES) OR MIXTURES OF REFRIGERANTS ARE COMMON CAUSES OF EXCESSIVE SUPERHEAT AND/OR COMPRESSOR FAILURE. THE PRECEDING TEST HAS BEEN ADDRESSING PURE R12 and R134a ONLY. IF YOU SUSPECT CONTAMINATION EITHER TEST THE REFRIGERANT WITH AN APPROVED IDENTIFIER OR DUMP THE CONTAMINATED JUNK (OR RECLAIM AS REQUIRED INTO A DUMP CYLINDER WHEN REQUIRED BY LEGISLATION) AND DO A COMPLETE SERVICE WITH FILTER/DRIER CHANGE. NITROGEN PURGING AND/OR A 134a SCAVENGE CHARGE In addition to excess superheating causing premature compressor failure there is the aspect of oil return to also be considered. As refrigerant quantities and velocities reduce so do oil return rates to the compressor - thereby raising the possibility of oil starvation, particularly in low oil charge systems with upflow condenser/evaporator designs. Oil circulation rates will be discussed in detail in future Bulletins. 15

AIR CONDITIONING. Carrier Corporation 2002 Cat. No

AIR CONDITIONING. Carrier Corporation 2002 Cat. No AIR CONDITIONING Carrier Corporation 2002 Cat. No. 020-016 1. This refresher course covers topics contained in the AIR CONDITIONING specialty section of the North American Technician Excellence (NATE)

More information

The Saturation process

The Saturation process SOUTH METROPOLITAN TAFE WA The Saturation process Dennis Kenworthy 8/5/2016 A student study guide to measuring and interpreting the saturation process of refrigeration and air-conditioning equipment System

More information

RTP Technical Bulletin

RTP Technical Bulletin RTP Technical Bulletin Category: RETROFITTING REGISTERED TECHNICIANS PROGRAM Volume 1 Bulletin 1 this information is presented to clarify some misconceptions that occur, in c h a r g i n g retrofitted

More information

For an administrative fee of $9.97, you can get an un-locked, printable version of this book.

For an administrative fee of $9.97, you can get an un-locked, printable version of this book. The System Evaluation Manual and Chiller Evaluation Manual have been revised and combined into this new book; the Air Conditioning and Refrigeration System Evaluation Guide. For an administrative fee of

More information

Section 1: Theory of Heat Unit 3: Refrigeration and Refrigerants

Section 1: Theory of Heat Unit 3: Refrigeration and Refrigerants Section 1: Theory of Heat Unit 3: Refrigeration and Refrigerants Unit Objectives After studying this chapter, you should be able to: Discuss applications for high-, medium-, and low temperature refrigeration.

More information

To accomplish this, the refrigerant fi tis pumped throughh aclosed looped pipe system.

To accomplish this, the refrigerant fi tis pumped throughh aclosed looped pipe system. Basics Refrigeration is the removal of heat from a material or space, so that it s temperature is lower than that of it s surroundings. When refrigerant absorbs the unwanted heat, this raises the refrigerant

More information

SECTION 5 COMMERCIAL REFRIGERATION UNIT 21 EVAPORATORS AND THE REFRIGERATION SYSTEM UNIT OBJECTIVES 3/22/2012 REFRIGERATION

SECTION 5 COMMERCIAL REFRIGERATION UNIT 21 EVAPORATORS AND THE REFRIGERATION SYSTEM UNIT OBJECTIVES 3/22/2012 REFRIGERATION SECTION 5 COMMERCIAL REFRIGERATION UNIT 21 EVAPORATORS AND THE REFRIGERATION SYSTEM UNIT OBJECTIVES After studying this unit, the reader should be able to Define high-, medium-, and low-temperature refrigeration.

More information

Pressure Enthalpy Charts

Pressure Enthalpy Charts Pressure Enthalpy Charts What is a p-h Diagram? A p-h diagram is a diagram with a vertical axis of absolute pressure and a horizontal axis of specific enthalpy. "Enthalpy is the amount of energy in a substance

More information

PRESSURE-ENTHALPY CHARTS AND THEIR USE By: Dr. Ralph C. Downing E.I. du Pont de Nemours & Co., Inc. Freon Products Division

PRESSURE-ENTHALPY CHARTS AND THEIR USE By: Dr. Ralph C. Downing E.I. du Pont de Nemours & Co., Inc. Freon Products Division INTRODUCTION PRESSURE-ENTHALPY CHARTS AND THEIR USE The refrigerant in a refrigeration system, regardless of type, is present in two different states. It is present as liquid and as vapor (or gas). During

More information

Instructors: Contact information. Don Reynolds Doug McGee Factory Tech Support

Instructors: Contact information. Don Reynolds Doug McGee Factory Tech Support Contact information Instructors: Don Reynolds 616-560-9903 Doug McGee 517-294-3932 Factory Tech Support 888-593-9988 Product Improvements for 2017 Todays Objectives Job Site Information Sheets Low Ambient

More information

Energy Use in Refrigeration Systems

Energy Use in Refrigeration Systems 2012 Rocky Mountain ASHRAE Technical Conference Energy Use in Refrigeration Systems PRESENTED BY: Scott Martin, PE, LEED AP BD+C Objectives Understand mechanical refrigeration terms Describe how heat is

More information

B. A. T. Basic Appliance Training

B. A. T. Basic Appliance Training B. A. T. Basic Appliance Training BASIC REFRIGERATION presented by Phil Whitehead Program Objective The objective of this program is to give you some of the basic elements that are essential to understanding

More information

HEAT PUMPS. Carrier Corporation GT72-01 Cat. No

HEAT PUMPS. Carrier Corporation GT72-01 Cat. No HEAT PUMPS Carrier Corporation 2003 GT72-01 Cat. No. 020-018 1. This refresher course covers topics contained in the HEAT PUMPS specialty section of the North American Technician Excellence (NATE) certification

More information

THERMOSTATIC EXPANSION VALVES Part 1

THERMOSTATIC EXPANSION VALVES Part 1 Refrigeration Service Engineers Society 1666 Rand Road Des Plaines, Illinois 60016 THERMOSTATIC EXPANSION VALVES Part 1 Revised by Loren Shuck, CMS INTRODUCTION The thermostatic expansion valve (frequently

More information

HVAC Fundamentals & Refrigeration Cycle

HVAC Fundamentals & Refrigeration Cycle HVAC Fundamentals & Refrigeration Cycle Change of State of Water & the Refrigeration Cycle Change of State Water The Basic Refrigeration Cycle Types of DX Systems The Chilled water System The Cooling Tower

More information

Refrigeration Systems and Accessories

Refrigeration Systems and Accessories As with the Chapter Review Tests and the Final Exam, the tests your understanding of the materials underlying the learning objectives. After you ve reviewed your answers to the Chapter Review Tests, try

More information

HVAC/R Refrigerant Cycle Basics

HVAC/R Refrigerant Cycle Basics HVAC/R Refrigerant Cycle Basics This is a basic overview of the refrigeration circuit and how it works. It isn t a COMPLETE description by any means, but it is designed to assist a new technician or HVAC/R

More information

Some of these procedures need to be performed to conform to requirements of the Clean Air Act.

Some of these procedures need to be performed to conform to requirements of the Clean Air Act. Leak Detection, Recovery, Evacuation and Charging Four basic service procedures used to repair and maintain a mechanical refrigeration system are leak detection, evacuation, recovery, and refrigerant charging.

More information

Negative Superheat? Time to Check Your Tools

Negative Superheat? Time to Check Your Tools Negative Superheat? Time to Check Your Tools I was fresh out of school working as an apprentice at my first real HVAC job and I was listening in on a shop conversation between a few techs. They were talking

More information

REFRIGERATION CYCLE Principles of Mechanical Refrigeration Level 2: Cycle Analysis

REFRIGERATION CYCLE Principles of Mechanical Refrigeration Level 2: Cycle Analysis REFRIGERATION CYCLE Principles of Mechanical Refrigeration Level 2: Cycle Analysis Technical Development Program Technical Development Programs (TDP) are modules of technical training on HVAC theory, system

More information

A Treatise on Liquid Subcooling

A Treatise on Liquid Subcooling A Treatise on Liquid Subcooling While the subject of this article is Liquid Refrigerant Subcooling, its affect on the operation of the thermostatic expansion valve (TEV), and ultimately on system performance

More information

USING THE P-T CARD AS A SERVICE TOOL

USING THE P-T CARD AS A SERVICE TOOL Service Application Manual SAM Chapter 620-115 Section 2 USING THE P-T CARD AS A SERVICE TOOL Reprinted with permission from Sporlan Division, Parker Hannifin Corporation INTRODUCTION Manufacturers of

More information

Everything You. NEED to KNOW. TXV does this by keeping the coil supplied

Everything You. NEED to KNOW. TXV does this by keeping the coil supplied Everything You NEED to KNOW About TXVs } With the higher SEER air conditioners, technicians need to reacquaint themselves with thermostatic expansion valves B Y A L M A I E R Before the 13 SEER minimum

More information

SECTION 7 AIR CONDITIONING (COOLING) UNIT 40 TYPICAL OPERATING CONDITIONS

SECTION 7 AIR CONDITIONING (COOLING) UNIT 40 TYPICAL OPERATING CONDITIONS SECTION 7 AIR CONDITIONING (COOLING) UNIT 40 TYPICAL OPERATING CONDITIONS UNIT OBJECTIVES After studying this unit, the reader should be able to Explain what conditions will cause the evaporator pressure

More information

SECTION 7 AIR CONDITIONING (COOLING) UNIT 40 TYPICAL OPERATING CONDITIONS UNIT OBJECTIVES

SECTION 7 AIR CONDITIONING (COOLING) UNIT 40 TYPICAL OPERATING CONDITIONS UNIT OBJECTIVES SECTION 7 AIR CONDITIONING (COOLING) UNIT 40 TYPICAL OPERATING CONDITIONS UNIT OBJECTIVES After studying this unit, the reader should be able to Explain what conditions will cause the evaporator pressure

More information

THERMODYNAMICS PREPARED BY DW & JD

THERMODYNAMICS PREPARED BY DW & JD THERMODYNAMICS PREPARED BY DW & JD 1 HEAT FLOWS QUESTION: heat flows in 3 ways what are they? 2 HEAT FLOWS ANSWER: 1. CONDUCTON 2. CONVECTION 3. RADIATION 3 HEAT FLOWS CONDUCTION: the transfer of heat

More information

Checking the Charge on a Heat Pump in the Winter

Checking the Charge on a Heat Pump in the Winter Checking the Charge on a Heat Pump in the Winter When you ask many people nowadays how to check the charge on a heat pump during low outdoor temps they will say that you need to weigh in and weigh out

More information

Thomas J Kelly. Fundamentals of Refrigeration. Sr. Engineering Instructor Carrier Corporation. August 20, Page number: 1.

Thomas J Kelly. Fundamentals of Refrigeration. Sr. Engineering Instructor Carrier Corporation. August 20, Page number: 1. Thomas J Kelly Sr. Engineering Instructor Carrier Corporation August 20, 2003 1 SESSION OBJECTIVES At the conclusion of this session you should be able to: 1. Describe the basics principles of refrigeration

More information

How to Diagnose a TXV Failurek

How to Diagnose a TXV Failurek How to Diagnose a TXV Failurek There has been much written and many jokes made about the misdiagnosis of TXV (Thermostatic expansion valves) and rightly so. This article will cut straight to the point

More information

Class 1: Basic Refrigera0on Cycle. October 7 & 9, 2014

Class 1: Basic Refrigera0on Cycle. October 7 & 9, 2014 Class 1: Basic Refrigera0on Cycle October 7 & 9, 2014 Refrigeration Cycle 4 key components needed in a basic refrigera0on cycle: 1. Compressor 2. Condenser 3. Evaporator 4. Metering Device Compressor Compressor

More information

Vehicle Level Heating and Air Conditioning Description and Operation A/C System - Manual. A/C System - Manual

Vehicle Level Heating and Air Conditioning Description and Operation A/C System - Manual. A/C System - Manual 1 of 5 4/7/2008 8:32 AM Home Account Contact ALLDATA Log Out Help Select Vehicle New TSBs Technician's Reference Component Search: METRO TOYOTA OK 1999 Ford Truck F 450 2WD Super Duty V10-6.8L VIN S Vehicle

More information

Use this Construction/HVAC Glossary to answer the questions below.

Use this Construction/HVAC Glossary to answer the questions below. www.garyklinka.com Page 1 of 21 Instructions: 1. Print these pages. 2. Circle the correct answers and transfer to the answer sheet on the second last page. 3. Page down to the last page for the verification

More information

Warm Case Troubleshooting Guide 9/18/2014

Warm Case Troubleshooting Guide 9/18/2014 Introduction Warm cases can be caused by various problems which require thorough troubleshooting. Begin the investigation with questions to store personnel asking for information such as when the last

More information

HVAC Systems What the Rater Needs to Know in the Field CALCS-PLUS

HVAC Systems What the Rater Needs to Know in the Field CALCS-PLUS HVAC Systems What the Rater Needs to Know in the Field This presentation used CASE* studies from the following *CASE Copy And Steal Everything HVAC Systems - What the Rater Needs to Know in the Field This

More information

SECTION 8 AIR SOURCE HEAT PUMPS UNIT 43 AIR SOURCE HEAT PUMPS

SECTION 8 AIR SOURCE HEAT PUMPS UNIT 43 AIR SOURCE HEAT PUMPS SECTION 8 AIR SOURCE HEAT PUMPS UNIT 43 AIR SOURCE HEAT PUMPS UNIT OBJECTIVES After studying this unit, the reader should be able to Describe the operation of reverse-cycle refrigeration (heat pumps) Explain

More information

Table of Contents. Service Procedures. Service Procedures. Measuring Superheat (4) Measuring Subcooling (5) Airflow Calculation (6-8)

Table of Contents. Service Procedures. Service Procedures. Measuring Superheat (4) Measuring Subcooling (5) Airflow Calculation (6-8) Table of Contents Refrigeration Cycle Service Procedures Measuring Superheat (4) Measuring Subcooling (5) Airflow Calculation (6-8) Solving Problems Identifying Low System Charge (9-11) Identifying High

More information

UNITED STATES MARINE CORPS ENGINEER EQUIPMENT INSTRUCTION COMPANY MARINE CORPS DETACHMENT 686 MINNESOTA AVE FORT LEONARD WOOD, MISSOURI

UNITED STATES MARINE CORPS ENGINEER EQUIPMENT INSTRUCTION COMPANY MARINE CORPS DETACHMENT 686 MINNESOTA AVE FORT LEONARD WOOD, MISSOURI UNITED STATES MARINE CORPS ENGINEER EQUIPMENT INSTRUCTION COMPANY MARINE CORPS DETACHMENT 686 MINNESOTA AVE FORT LEONARD WOOD, MISSOURI 65473-8963 LESSON PLAN AIR CONDITIONING SYSTEMS NCOM-F01 ENGINEER

More information

SECTION 7 AIR CONDITIONING (COOLING) UNIT 41 TROUBLESHOOTING

SECTION 7 AIR CONDITIONING (COOLING) UNIT 41 TROUBLESHOOTING SECTION 7 AIR CONDITIONING (COOLING) UNIT 41 TROUBLESHOOTING UNIT OBJECTIVES After studying this unit, the reader should be able to Select the correct instruments for checking an air conditioning unit

More information

R410a Installation and fault finding training

R410a Installation and fault finding training R410a Installation and fault finding training Contents: General introduction Disassembly and reassembly Installation guide Trouble shooting General introduction: 1. Product Introduction Development Specification

More information

FS 231: Final Exam (5-6-05) Part A (Closed Book): 60 points

FS 231: Final Exam (5-6-05) Part A (Closed Book): 60 points Name: Start time: End time: FS 231: Final Exam (5-6-05) Part A (Closed Book): 60 points 1. What are the units of the following quantities? (10 points) a. Enthalpy of a refrigerant b. Dryness fraction of

More information

Refrigeration/Troubleshooting Manual

Refrigeration/Troubleshooting Manual Refrigeration/Troubleshooting Manual P.O. Box 245 Syracuse, NY 13211 www.roth-america.com 888-266-7684 P/N: 2300100910 Table of Contents: Section 1: Geothermal Refrigeration Circuits Overview... 2 Water-to-Air

More information

Service Step by Step Trouble-Shooting Check-List

Service Step by Step Trouble-Shooting Check-List WARNING: Only Data Aire trained technician or experience technicians should be working on Data Aire Equipment. Protect yourself at all times and work safe. Date: Dates at the job site: From: to Job#: Serial#:

More information

What Is Liquid Subcooling?

What Is Liquid Subcooling? VA Lake City Florida Rob, Though I still haven t received the information from the contractor for this project, I have done some preliminary work on it. One thing of concern to me is something that you

More information

Fundamentals of Refrigeration Part 2 Refrigeration 1

Fundamentals of Refrigeration Part 2 Refrigeration 1 Fundamentals of Refrigeration Part 2 Refrigeration 1 We have established in the first part of this training session that cooling in a DX coil is the result of the latent heat of vapourisation which is

More information

Publication # RD-0003-E Rev 1, 10/17 SERVICE GUIDELINES HCFC R22 TO HFC REFRIGERANT BLENDS

Publication # RD-0003-E Rev 1, 10/17 SERVICE GUIDELINES HCFC R22 TO HFC REFRIGERANT BLENDS Publication # RD-0003-E Rev 1, 10/17 SERVICE GUIDELINES HCFC R22 TO HFC REFRIGERANT BLENDS Refrigerant R22 is widely used for residential and commercial air conditioning, as well as commercial refrigeration

More information

CONTENTS. Air Conditioning Fundamentals TC S

CONTENTS. Air Conditioning Fundamentals TC S LEVEL F Air Conditioning Fundamentals SG Mazda Motor Corporation Technical Service Training CONTENTS 1 INTRODUCTION Overview... 1 Audience and Purpose... 1 Content and Objectives... 2 How to Use This Guide...

More information

LIQUID REFRIGERANT CONTROL IN REFRIGERATION AND AIR CONDITIONING SYSTEMS

LIQUID REFRIGERANT CONTROL IN REFRIGERATION AND AIR CONDITIONING SYSTEMS 22-1182 Application Engineering Bulletin AE-1182-R24 Revised April 1, 1993 LIQUID REFRIGERANT CONTROL IN REFRIGERATION AND AIR CONDITIONING SYSTEMS One of the major causes of compressor failure is damage

More information

Air Conditioning Components

Air Conditioning Components Air Conditioning Components Agenda AC Components Compressor & Clutch Condenser Receiver-drier or Accumulator Expansion Valve or Orifice Tube Evaporator Compressor 2 primary purposes Increase pressure &

More information

Refrigeration Technology in Building Services Engineering

Refrigeration Technology in Building Services Engineering Unit 70: Unit code: T/600/0459 QCF Level: 3 Credit value: 10 Guided learning hours: 60 Unit aim Refrigeration Technology in Building Services Engineering This unit develops an understanding of the principles,

More information

Superheat charging curves for technicians

Superheat charging curves for technicians This website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block.

More information

Motor Vehicle Air Conditioning (MVAC) System operation and the refrigerant cycle

Motor Vehicle Air Conditioning (MVAC) System operation and the refrigerant cycle Motor Vehicle Air Conditioning (MVAC) System operation and the refrigerant cycle At Sea level water boils at 212⁰ F R 134a boils at 15⁰ F At Sea level R 134a boils at 15⁰ F At 30 psig R 134a boils at 35⁰

More information

Calhoon MEBA Engineering School. Study Guide for Proficiency Testing Refrigeration

Calhoon MEBA Engineering School. Study Guide for Proficiency Testing Refrigeration Calhoon MEBA Engineering School Study Guide for Proficiency Testing Refrigeration 1. To prevent an injury when working with refrigerants, what safety precautions are necessary? 2. When halogens are in

More information

ThermoSaver TM Hot Gas Defrost System

ThermoSaver TM Hot Gas Defrost System PRODUCT DATA, APPLICATION & INSTALLATION GUIDE Supplement to Condensing Unit Installation and Maintenance Manual Bulletin K40-THERM-PDI-15 Part # 1069130 PRODUCT SUPPORT web: k-rp.com/ts email: mdcu-lgcu@k-rp.com

More information

ME 410 MECHANICAL ENGINEERING SYSTEMS LABORATORY MASS & ENERGY BALANCES IN PSYCHROMETRIC PROCESSES EXPERIMENT 3

ME 410 MECHANICAL ENGINEERING SYSTEMS LABORATORY MASS & ENERGY BALANCES IN PSYCHROMETRIC PROCESSES EXPERIMENT 3 ME 410 MECHANICAL ENGINEERING SYSTEMS LABORATORY MASS & ENERGY BALANCES IN PSYCHROMETRIC PROCESSES EXPERIMENT 3 1. OBJECTIVE The objective of this experiment is to observe four basic psychrometric processes

More information

Combination unit to support instruction in Thermodunamics, Fluid Mechanics, and Heat Transfer

Combination unit to support instruction in Thermodunamics, Fluid Mechanics, and Heat Transfer Paper ID #6647 Combination unit to support instruction in Thermodunamics, Fluid Mechanics, and Heat Transfer Dr. Lin Lin, University of Southern Maine Dr. Lin joined Department of Engineering at University

More information

Heat Reclaim. Benefits,Methods, & Troubleshooting By Dave Demma, Manager Supermarket Sales, Sporlan Division - Parker Hannifin Corporation

Heat Reclaim. Benefits,Methods, & Troubleshooting By Dave Demma, Manager Supermarket Sales, Sporlan Division - Parker Hannifin Corporation Form 30-217 / January 2007 Heat Reclaim Benefits,Methods, & Troubleshooting By Dave Demma, Manager Supermarket Sales, Sporlan Division - Parker Hannifin Corporation While the vapor-compression cycle has

More information

Applications of Thermodynamics: Heat Pumps and Refrigerators

Applications of Thermodynamics: Heat Pumps and Refrigerators Applications of Thermodynamics: Heat Pumps and Refrigerators Bởi: OpenStaxCollege Almost every home contains a refrigerator. Most people don t realize they are also sharing their homes with a heat pump.

More information

Before I start on this one At HVAC School we focus on a wide range of topics, many of them are very basic. My experience as a trainer for over 16

Before I start on this one At HVAC School we focus on a wide range of topics, many of them are very basic. My experience as a trainer for over 16 Refrigerant Charging Basics For Air Conditioning & Heat Pump Systems Before I start on this one At HVAC School we focus on a wide range of topics, many of them are very basic. My experience as a trainer

More information

Executive Summary. Number of Low Number of High Number of Faults , Number of OK

Executive Summary. Number of Low Number of High Number of Faults , Number of OK Unit Lower limit Upper limit Air on Model no evap. F Air off evap. F dt air evap. F Executive Summary Evapo. F This is a summary chart for quick reference and view of all the systems tested. Red boxes

More information

BASIC HEAT PUMP THEORY By: Lloyd A. Mullen By: Lloyd G. Williams Service Department, York Division, Borg-Warner Corporation

BASIC HEAT PUMP THEORY By: Lloyd A. Mullen By: Lloyd G. Williams Service Department, York Division, Borg-Warner Corporation INTRODUCTION In recent years air conditioning industry technology has advanced rapidly. An important byproduct of this growth has been development of the heat pump. Altogether too much mystery has surrounded

More information

SECTION 2 SAFETY, TOOLS AND EQUIPMENT, SHOP PRACTICES UNIT 10 SYSTEM CHARGING

SECTION 2 SAFETY, TOOLS AND EQUIPMENT, SHOP PRACTICES UNIT 10 SYSTEM CHARGING SECTION 2 SAFETY, TOOLS AND EQUIPMENT, SHOP PRACTICES UNIT 10 SYSTEM CHARGING UNIT OBJECTIVES After studying this unit, the reader should be able to Describe how refrigerant is charged into systems in

More information

SECTION 5 COMMERCIAL REFRIGERATION UNIT 22 CONDENSERS UNIT OBJECTIVES UNIT OBJECTIVES 3/22/2012

SECTION 5 COMMERCIAL REFRIGERATION UNIT 22 CONDENSERS UNIT OBJECTIVES UNIT OBJECTIVES 3/22/2012 SECTION 5 COMMERCIAL REFRIGERATION UNIT 22 CONDENSERS UNIT OBJECTIVES After studying this unit, the reader should be able to explain the purpose of the condenser in a refrigeration system. describe differences

More information

MASS. MARITIME ACADEMY

MASS. MARITIME ACADEMY MASS. MARITIME ACADEMY REFRIGERATION LAB OUTLINE Rev.3 Fall 2015 Table of Content Page Lab #1: Introduction to refrigeration system components, tools and procedures 1 Lab #2: Familiarization, operation,

More information

cussons Refrigeration Assembly Range TECHNOLOGY REFRIGERATION AND AIR CONDITIONING CUSSONS TECHNOLOGY LABORATORY RECOMMENDATION

cussons Refrigeration Assembly Range TECHNOLOGY REFRIGERATION AND AIR CONDITIONING CUSSONS TECHNOLOGY LABORATORY RECOMMENDATION REFRIGERATION AND AIR CONDITIONING CUSSONS LABORATORY RECOMMENDATION Cussons Refrigeration laboratories are offered to provide teaching to a range of different skill levels. In all the laboratories teaching

More information

Math. The latent heat of fusion for water is 144 BTU s Per Lb. The latent heat of vaporization for water is 970 Btu s per Lb.

Math. The latent heat of fusion for water is 144 BTU s Per Lb. The latent heat of vaporization for water is 970 Btu s per Lb. HVAC Math The latent heat of fusion for water is 144 BTU s Per Lb. The latent heat of vaporization for water is 970 Btu s per Lb. Math F. to C. Conversion = (f-32)*(5/9) C. to F. Conversion = C * 9/5 +

More information

Determining Real Time Performance of Residential AC Systems. Presented at the RESNET Conference San Antonio, TX February 28, 2006

Determining Real Time Performance of Residential AC Systems. Presented at the RESNET Conference San Antonio, TX February 28, 2006 Determining Real Time Performance of Residential AC Systems Presented at the RESNET Conference San Antonio, TX February 28, 2006 Bill Spohn testo, Inc. testo Worldwide 100 90 80 70 60 50 40 30 20 10 0

More information

SERVICE ASSISTANT OVERVIEW FDSI Online Training

SERVICE ASSISTANT OVERVIEW FDSI Online Training Author: Dale T. Rossi Online Editor: Zachary Williams SERVICE ASSISTANT OVERVIEW FDSI Online Training May 5, 2009 Table Service Assistant Description... 2 Installing the Main Unit... 3 Ambient Temperature...

More information

EXPANSION VALVES. See Red Dot Catalog Also. * 2 ton valves - all other valves are 1 1/2 ton (1) Includes M1 Adapter 71R8050 EX02280

EXPANSION VALVES. See Red Dot Catalog Also. * 2 ton valves - all other valves are 1 1/2 ton (1) Includes M1 Adapter 71R8050 EX02280 EXPANSION VALVES See Red Dot Catalog Also PART NO. DESCRIPTION INLET OUTLET FITTING -- INTERNAL EQUALIZED 20359 INTERNAL EQUALIZED 38722 INTERNAL EQUALIZED FITTING -- EXTERNAL EQUALIZED 71R8050 EXTERNAL

More information

Installation, Operation, and Maintenance Information

Installation, Operation, and Maintenance Information Installation, Operation, and Maintenance Information Low Velocity Unit Coolers Bulletin No. IOM 110.3 Table of Contents Inspection... 2 Installation... 2 4 General... 2 Location... 2 Drain Line... 3 Refrigerant

More information

Institute of Aeronautical Engineering (Autonomous) Dundigal, Hyderabad B.Tech (III II SEM) MECHANICAL ENGINEERING

Institute of Aeronautical Engineering (Autonomous) Dundigal, Hyderabad B.Tech (III II SEM) MECHANICAL ENGINEERING Institute of Aeronautical Engineering (Autonomous) Dundigal, Hyderabad- 500 043 B.Tech (III II SEM) MECHANICAL ENGINEERING REFRIGERATION AND AIR CONDITIONING Prepared by, Dr. CH V K N S N Moorthy, Professor

More information

ThermoSaver TM Hot Gas Defrost System

ThermoSaver TM Hot Gas Defrost System PRODUCT DATA, APPLICATION & INSTALLATION GUIDE Supplement to Condensing Unit Installation and Maintenance Manual Bulletin B40-THERM-PDI-14 1069132 ThermoSaver TM Hot Gas Defrost System For use on select

More information

DEFROSTING METHODS Adapted from material originally provided by Kenneth S. Franklin, C.M., Director of Service, Hussmann Corporation

DEFROSTING METHODS Adapted from material originally provided by Kenneth S. Franklin, C.M., Director of Service, Hussmann Corporation EVAPORATOR DEFROSTING: WHEN AND WHY The refrigeration evaporator is a container that provides room for the evaporating refrigerant. The refrigerant receives heat by conduction through the walls of the

More information

PowerPoint Presentation by: Associated Technical Authors. Publisher The Goodheart-Willcox Company, Inc. Tinley Park, Illinois

PowerPoint Presentation by: Associated Technical Authors. Publisher The Goodheart-Willcox Company, Inc. Tinley Park, Illinois Althouse Turnquist Bracciano PowerPoint Presentation by: Associated Technical Authors Publisher The Goodheart-Willcox Company, Inc. Tinley Park, Illinois Chapter 5 Explain the purpose and operation of

More information

Otherwise, you can continue reading the file on the following pages.

Otherwise, you can continue reading the file on the following pages. If you d like to be able to print this file out to study off-line or use on the job, a printable version is available for an administrative fee of $3.97 USD. To download the unlocked file, click here.

More information

MECHANICAL ENGINEERING ME.2017 FUNDAMENTAL OF REFRIGERATION AND AIR CONDITIONING. Sample Questions and Answers

MECHANICAL ENGINEERING ME.2017 FUNDAMENTAL OF REFRIGERATION AND AIR CONDITIONING. Sample Questions and Answers MECHANICAL ENGINEERING ME.2017 FUNDAMENTAL OF REFRIGERATION AND AIR CONDITIONING Sample Questions and Answers CHAPTER 5 EVAPORATORS 1. What is Evaporator? Classify the various types of evaporator. Evaporator

More information

REFRIGERANT CHANGEOVER

REFRIGERANT CHANGEOVER Date of last update: Dec-17 Ref: CC7.26.5/0117-1217/E Application Engineering Europe REFRIGERANT CHANGEOVER FROM HFC R134a TO HFC/HFO R450A & R513A WARNING Use only Emerson approved refrigerants and lubricants

More information

Refrigeration and Air Conditioning

Refrigeration and Air Conditioning Refrigeration and Air Conditioning 1. Pick up the wrong statement. A refrigerant should have (a) Tow specific heat of liquid (b) high boiling point (c) high latent heat of vaporisation (d) higher critical

More information

Condensing Unit Installation and Operating Instructions

Condensing Unit Installation and Operating Instructions Bulletin WCU_O&I 01 June 2003 Condensing Unit Installation and Operating Instructions WCU Air Cooled Condensing Unit Table of Contents Section 1. Section 2. Section 3. Section 4. Section 5. Section 6.

More information

OPERATION & MAINTENANCE MANUAL TC670

OPERATION & MAINTENANCE MANUAL TC670 OPERATION & MAINTENANCE MANUAL TC670 Refrigerant Management Center (Convertible For Use With R12 or R134a) RTI TECHNOLOGIES, INC. 4075 East Market Street York, PA 17402 Manual P/N 035-80342-02 TC670 CONVERTIBLE

More information

A Series Inertia Compressor Applications. Application Bulletin 115

A Series Inertia Compressor Applications. Application Bulletin 115 A Series Inertia Compressor Applications Application Bulletin 115 Application Bulletin Subject: A Series Inertia Compressor Applications Number: 115 Release EN: 006X04 Date: 1/6/92 Revision EN: Z27301

More information

Basic Principals of Air conditioning By Dr. Esam Mejbil Abed

Basic Principals of Air conditioning By Dr. Esam Mejbil Abed REPUBLIC OF IRAQ Ministry of Higher Education & Scientific Research University of Babylon College of Engineering Mechanical Engineering Department Basic Principals of Air conditioning By Dr. Esam Mejbil

More information

Fundamental Principles of Air Conditioners for Information Technology

Fundamental Principles of Air Conditioners for Information Technology Fundamental Principles of Air Conditioners for Information Technology By Tony Evans White Paper #57 Revision 2 Executive Summary Every Information Technology professional who is responsible for the operation

More information

INSTALLATION INSTRUCTIONS HOT GAS BYPASS SYSTEM DESIGN MANUAL

INSTALLATION INSTRUCTIONS HOT GAS BYPASS SYSTEM DESIGN MANUAL INSTALLATION INSTRUCTIONS HOT GAS BYPASS SYSTEM DESIGN MANUAL MODELS: WA242H WA36H NOTE: Electrical data presented in this manualsupersedes any other data for the above listed models. Bard Manufacturing

More information

RSES Technical Institute Training Manual 1 70 hours, 70 NATE CEHs, 7.2 CEUs

RSES Technical Institute Training Manual 1 70 hours, 70 NATE CEHs, 7.2 CEUs Lesson 1 - Introduction to Refrigeration and Air Conditioning Define refrigeration. Identify the basic components of a refrigeration cycle. Identify the various gas laws and their importance to a basic

More information

Refrigerant changeover guidelines

Refrigerant changeover guidelines Refrigerant changeover guidelines HCFC R-22 to HFC R-407A/F, R-448A or R-449A for medium and low temperature applications HCFC R-22 to HFC R-407C for high, medium and low temperature applications HCFC

More information

User s Information and Installation Instructions

User s Information and Installation Instructions Outdoor Air Conditioner User s Information and Installation Instructions 10 SEER Standard Efficiency Split System These units have been designed and tested for capacity and efficiency in accordance with

More information

Case 15 Refrigeration System for Chemical Fertilizer Plant Ammonia Storage

Case 15 Refrigeration System for Chemical Fertilizer Plant Ammonia Storage Case 15 Refrigeration System for Chemical Fertilizer Plant Ammonia Storage Copy Right By: Thomas T.S. Wan ) Dec. 28, 2012 All Rights Reserved Case Background: Ammonia is one of the important elements to

More information

ME 410 MECHA ICAL E GI EERI G SYSTEMS LABORATORY

ME 410 MECHA ICAL E GI EERI G SYSTEMS LABORATORY ME 410 MECHA ICAL E GI EERI G SYSTEMS LABORATORY MASS & E ERGY BALA CES I PSYCHROMETRIC PROCESSES EXPERIME T 3 1. OBJECTIVE The object of this experiment is to observe four basic psychrometric processes

More information

SEVEN STEPS TO EFFECTIVE PRE- SEASON COOLING CHECKUPS

SEVEN STEPS TO EFFECTIVE PRE- SEASON COOLING CHECKUPS SEVEN STEPS TO EFFECTIVE PRE- SEASON COOLING CHECKUPS by Dennis Kalchuk While temperatures are still tolerable, it's time to prepare your customers' systems to deal with the blasts of summer heat and humidity

More information

HEAT PUMPS. Carrier Corporation GT72-01A Cat. No

HEAT PUMPS. Carrier Corporation GT72-01A Cat. No HEAT PUMPS Carrier Corporation 2004 GT72-01A Cat. No. 020-018 Table of Contents AIR CONDITIONING AND HUMAN COMFORT...1 AIR CONDITIONING THERMODYNAMICS...2 EFFICIENCY RATINGS...8 TEMPERATURE-PRESSURE...10

More information

Due to its low temperature glide about 1.5 approx. (75% less than R-407C and R-427A), it is suitable for a wide range of applications.

Due to its low temperature glide about 1.5 approx. (75% less than R-407C and R-427A), it is suitable for a wide range of applications. TECHNICAL DATA SHEET R434A () Features and uses of R-434A () is a non-flammable HFC mixture. ODP = 0, compatible with traditional mineral lubricants, alkyl benzene and also with synthetic POE, so there

More information

WMHP Series R410a Heat Pump INSTALLATION INSTRUCTIONS

WMHP Series R410a Heat Pump INSTALLATION INSTRUCTIONS WMHP Series R410a Heat Pump INSTALLATION INSTRUCTIONS **WARNING TO INSTALLER, SERVICE PERSONNEL AND OWNER** Altering the product or replacing parts with non authorized factory parts voids all warranty

More information

System Considerations for Refrigerant Blends with Temperature Glide

System Considerations for Refrigerant Blends with Temperature Glide System Considerations for Refrigerant Blends with Temperature Glide Theory and Practical Retrofit Guidance Table of Contents 1 2 3 4 5 Blend and Glide Basics... 3 1.1 Superheat and Subcooling of Refrigerant

More information

Condensing Unit Installation and Operating Instructions

Condensing Unit Installation and Operating Instructions Bulletin ACU_O&I 02 August 2016 Condensing Unit Installation and Operating Instructions ACU Air Cooled Condensers Table of Contents Section 1. General Information... 2 Section 2. Refrigeration Piping...

More information

Table of Contents. Table of Contents Introduction... Intro-1

Table of Contents. Table of Contents Introduction... Intro-1 Table of Contents Table of Contents...1-3 Introduction... Intro-1 Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9 Chapter 10 Chapter 11 Chapter 12 Air Conditioning

More information

OPERATION & MAINTENANCE MANUAL TX600

OPERATION & MAINTENANCE MANUAL TX600 OPERATION & MAINTENANCE MANUAL TX600 RTI TECHNOLOGIES, INC. 4075 East Market Street York, PA 17402 Manual P/N 035-80118-00 (Rev B) ! TABLE OF CONTENTS! TX600 Before Using Page 2 Safety Precautions Page

More information

Technical Information

Technical Information Date of last update: 02-08 Ref: Application Engineering Europe COPELAND SCROLL COMPRESSORS USING VAPOUR INJECTION FOR REFRIGERATION CONTENTS 1 Introduction...1 2 Principle of Operation...1 3 Capacity Effect...2

More information

HVAC Basics RESIDENTIAL AIR CONDITIONING

HVAC Basics RESIDENTIAL AIR CONDITIONING HVAC Basics RESIDENTIAL AIR CONDITIONING Introduction This Instructor s Guide provides information to help you get the most out of Residential Air Conditioning, part of the two-part series HVAC Basics.

More information

MECHANICAL SCIENCE Module 2 Heat Exchangers

MECHANICAL SCIENCE Module 2 Heat Exchangers Department of Energy Fundamentals Handbook MECHANICAL SCIENCE Module 2 Heat Exchangers Heat Exchangers DOE-HDBK-1018/1-93 TABLE OF CONTENTS TABLE OF CONTENTS LIST OF FIGURES... ii LIST OF TABLES... iii

More information

How Ground Source Heat Pumps Work

How Ground Source Heat Pumps Work How Ground Source Heat Pumps Work How Ground Source Heat Pumps Work A heat pump is a mechanically simple system that is conceptually difficult to relate to. The boiler plate answer for how geo works is...

More information