ANALYSIS OF PERFORMANCE-BASED SMOKE MANAGEMENT SYSTEM DESIGN IN A SHOPPING MALL

Size: px
Start display at page:

Download "ANALYSIS OF PERFORMANCE-BASED SMOKE MANAGEMENT SYSTEM DESIGN IN A SHOPPING MALL"

Transcription

1 , Volume 1, Number 4, p , 2 ANALYSIS OF PERFORMANCE-BASED SMOKE MANAGEMENT SYSTEM DESIGN IN A SHOPPING MALL K.H. Yang and J.N. Lee Mechanical Engineering Department, National Sun Yat-Sen Uniersity, Kaohsiung, Taiwan 8424, R.O.C. (Receied 2 September 2; Accepted 16 Noember 2) ABSTRACT In Taiwan, the fire code is still prescriptie in nature which fails to proide effectie design guide for buildings with large spaces and atria. In this paper, the NFPA 92B has been adapted to deelop a design procedure of smoke management system in a shopping mall atrium using performance-based fire safety design method. The objecties of this design procedure are assurance of safe eacuation and preention of fire spread to adjacent space. The authors implemented this design procedure to the fire safety system of a shopping mall in Taipei, and obtained approal from authorities haing jurisdiction as a successful performance-based design. This paper demonstrated the complete design procedure as an example to fire safety engineers. 1. INTRODUCTION In 1996, the new prescriptie fire code was implemented in Taiwan [1]. On item 189, No. 7, it stated that the smoke exhaust rate should not be less than 12 m 3 min -1. And in zoned smoke control designs, each zone should be equipped with mechanical smoke exhaust rate for more than 1 m 3 min -1 per floor area. The minimum legitimate smoke exhaust rate, which directly related to building floor area, is apparently misleading, especially when large spaces or an atrium is encountered. Table 1 shows a calculation comparison of the smoke generation rate between that of Taiwan fire code and the NFPA 92B [2]. The deiation could be up to 6 times. The deiation lies mainly in that the prescriptie code ignored the large air entrainment olume of an atrium when a fire occurred, although it still seres as a feasible guide for ordinary office buildings. Table 1: Comparison of the smoke generation rate between Taiwan fire code and the NFPA 92B for a 5 m 2 room (5 MW fire) Design smoke clear height NFPA 92B Taiwan Fire Code 1.5 m 5.35 m 3 s m 3 s m 7.13 m 3 s m 3 s m 8.92 m 3 s m 3 s m m 3 s m 3 s m 47.8 m 3 s m 3 s -1 In performance-based fire safety design, the procedure includes the following sub-systems as shown in Fig. 1. Design Fire Size Analysis Fire Detection and Suppression System Design Smoke Management System Design Eacuation Analysis, and Quantitatie Risk Assessment These sub-systems were discussed in detail as follows. 2. PERFORMANCE - BASED FIRE SAFETY DESIGN METHOD 2.1 Design Fire Size Design fire size analysis is the most important step in fire hazard assessment, which directly related to the ealuation of smoke descending rate and adequate sizing of smoke management system. Generally, the design fire size falls into three categories: a. Steady fire assumption A fixed heat release rate was assumed in this case, for example, 5 MW in an office building [3], and 2 MW to 3 MW in an underground railway station, or subway systems [4], etc. b. Unsteady fire assumptions To simulate the fire growth period until it reaches the steady state, normally an unsteady fire is assumed. The most widely applied unsteady fire assumption is the t-squared fire, the heat release rate is directly proportional to the square of time elapsed, or in equation form: Q 2 = a( t t ) (1) 181

2 Start Building Geometry Design Fire Size Fire Detection & Suppression System Design Humane Behaior Eacuation Smoke Management System Design Quatitatie Risk Asessment Mechanical Ventilation Natural Ventilation Hybrid Ventilation Modify the number or Width of Exits Modify Smoke Extraction Rate No ASET>RSET No Yes To compile the integrated emergency procedure End Fig. 1: Flow chart of performance-based fire safety design method Q = heat release rate or the fire size in kw t = effectie ignition time t = actual time elapsed a = fire growth rate In NFPA 92B, four different types of t 2 -fire were assumed as shown in Fig. 2. The designer has to choose one which fits well with the project under inestigation. Sometimes a full-scale test should be arranged to alidate the assumption, such as a wet-bench fire of a semi-conductor clear room, or an actual carriage fire set inside a ehicle tunnel. c. Measured fire growth A measured fire growth cure is utilizing test data from Cone-Calorimetry, a bench-scale test or a full-scale test, and cure-fitted to represent the actual heat release rate [5]. The cures obtained normally presumes more accurate, but sometimes restricted by the test assumptions. The design engineer normally picks one of these methods as a start to size the fire protection system. 2.2 Fire Detection and Suppression System Design Normally, the smoke detectors and sprinklers were installed on the ceiling of a building. In an atrium, the fire/smoke detection system design needs extra considerations. The atrium not only proides large space for smoke storage in case of a fire, but could easily become pre-stratified with a layer of hot air in the summer, especially in a sky-lighted atrium. The smoke buoyancy was counter-balanced by the hot air causing the fire/smoke detectors unable to be actuated. In NFPA 92B, the formation of smoke stratification can be calculated from: z ( T ) 3/8 1/4 m = 5.54Qc / dz (2) Z m = maximum height of smoke rise aboe fire surface (m) Q c = conectie portion of the heat release rate (kw) T / dz = rate of change of ambient temperature with respect to height (C/m) On the other hand, when ordinary sprinkler system was actiated in an atrium, the water droplet could 182

3 Fig. 2: Relation of t-squared fires to some fire tests be eaporated so quickly and becoming water mist before hitting the fire source. An actual fire occurred seeral years ago in CKS airport terminal I showed that the water sprayed in this case is more like a cloud clustered in the middle of the atrium and became inert. NFPA 92B suggested that the sprinkler system should be installed with 2.4 to 7.6 m (8 to 25 ft) height normally for escalator or cabin protection in an atrium. For the large space, long-range water cannon with infra-red detection is sometimes utilized. 2.3 Smoke Management System Design Smoke management can be achieed by designing mechanical and natural enting systems. But before that, the natural smoke filling process should be ealuated. a. Smoke filling process ealuation In order to ealuate the aailable safety egress time (ASET), the smoke filling of the atrium and the smoke descending rate can be calculated by: d A ( ρ( H y) ) dt = m p (3) During the natural smoke filling process, the smoke descending rate is closely related to the fire plume air entrainment mass flow rate, the most commonly applied prediction models were listed in Table 2 [6-9]. Fig. 3 shows the fire plume air entrainment mass flow rate under arious heights of a 5 MW fire. This figure depicts that the smoke mass flow rate calculated by the CFAST plume model is obiously too high, could be 92.5% higher than that calculated by the NFPA 92B plume model at the atrium height of 3 m. In Fig. 4, the BRI (Building Research Institute, Japan) [1] and NRCC (National Research Council of Canada) [11] test data were plotted to compare with the simulation result. It indicated the NFPA 92B has the best correlation with experimental data, and is adapted as our calculation model afterwards in the design example. When the required safe egress time (RSET) is larger than the ASET mentioned aboe, smoke management system should be installed as a remedial measure. b. Mechanical smoke exhaust system design The design step can be shown as: 1. Design the allowable smoke clear height. 2. Use NFPA 92B plume model or other models to calculate the smoke (air) entrainment mass flow rate ( m p ). 3. Size the smoke exhaust system capacity mext m p. The smoke descending rate of an atrium can thus be calculated by: d A ( ρ( H y) ) dt = m p mext (4) 183

4 Table 2: Formula of fire plume air entrainment mass flow rate Heskstad (NFPA 92B) McCaffrey (CFAST) Thomas et al. Zukoski et al. 5 / 3 Flame region: m p =.32Qc ( z z ) Plume region: m p.71q 1/ ( z z ) 5 / 1+.26Q 2 / ( z z ) Virtual origin: Flame Height: 3 [ ] 5 / c = c 2 / 5 z = 1.2D +.83Q L = m p 2 / 5.166Qc.566 Flame region: z z =.11. <. 8 2 / 5 2 / Q 5 Q Q m p Intermittent region: z z =.26.8 <. 2 2 / 5 2 / Q 5 Q Q Plume region: m p Q z z = / 5 Q Q p = p = / p 1 / 2 1.5A f 2 / 5 Flame region: ( ) 1/ 2 3 / 2 ( ) m.96ρ gρ fl / ρ P z z 3 5 / 3 Plume region: m.153( gρ Q c T ) 1 / ( z z ) Virtual origin: z = 1/ 3 = p Plume region: m p.21( gρ ) 2 / c T Q 1/ 3 ( z z ) 5 / 3 Virtual origin: With floor: z =.5D +. 33L Without floor: z =.8D +. 33L Flame Height : * D * 2 / 3 1. : L / D 3.3QD Q < = * D * 2 / 5 1. : L / D 3.3QD Q = * 2 2 Q = Q /[ ρ c T ( gd) ] 1 / D D p entrainment Entrainment mass Mass flow Flow rate (kg/s) Rate (kgs -1 ) 7 Zukoski Plume model 65 NFPA 92B Plume model 6 McCaffrey Plume model Clear Height (m) Fig. 3: Fire plume air entrainment mass flow rate under arious heights of a 5 MW fire 184

5 Smoke Clear Height (m) NFPA Plume model Zukoski Plume model NRCC data BRI data Time (sec) Fig. 4: Comparison of the predictions of smoke-layer position with the experimental data Smoke Clear Height(m) 3 Visual in BRI test Judged by Temperature Measurements in BRI test NFPA 92B Plume Model in BRI Test 25 Judged by Temperature Measurements in this study Visual in this study Video in this study 2 NFPA 92B Plume Model in this study Time(sec) Fig. 5: Comparison of the predictions of smoke-layer position with experimental data for the case with mechanical entilation of 6 m 3 s -1 Fig. 5 shows the alidation of this model by a full-scale experiment performed by BRI (Building Research Institute, Japan) [1] with mechanical smoke exhaust rate of 6. m 3 s -1. At the early 8 s, the predicted smoke clear height is lower than that measured since the time lag is not counted effectiely. Otherwise, the correlation is good. The authors conducted a full-scale experiment of an atrium fire in another research project. The actual smoke layer positions were recorded isually with a ideo-camera and further identified with thermocouple measurements. The correlation is quite satisfactory between the simulation and experimental work, and the calculation model has thus been adapted for our design projects afterwards. c. Natural entilation system design The smoke management system can be optimized, if natural and mechanical smoke exhaust were combined into a hybrid system, exhaust fans can be downsized significantly. The natural smoke ent introduces a turbulent air moing process due to high buoyancy and thus heaily depends on smoke layer temperature and 185

6 thickness. In our designs, natural smoke exhaust rate was calculated using Morgan s experimental equation [12], or: A C m n = ρ T 2 s ( A C / A C ) + i 2gD T T B s i 2 T T s 1/ 2 (5) A = measured throat area of entilators (m 2 ) A i = total area of all inlets (m 2 ) C i = entry coefficient for all inlets (typically about.6) C = coefficient of discharge (usually between.5 and.7) D B = depth of smoke beneath entilator (m) g = acceleration of graity (ms -2 ) m n = mass flow rate of smoke to be extracted (kgs -1 ) T s = absolute temperature of smoke layer (K) T = absolute temperature of ambient air (K) T s = temperature rise of smoke layer aboe ambient (C) ρ = density (ms -2 ) The calculation procedure can be summarized as in Fig. 6. Start Assume allowable smoke clear height Calculate smoke generation rate using designed fire size Calculate smoke layer temperature by Q Ts = T + c p m p + h( A + PR ( H y) ) Calculate smoke layer density by ρ s = 353/ T s Calculate the pressure difference at floor leel by A N ( α ) 2 2 / 2ρ D p = m p A Required area of natural ent opening = m p/ α 2ρ End { p + ( ρ ρ ) g( H y) } Fig. 6: The calculation procedure of natural smoke ent systems N d. Hybrid smoke management system design When the natural smoke ent demands excessie space or the mechanical smoke exhaust rate becomes too huge, a combination of the two can be designed to become a hybrid smoke management system. It allows more flexibility to the designer and proides an important option for system optimization. The smoke descending rate of a hybrid system can be calculated as: d A ( ρ( H y) ) dt = m p m ext 2.4 Eacuation Analysis n m (6) In ealuating RSET, the humane interention and response of each time step during eacuation has to be considered. Normally, the RSET can be represented as: RSET = t + t + t + t + t (7) d a o i RSET = the required egress time needed to a safety place (s) t d = time of fire being detected after ignition (s) t a = time when alarm was actuated after detection (s) t o = eacuees response time to an alarm (s) t i = time elapsed before eacuation actually takes place (s) t t = actual eacuation time needed for the whole crowd leading to a safety place (s) The actual eacuation time t t can be ealuated mainly by two calculation models. One is the Steady State-Steady Flow (SSSF) model. Conentionally, the SSSF model is used in considering the eacuation process being similar to a hydraulic flow [13]. The total egress time needed is the larger of the walking time needed from the farthest exit or the time needed to pass through exits. Or, T 1 = max (t 11,t 12 ) (8) T 1 = egress time (s) t 11 = walking time needed to the farthest exit (s) d t 11 = (9) t 186

7 d = traeling distance from the most remote point (m) = unimpeded walking elocity (ms -1 ) t 12 = time needed to pass through exits (s) N t12 = (1) n b N = effectie eacuee number (-), persons n = eacuation flow rate (persons/m-s) B = effectie exit width (m) Howeer, in certain occasions, the SSSF model oer-simplified the eacuation phenomenon, especially in a huge crowd bottleneck is ery likely to form and the dynamic egress model should be used instead. The dynamic egress analysis, in simulating indiiduals to eacuate on a computer screen, considers more profoundly the crowd moement diersity, stairs and exists aailability and human behaior. A number of computer eacuation models hae been deeloped in an attempt to predict the egress process. Most of these are based on network-node approaches, such as EVACNET+, EXITT, EXIT89. On the other hand, the models which use spatial analysis techniques to define the moement of crowds and to track the trajectory of all indiiduals as they make their way out of the enclosure hae become ery popular recently. These models include SIMULEX, EXDOUS, EGRESS, STEPS. The computer model SIMULEX is designed to simulate the egress moement of thousands of indiidual people in large, geometrically complex, multi-story building spaces. Thompson and Marchant [14] carried out a lot of tests to ealuate the maximum sustainable exit flow rate through different passageways indicated that SIMULEX simulation results could correlate well to the data obtained from real-life obserations. The authors [15] also performed seeral alidations of the SIMULEX application to geometrically complex building designs (such as underground rail stations, shopping malls, etc.) with successful results. Therefore, the SIMULEX program was utilized for design analysis in this study. 2.5 Quantitatie Risk Assessment The performance-based fire safety design is normally relied on the what-ifs, or the worst-case scenario which is probabilistic in nature. During the whole emergency procedure, each step takes some time to complete and the time needed is dependent on the technical specification in each subsystem designed. The smoke management system should maintain at least the whole time period to proide a smoke-free escape route. Howeer, the fire and smoke detectors, the annunciation, and the human reaction in the control center or the eacuees response could be so different and heaily dependent on the occurring fire sizes, fire location and een unknown reasons. For example, the beam-type smoke detection system may be specified to actiate in 6 s when a fire occurs, but it could only take 3 s to react properly if the fire occurred right underneath, or ice ersa. The human factor also plays a similar role in identifying a fire and calling the control center, or in directing the eacuee during the egress process. To consider the uncertainties and probabilities in each time step, the Monte Carlo method was adapted in this study. Each time step was assigned a normal distribution cure with the maximum occurrence probability assigned according to its engineering specifications. Therefore, in simulation process, the beam detectors not only responded in 6 s as they are specified by the designers, but could also react in 5 s, 4 s and 3 s, etc. only in reducing probabilities. The objecties of Quantitatie Risk Assessment (QRA) using Monte Carlo simulation are to calculate the combined impact of the model s arious uncertainties when a building caught fire, in order to determine a probability distribution of the total egress time. It is adapted as a power tool to ealuate the effectieness of the designed emergency procedures. 3. DESIGN CASE STUDY The authors hae recently completed a performance-based fire safety design project following the procedure deeloped in this paper and is discussed here for demonstration purpose. This project is designed for a modern shopping mall, which is twele floors aboe ground for retail shops and seen floors underground for small delicatessen restaurants and car parks. Fig. 7 shows the profile of the CP shopping mall, Table 3 listed the dimension of the two atria under study. Table 3: Geometry of the two atria Atrium I Atrium II Length 69.5 m 12 m Width 15 m 12 m Height 73.6 m 31.2 m The atrium under consideration is 69.5 m in height, which is well oer the 8 m (25 ft) limit as 187

8 recommended in NFPA 92B for sprinkler system installation at the top. So that, in this case, the atrium did not install a sprinkler fire suppression system. On the other hand, the sprinkler system was indeed installed on each retail floor based on the local Fire Safety Code. So that, the design fire size of 5 MW, fast-t 2 fire growth cure was specified in calculation to be conseratie. Redundant beam detectors hae been adapted for quick response and for eliminating false alarms. The smoke-and-heat hybrid type detectors were installed as another redundancy. Human identification of a fire was considered a must before the automatic emergency procedure was launched. The smoke management system design needs further discussion. In order to simulate the smoke descending rate of Atrium I, both zone model and 3D CFD model consisting of 5, grid cells were used. The simulation result shown in Fig. 8 indicated that the natural smoke filling process takes about 8 s to complete. Fig. 9 shows the intermediate stages of temperature and elocity distributions ceiling jet creates a large eddy and turbulence causing the smoke to descend quickly. To control the smoke in an acceptable clear height, it is proposed to isolate the 1th to 12th (1F~12F) floor atrium connecting space with fire-proof wire-meshed glass block so that the atrium space can be sered as a smoke storage space. The designed smoke clear height is thus 55.2 m aboe the ground, or at the bottom of the 1th floor. In NFPA 11 Life Safety Code [16], 4 to 6 ACH (Air Change Rate per hour) was recommended as an effectie smoke exhaust rate of a large space. Howeer, the correspondingly large exhaust rate, or 128 m 3 s -1 in this case, can only keep the clear height at 19.1 m but not the 55.2 m needed in such a tall atrium. The tremendous atrium height results in a huge smoke generation rate and should not be taken care of by mechanical smoke exhaust system only. Proposals were made to either adapt partial natural ent system and/or intersect the atrium in half in the middle two smoke zones were created so that feasible mechanical smoke exhaust system can be installed maintaining tenable conditions within 48 s and holding smoke leel there steadily. Fig. 1 shows the successful simulation result of Atrium II in the spherical building following these design concepts. This atrium is diided into two smoke zones by fire-proof partition, so that atrium II in the spherical building with 31.2 m height is easier to tackle with. When 1 m 3 s -1 mechanical exhaust system was designed, the smoke position was held at the 7th floor (7F) at around 74 s, and further descending to the 6th floor (6F) at 2 s, and held there steadily. This is considered a tenable condition. To sum up, the smoke management system of this project has been designed through this procedure to maintain the tenable condition. Fire-proof partition Atrium I Atrium II Fig. 7: Profile of the CP shopping mall 188

9 Smoke Clear Height (m) Smoke Natural Filling Mechanical Exhaust (71 cms) Mechanical Exhaust (128 cms (6ACH)) CFD Simulation (Smoke Natural Filling) Time (sec) Fig. 8: Predicted smoke-layer positions in Atrium I Fig. 9: Predicted air flow pattern and temperature distribution in Atrium I 3 Smoke Natural Filling Mechanical Exhaust(1 cms) 25 CFD Simulation Smoke Clear Height (m) Time (sec) Fig. 1: Predicted smoke-layer positions in Atrium II 189

10 In order to ealuate the required safe egress time, or RSET, dynamic egress analysis using SIMMULEX [17] has been performed and compared with the SSSF model. Based on the local fire code, any exit should be located in less than 3 m from any spot of the building interior. Based on a full-scale experiment performed by the authors [18], and compared with SFPE data [13], the eacuation walking elocity and flow rate was selected. Based on the SSSF model, a fixed constant of 1.3 persons/s-m was assumed as the exit flow rate as shown in Table 4. It is interesting to simulate this flow rate using a dynamic model, so that a more accurate result could be obtained, while maintaining the simplicity of the SSSF model as shown in case 2 of Table 4. Or, a thorough dynamic egress analysis was performed to calculate the total eacuation time as shown in case 3 of Table 4. Comparison of Table 4 results in the fact that in a crowded shopping mall accommodating more than 2 people, the SSSF model sometimes oer-simplifies in calculating the eacuation time needed by oer 5%, and the dynamic egress simulation model should be used instead. Fig. 11 emphasized this point further, that the flow rate constant actually decided the slope of the eacuation line in the SSSF model. Howeer, the dynamic model depicted that this cure is hardly a straight line at all, and the deiation between the two models becomes obious. The total eacuation time calculated, or t t in equation (7) is 257 s. As listed in Table 5, the RSET in this case is 377 s. Table 4: Total eacuation time predicted by SSSF model and dynamic model Parameter Case 1 Case 2 Case 3 Occupancy density.5 person/m 2 SSSF model (1.3 persons/s-m) SSSF model (SIMULEX simulated flow rate) Total floor area m 2 t1 t2 t1 t2 Dynamic simulation Total eacuees s No. of exits 8 = s = 11.5 s = s = s Total width of exits 14. m 11.5 s s s 25 Simulex Simulation 1.3 person/s-m.57 person/s-m accumulated Accumulated eacuees Eacuees Trael time (sec) Fig. 11: Comparison of the eacuation cure predicted by dynamic model with the SSSF model on the 11th floor of Atrium I 19

11 Fig. 12: Simulation result of Quantitatie Risk Analysis using Monte Carlo simulation in Atrium I Table 5: Mean RSET on the 11th floor in the Atrium I Fire and/or smoke detection Identification of fire location Alarm and announcement Egress route selection Egress in process RSET Aerage time 6 s 2 s 3 s 1 s 257 s 377 s When one remembered that the smoke management system in this project has been designed to maintain the smoke-free escape route, or tenable condition, for more than 12 mins (ASET), the safety factor of smoke management and egress design in this project is approximately 2. Quantitatie risk assessment has been performed which alidated the effectieness of the whole emergency procedure as shown in Fig. 12. That is, the most probable time needed for the emergency process to complete is 375 s, or 525 s in the worst case. On the other hand, the tenable condition can be maintained by smoke management systems for 12 mins (72 s), which warranted the effectieness of the complete emergency procedure. 4. CONCLUSIONS The performance-based design procedure as deeloped in this study consists of the integration of a smoke detection and management system with the egress planning to maintain a smoke-free tenable escape route. The effectieness of the complete emergency procedure has been analyzed with quantitatie risk assessment and demonstrated in a modern shopping mall design successfully. To this end, a more flexible, safer, and cost- effectie fire safety engineering design methodology can be achieed. NOMENCLATURE Symbols A area of building floor (m 2 ) a fire growth rate A D door way area (m 2 ) A f area of fire source (m 2 ) A i total area of all inlets (m 2 ) A N smoke ent area (m 2 ) A measured throat area of entilators (m 2 ) A W area (m 2 ) b effectie exit width (m) C i entry coefficient for all inlets (typically about.6) c p specific heat of air (kjkg -1 K -1 ) C coefficient of discharge (usually between.5 and.7) D fire diameter (m) d trael distance from most remote point (m) D B depth of smoke beneath entilator (m) g acceleration of graity (ms -2 ) H height of building (m) h total heat transfer coefficient (kwm -2 k -1 ) H N height of smoke ent (m) L mean flame height (m) N effectie eacuee number (-), persons n eacuation flow rate (persons/m-s) P fire perimeter (m) P R perimeter length of the room (m) Q total heat release rate (kw) N effectie eacuee number (-) Q c conectie portion of the heat release rate (Btus -1 ) T temperature (K) t time (s) 191

12 t T 1 t 11 t 12 effectie ignition time (s) egress time (s) walking time needed to the farthest exit (s) time needed to pass through exits (s) unimpeded walking elocity (ms -1 ) y smoke layer position (m) Z height aboe fuel surface (m) Z m maximum height of smoke rise aboe fire surface (m) α opening flow coefficient T / dz rate of change of ambient temperature with respect to height (C/m) ρ density (ms -2 ) 2 2 Q /[ c T ( gd) ] 1/ D * D ρ (-) Q p m ext extraction rate of mechanical exhaust system (kgs -1 ) n m mass flow rate of smoke to be extracted (kgs -1 ) p m plume mass flow rate (kgs -1 ) p pressure difference at the leel of the floor (pa) T s temperature rise of smoke layer aboe ambient (C) Subscripts fl flames centerline ambient s smoke layer REFERENCES 1. Fire Safety Code, Ministry of Interior, Republic of China (1999) - In Chinese. 2. NFPA 92B, Guide for smoke management systems in malls, atria, and large areas, National Fire Protection Association (1995). 3. H.P. Morgan, Smoke control methods in enclosed shopping complexes of one or more storys: A design summary, Building Research Establishment Report (1979). 4. P.I.A.R.C., Technical Committee on Road Tunnels Report, Permanent International Association of Road Congresses Report No. 5, XVIIIth World Road Congress, Brussels, September (1987). 5. V. Babrauskas, Burning rates, The SFPE Handbook of Fire Protection Engineering, Society of Fire Protection Engineering (1995). 6. G. Heskestad, Fire plume air entrainment according to two competing assumptions, 21th Symposium on Combustion, The Combustion Institute, pp (1986). 7. P.H. Thomas et al., Inestigations into the flow of hot gas in roof enting, Fire Research Technical Paper No. 7, Department of Scientific and Industrial Research and fire Offices Committee, Joint Fire Research Organization, London (1963). 8. B.M. Cetegen, E.E. Zukoski and T. Kubota, Entrainment in the near and far field of fire plumes, Combustion Science and Technology, Vol. 39, pp (1984). 9. B.J. McCaffrey, Momentum implications for buoyant diffusion flames, Combustion and Flame, No. 52 (1983). 1. T. Tanaka and T. Yamana, Smoke control in large scale spaces, (Part 2: Smoke control in large scale spaces), Fire Science and Technology, Vol. 5, No. 1, pp (1985). 11. G.D. Lougheed, Personal communication, National Research Council of Canada, 2 March (1991). 12. H.P. Morgan and J.P. Gardner, Design principles for smoke entilation in enclosed shopping centers, Building Research Establishment Report No. 186 (199). 13. H.E. Nelson and H.A. MacLennan, Emergency moement, The SFPE Handbook of Fire Protection Engineering, Society of Fire Protection Engineering (1995). 14. P.A. Thompson and E.W. Marchant, Testing and application of the computer model SIMULEX, Fire Safety Journal, Vol. 24, pp (1995). 15. K.H. Yang and S.K. Lee, Smoke management and egress design analysis of an underground railway station, To be appeared in The Journal of Applied Fire Science (2). 16. NFPA 11, Life Safety Code, National Fire Protection Association (1995). 17. P.A. Thompson and E.W. Marchant, A computer model for the eacuation of large building populations, Fire Safety Journal, Vol. 24, pp (1995). 18. K.H. Yang and T.C. Yeh et al., An experimental inestigation on smoke management in Taipei Rapid Transit Systems, International Conference of Mass Transit Management, Kuala Lumpur, Malaysia (1997). 192

SMOKE MANAGEMENT AND EGRESS ANALYSIS OF A SPORTS ARENA USING THE PERFORMANCE-BASED DESIGN

SMOKE MANAGEMENT AND EGRESS ANALYSIS OF A SPORTS ARENA USING THE PERFORMANCE-BASED DESIGN , Volume 4, Number 2, p.73-83, 2003 SMOKE MANAGEMENT AND EGRESS ANALYSIS OF A SPORTS ARENA USING THE PERFORMANCE-BASED DESIGN K.H. Yang and C.S. Yang Mechanical Engineering Department, National Sun Yat-Sen

More information

Simple Equations for Predicting Smoke Filling Time in Fire Rooms with Irregular Ceilings

Simple Equations for Predicting Smoke Filling Time in Fire Rooms with Irregular Ceilings Fire Science and Technorogy Vol.24 No.4(2005) 165-178 165 Simple Equations for Predicting Smoke Filling Time in Fire Rooms with Irregular Ceilings Jun-ichi Yamaguchi 1, Takeyoshi Tanaka 2 1 Technical Research

More information

Considerations in the Design of Smoke Management Systems for Atriums

Considerations in the Design of Smoke Management Systems for Atriums Construction Technology Update No. 48 Considerations in the Design of Smoke Management Systems for Atriums by G.D. Lougheed This Update discusses the use of an engineered approach to the design of smoke

More information

NUMERICAL STUDIES ON BARE CABIN FIRES WITH OPERATION OF SMOKE EXTRACTION SYSTEM

NUMERICAL STUDIES ON BARE CABIN FIRES WITH OPERATION OF SMOKE EXTRACTION SYSTEM , Volume 11, Number 2, p.43-48, 2012 NUMERICAL STUDIES ON BARE CABIN FIRES WITH OPERATION OF SMOKE EXTRACTION SYSTEM Q. Kui Institute of Building Fire Research, China Academy of Building Research, Beijing,

More information

ZONE MODEL VERIFICATION BY ELECTRIC HEATER

ZONE MODEL VERIFICATION BY ELECTRIC HEATER , Volume 6, Number 4, p.284-290, 2004 ZONE MODEL VERIFICATION BY ELECTRIC HEATER Y.T. Chan Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong, China ABSTRACT Selecting

More information

Numerical investigation on the effect of channelled and unchannelled screens on smoke contamination in atriums upper balconies with open upstand

Numerical investigation on the effect of channelled and unchannelled screens on smoke contamination in atriums upper balconies with open upstand Numerical investigation on the effect of channelled and unchannelled screens on smoke contamination in atriums upper balconies with open upstand Mohammed Mutafi 1, Mohammad Nasif 1*, William Pao 1 and

More information

Tunnel Fire Dynamics and Evacuation Simulations

Tunnel Fire Dynamics and Evacuation Simulations Tunnel Fire Dynamics and Evacuation Simulations James Priest, PhD & James Niehoff DGS-SEE Seminar on Fire Protection for Physics Research Facilities 7 & 8 October 2015 Introduction (Background) Presentation

More information

PRELIMINARY STUDIES ON MECHANICAL SMOKE EXHAUSTS IN LARGE SPACE BUILDING FIRES

PRELIMINARY STUDIES ON MECHANICAL SMOKE EXHAUSTS IN LARGE SPACE BUILDING FIRES PRELIMINARY STUDIES ON MECHANICAL SMOKE EXHAUSTS IN LARGE SPACE BUILDING FIRES R. Huo a, Y. Li a, W. Fan a and W. Chow b a. State Key Laboratory of Fire Science, CHINA b. The Hong Kong Polytechnic University

More information

CFD Analysis of Fire Characteristics on Subway Junction Station

CFD Analysis of Fire Characteristics on Subway Junction Station ISGSR27 First International Symposium on Geotechnical Safety & Risk Oct. 18~19, 27 Shanghai Tongji University, China CFD Analysis of Fire Characteristics on Subway Junction Station G. H. Wu, X. Han, Q.Q.

More information

Simulation of Full-scale Smoke Control in Atrium

Simulation of Full-scale Smoke Control in Atrium Available online at www.sciencedirect.com Procedia Engineering 11 (2011) 608 613 The 5 th Conference on Performance-based Fire and Fire Protection Engineering Simulation of Full-scale Smoke Control in

More information

A Monte Carlo Approach for the Design of Thermal Fire Detection System

A Monte Carlo Approach for the Design of Thermal Fire Detection System A Monte Carlo Approach for the Design of Thermal Fire Detection System Walter W. Yuen Department of Mechanical & Environmental Engineering University of California at Santa Barbara California, USA and

More information

How to Use Fire Risk Assessment Tools to Evaluate Performance Based Designs

How to Use Fire Risk Assessment Tools to Evaluate Performance Based Designs How to Use Fire Risk Assessment Tools to Evaluate Performance Based Designs 1 ABSTRACT Noureddine Benichou and Ahmed H. Kashef * Institute for Research in Construction National Research Council of Canada

More information

and vent height on mechanical smoke exhaust efficiency

and vent height on mechanical smoke exhaust efficiency Experimental investigation on influence of smoke venting velocity and vent height on mechanical smoke exhaust efficiency Ji Jie a, Li Kaiyuan b, Zhong Wei c, *, Huo Ran a a State Key Laboratory of Fire

More information

Hot Issues in Fire Engineering July 2014

Hot Issues in Fire Engineering July 2014 Hot Issues in Fire Engineering July 2014 Crowded Railway Stations and Train Compartments to Watch Y.W. Ng and W.K. Chow, JP FHKEng Research Centre for Fire Engineering, Department of Building Services

More information

Case Study of Underground Car Park. Team Japan

Case Study of Underground Car Park. Team Japan 11th Conference on Performance Based Codes and Fire Safety Design Methods Case Study of Underground Car Park Team Japan We focused on the characteristics of the fire behavior of car fire. Car fire is not

More information

EVACUATION AND SMOKE MOVEMENT INTERACTIVE SIMULATION MODEL

EVACUATION AND SMOKE MOVEMENT INTERACTIVE SIMULATION MODEL EVACUATION AND SMOKE MOVEMENT INTERACTIVE SIMULATION MODEL S. Kakegawa and H. Notake Institute of Technology, Shimizu Corporation, 3-4-17, Etchujima, Koto, Tokyo, 135-853, Japan A. Sekizawa Department

More information

EXPERIMENTAL AND CFD STUDIES ON SURFACE CONDENSATION

EXPERIMENTAL AND CFD STUDIES ON SURFACE CONDENSATION Eighth International IBPSA Conference Eindhoven, Netherlands August 11-14, 2003 EXPERIMENTAL AND CFD STUDIES ON SURFACE CONDENSATION Liu Jing 1, Yoshihiro Aizawa 2, Hiroshi Yoshino 3 1 School of Municipal

More information

Fire and smoke management in a uni-directional road tunnel for a congested traffic condition

Fire and smoke management in a uni-directional road tunnel for a congested traffic condition Fire and smoke management in a uni-directional road tunnel for a congested traffic condition Y Liu, J Munro Parsons Brinckerhoff Australia B Dandie Thiess Pty Ltd., Australia ABSTRACT Emergency smoke ventilation

More information

EXPERIMENTAL STUDIES ON THE EFFECT OF THE FIRE POSITION ON PLUME ENTRAINMENT IN A LARGE SPACE

EXPERIMENTAL STUDIES ON THE EFFECT OF THE FIRE POSITION ON PLUME ENTRAINMENT IN A LARGE SPACE , Volume, Number 4, p.138-14, 23 EXPERIMENTAL STUDIES ON THE EFFECT OF THE FIRE POSITION ON PLUME ENTRAINMENT IN A LARGE SPACE Yuanzhou Li, Ran Huo, Liang Yi and Guodong Wang State Key Laboratory of Fire

More information

Case Study 1 Underground Car Park

Case Study 1 Underground Car Park Case Study 1 Underground Car Park Dorota Brzezińska 1, Janusz Paliszek 2, Piotr Smardz 2, Renata Ollesz 1, Karol Kaczor 2 1 Lodz University of Technology, GRID - Lodz, 2 INBEPO Wroclaw, Poland Building

More information

Sprinklers Modeling for Tunnel Road Fire Fighting

Sprinklers Modeling for Tunnel Road Fire Fighting Sprinklers Modeling for Tunnel Road Fire Fighting P. Ciambelli, M.G. Meo, P. Russo, S. Vaccaro Department of Chemical and Food Engineering, University of Salerno - ITALY 1. INTRODUCTION Loss of lives and

More information

5B-3 6th Asia-Oceania Symposium on Fire Science and Technology 17-20, March, 2004, Daegu, Korea

5B-3 6th Asia-Oceania Symposium on Fire Science and Technology 17-20, March, 2004, Daegu, Korea 5B-3 6th Asia-Oceania Symposium on Fire Science and Technology 17-20, March, 2004, Daegu, Korea PRACTICAL APPLICATIONS OF FIRE MODELING IN INDUSTRIAL APPLICATIONS By James M. Dewey, Advisor Risk Management

More information

CFD ASSESSMENT OF RAILWAY TUNNEL TRAIN FIRE SCENARIOS

CFD ASSESSMENT OF RAILWAY TUNNEL TRAIN FIRE SCENARIOS CFD ASSESSMENT OF RAILWAY TUNNEL TRAIN FIRE SCENARIOS Yunlong Liu*, Xijuan Liu and Bradley Paroz Fire Science and Technology Laboratory CSIRO Manufacturing and Infrastructure Technology PO Box 310 North

More information

Computer Simulation Investigation on the Effect of Channelled and Unchannelled Screens on Smoke Contamination in Atriums Upper Balconies

Computer Simulation Investigation on the Effect of Channelled and Unchannelled Screens on Smoke Contamination in Atriums Upper Balconies MATEC Web of Conferences 13, 27 (214) DOI: 1.151/ matecconf/ 21413 27 C Owned by the authors, published by EDP Sciences, 214 Computer Simulation Investigation on the Effect of Channelled and Unchannelled

More information

OPTIMIZATION OF VENTILATION MODE OF SMOKE CONTROL SYSTEM IN HIGH-RISE BUILDING FIRE

OPTIMIZATION OF VENTILATION MODE OF SMOKE CONTROL SYSTEM IN HIGH-RISE BUILDING FIRE OPTIMIZATION OF VENTILATION MODE OF SMOKE CONTROL SYSTEM IN HIGH-RISE BUILDING FIRE 1 RU ZHOU, 2 WEI ZHANG 1 School of Urban Construction and Safety Engineering, Nanjing University of Technology, Nanjing

More information

COSTCO, SAN FRANCISCO A PRESCRIPTIVE AND PERFORMANCE BASED ANALYSIS OF FIRE PROTECTION SYSTEMS AND DESIGN

COSTCO, SAN FRANCISCO A PRESCRIPTIVE AND PERFORMANCE BASED ANALYSIS OF FIRE PROTECTION SYSTEMS AND DESIGN COSTCO, SAN FRANCISCO A PRESCRIPTIVE AND PERFORMANCE BASED ANALYSIS OF FIRE PROTECTION SYSTEMS AND DESIGN Presented by Ian Levine June, 2016 Photo courtesy of Google Maps PRESENTATION OVERVIEW BUILDING

More information

Experimental Room Fire Studies with Perforated Suspended Ceiling

Experimental Room Fire Studies with Perforated Suspended Ceiling Experimental Room Fire Studies with Perforated Suspended Ceiling FIONA S.C. TSUI 1, W.K. CHOW 1, N.K. FONG 1, Y. GAO 2, H. DONG 2, and G.W. ZOU 2 1 Research Centre for Fire Engineering Department of Building

More information

CFD-AIDED TENABILITY ASSESSMENT OF RAILWAY TUNNEL TRAIN FIRE SCENARIOS

CFD-AIDED TENABILITY ASSESSMENT OF RAILWAY TUNNEL TRAIN FIRE SCENARIOS CFD-AIDED TENABILITY ASSESSMENT OF RAILWAY TUNNEL TRAIN FIRE SCENARIOS Yunlong Liu*, Xijuan Liu and Bradley Paroz Fire Science and Technology Laboratory CSIRO Manufacturing and Infrastructure Technology

More information

Experimental Study to Evaluate Smoke Stratification and Layer Height in Highly Ventilated Compartments

Experimental Study to Evaluate Smoke Stratification and Layer Height in Highly Ventilated Compartments Experimental Study to Evaluate Smoke Stratification and Layer Height in Highly Ventilated Compartments Jason Huczek a, Marc Janssens a, Kentaro Onaka b, Stephen Turner c a SwRI, 6220 Culebra Road, San

More information

EMERGENCY VENTILATION FOR SMOKE CONTROL IN ROADWAY TUNNELS (NCHRP PROJECT TASK 363)

EMERGENCY VENTILATION FOR SMOKE CONTROL IN ROADWAY TUNNELS (NCHRP PROJECT TASK 363) EMERGENCY VENTILATION FOR SMOKE CONTROL IN ROADWAY TUNNELS (NCHRP PROJECT 20-07 TASK 363) Louis Ruzzi PennDOT District 11 Igor Maevski, PhD, PE - Jacobs Agenda AASHTO T20 Technical Committee Roadway Tunnels

More information

Virtual Compartment: An Alternative Approach to Means of Egress Design in Airport Pedestrian Tunnel

Virtual Compartment: An Alternative Approach to Means of Egress Design in Airport Pedestrian Tunnel Virtual : An Alternative Approach to Means of Egress Design in Airport Pedestrian Tunnel Xiaolei Chen, PhD California State University, Los Angeles, United States Ning (Frank) Wang, P.E. Jensen Hughes,

More information

REVIEW OF TECHNICAL STANDARDS AND CALCULATION METHODS FOR DIMENSIONING OF SMOKE AND HEAT CONTROL SYSTEMS IN CASE OF FIRE IN UNDERGROUND CAR PARKS

REVIEW OF TECHNICAL STANDARDS AND CALCULATION METHODS FOR DIMENSIONING OF SMOKE AND HEAT CONTROL SYSTEMS IN CASE OF FIRE IN UNDERGROUND CAR PARKS REVIEW OF TECHNICAL STANDARDS AND CALCULATION METHODS FOR DIMENSIONING OF SMOKE AND HEAT CONTROL SYSTEMS IN CASE OF FIRE IN UNDERGROUND CAR PARKS Nikola TANASIĆ, Tomislav SIMONOVIĆ, Miloš IVOŠEVIĆ, Branislav

More information

The Study of Evacuation Times from the Multiplex Theatres

The Study of Evacuation Times from the Multiplex Theatres American Journal of Applied Sciences 9 (3): 321-326, 2012 ISSN 1546-9239 2012 Science Publications The Study of Evacuation Times from the Multiplex Theatres 1 Khanitha Songsakulchai, 2 Supat Patvichaichod

More information

NUMERICAL SIMULATION OF FIRE SPREAD IN TERMINAL 2 OF BELGRADE AIRPORT. PO Box 522, Belgrade, Serbia and Montenegro

NUMERICAL SIMULATION OF FIRE SPREAD IN TERMINAL 2 OF BELGRADE AIRPORT. PO Box 522, Belgrade, Serbia and Montenegro Ninth International IBPSA Conference Montréal, Canada August 15-18, 2005 NUMERICAL SIMULATION OF FIRE SPREAD IN TERMINAL 2 OF BELGRADE AIRPORT Z. Stevanovic 1, T. Valentina 1, N. Kadic 1, Z. Markovic 1,

More information

THE SUPPRESSION OF SONIC SHOCKS IN GEOTHERMAL WELLS

THE SUPPRESSION OF SONIC SHOCKS IN GEOTHERMAL WELLS PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reseroir Engineering Stanford Uniersity, Stanford, California, February 1-3, 2010 SGP-TR-188 THE SUPPRESSION OF SONIC SHOCKS IN GEOTHERMAL WELLS John Reid

More information

Shuzo Murakami, Shinsuke Kato, and Taeyeon Kim Institute of Industrial Science, University of Tokyo Tokyo, Japan

Shuzo Murakami, Shinsuke Kato, and Taeyeon Kim Institute of Industrial Science, University of Tokyo Tokyo, Japan INDOOR CLIMATE DESIGN BASED ON FEEDBACK CONTROL OF HVAC COUPLED SIMULATION OF CONVECTON, RADIATION, AND HVAC CONTROL FOR ATTAINING GIVEN OPERATIVE TEMPERATURE Shuzo Murakami, Shinsuke Kato, and Taeyeon

More information

CHOOSING A FIRE VENTILATION STRATEGY FOR AN UNDERGROUND METRO STATION

CHOOSING A FIRE VENTILATION STRATEGY FOR AN UNDERGROUND METRO STATION - 165 - CHOOSING A FIRE VENTILATION STRATEGY FOR AN UNDERGROUND METRO STATION Wojciech Węgrzyński, Grzegorz Krajewski, Paweł Sulik Fire Research Department, Building Research Institute (ITB), Poland ABSTRACT

More information

An experimental study of the impact of tunnel suppression on tunnel ventilation

An experimental study of the impact of tunnel suppression on tunnel ventilation An experimental study of the impact of tunnel suppression on tunnel ventilation Yoon J. Ko and George Hadjisophocleous Civil and Environmental Engineering, Carleton University 1125 Colonel By Drive, Ottawa,

More information

Fire and Smoke Management in a Uni-Directional Road Tunnel for a Congested Traffic Condition

Fire and Smoke Management in a Uni-Directional Road Tunnel for a Congested Traffic Condition International Journal of Ventilation ISSN 1473-3315 Volume 8 No 4 Fire and Smoke Management in a Uni-Directional Road Tunnel for a Congested Traffic Condition Y. Liu 1, J. Munro 1 and B. Dandie 2 1 Parsons

More information

EVACUATION MODELING DEPENDENCE ON INPUT PARAMETERS

EVACUATION MODELING DEPENDENCE ON INPUT PARAMETERS PROCEEDINGS, Fire and Evacuation Modeling Technical Conference 211 Baltimore, Maryland, August 15-16, 211 EVACUATION MODELING DEPENDENCE ON INPUT PARAMETERS Brian Salyers, Bevan Jones Holmes Fire 13 Sutter

More information

Case Study 2 (Production and Storage Buildings) - Spain

Case Study 2 (Production and Storage Buildings) - Spain Case Study 2 (Production and Storage Buildings) - Spain OBJECTIVE Developed by the SFPE Spanish Chapter Editor: Jimmy Jönsson, JVVA Fire & Risk The objective of this case study is to show how a project

More information

COST-EFFECTIVE FIRE-SAFETY RETROFITS FOR CANADIAN GOVERNMENT OFFICE BUILDINGS

COST-EFFECTIVE FIRE-SAFETY RETROFITS FOR CANADIAN GOVERNMENT OFFICE BUILDINGS , Volume 1, Number 3, p.123-128, 1999 COST-EFFECTIVE FIRE-SAFETY RETROFITS FOR CANADIAN GOVERNMENT OFFICE BUILDINGS D. Yung and G.V. Hadjisophocleous Fire Risk Management Program, Institute for Research

More information

CFD STUDY OF FIRE PROTECTION SYSTEMS IN TUNNEL FIRES

CFD STUDY OF FIRE PROTECTION SYSTEMS IN TUNNEL FIRES UDC 614.84 : 628.854 : 52-17 DOI: 10.7562/SE2011.1.01.03 Original article www.safety.ni.ac.rs DARKO ZIGAR 1 DESIMIR JOVANOVIĆ 2 MARTINA ZDRAVKOVIĆ 3 1-4 University of Niš, Faculty of Occupational Safety

More information

Sandeep V. Lutade 1, Krunal Mudafale 2, Ranjan Kishore Mallick 3 1, 2

Sandeep V. Lutade 1, Krunal Mudafale 2, Ranjan Kishore Mallick 3 1, 2 A CFD Analysis of Smoke Movement in Steel Industry Sheds Sandeep V. Lutade 1, Krunal Mudafale 2, Ranjan Kishore Mallick 3 1, 2 Mechanical Dept. Dr.Babasaheb Ambedkar College of Engineering and Research,

More information

Feasibility Study of Use of Elevators in Fire Evacuation in a High-rise Building

Feasibility Study of Use of Elevators in Fire Evacuation in a High-rise Building 5A-4 6th Asia-Oceania Symposium on Fire Science and Technology 17-20, March, 2004, Daegu, Korea Feasibility Study of Use of Elevators in Fire Evacuation in a High-rise Building A. Sekizawa 1, S. Nakahama

More information

SCALE MODEL STUDIES ON SMOKE MOVEMENT IN INCLINED TUNNEL WITH LONGITUDINAL VENTILATION AND SMOKE BARRIERS

SCALE MODEL STUDIES ON SMOKE MOVEMENT IN INCLINED TUNNEL WITH LONGITUDINAL VENTILATION AND SMOKE BARRIERS , Volume 11, Number 2, p.21-26, 212 SCALE MODEL STUDIES ON SMOKE MOVEMENT IN INCLINED TUNNEL WITH LONGITUDINAL VENTILATION AND SMOKE BARRIERS C.Y. Tso and W.K. Chow Research Centre for Fire Engineering,

More information

Test One: The Uncontrolled Compartment Fire

Test One: The Uncontrolled Compartment Fire The University of Edinburgh BRE Centre for Fire Safety Engineering One Day Symposium on The Dalmarnock Fire Tests: Experiments & Modelling Test One: The Uncontrolled Compartment Fire Cecilia Abecassis

More information

International Forum on Energy, Environment Science and Materials (IFEESM 2015)

International Forum on Energy, Environment Science and Materials (IFEESM 2015) The Comparison and Analysis of Humidity Environment between Floor and Ceiling Radiant Cooling Systems that Combined with Displacement Ventilation Kai SUN 1 a *, Chuan-hui ZHOU 1 1 College of Urban Construction,

More information

ASSESSMENT OF FIRE BEHAVIOUR OF TIMBER PARTITION MATERIALS WITH A ROOM CALORIMETER

ASSESSMENT OF FIRE BEHAVIOUR OF TIMBER PARTITION MATERIALS WITH A ROOM CALORIMETER , Volume 9, Number 1, p.38-58, 2007 ASSESSMENT OF FIRE BEHAVIOUR OF TIMBER PARTITION MATERIALS WITH A ROOM CALORIMETER C.W. Leung and W.K. Chow Department of Building Services Engineering, The Hong Kong

More information

Comparative Evaluation Method for Fire Safety Design of Large Storage Spaces

Comparative Evaluation Method for Fire Safety Design of Large Storage Spaces Comparative Evaluation Method for Fire Safety Design of Large Storage Spaces ZHENKUN WU 1,2, HAIHANG LI 1, YAPING HE 3, DECHUANG ZHOU 1, JIAN WANG 1 1 State Key Laboratory of Fire Science, University of

More information

Recent BRANZFIRE enhancements and validation

Recent BRANZFIRE enhancements and validation Recent BRANZFIRE enhancements and validation Michael Spearpoint University of Canterbury Summary BRANZFIRE is a multi-compartment fire zone model that has been under development since 1996 predominately

More information

RADIATION BLOCKAGE EFFECTS BY WATER CURTAIN

RADIATION BLOCKAGE EFFECTS BY WATER CURTAIN , Volume 6, Number 4, p.248-254, 04 RADIATION BLOCKAGE EFFECTS BY WATER CURTAIN C.L. Choi Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong, China ABSTRACT Water

More information

Water Mist-Based Fire Suppression Modelling of an Office Space Scenario

Water Mist-Based Fire Suppression Modelling of an Office Space Scenario Water Mist-Based Fire Suppression Modelling of an Office Space Scenario Hai Jiang, Vaidya Sankaran, Med Colket, May Corn United Technologies Research Center Kati Laakkonen Marioff Corporation 14th International

More information

LONGITUDINAL VENTILATION FOR SMOKE CONTROL IN A TILTED TUNNEL BY SCALE MODELING

LONGITUDINAL VENTILATION FOR SMOKE CONTROL IN A TILTED TUNNEL BY SCALE MODELING LONGITUDINAL VENTILATION FOR SMOKE CONTROL IN A TILTED TUNNEL BY SCALE MODELING W.K. Chow, and W.Y. Chung Research Centre for Fire Engineering, Department of Building Services Engineering Area of Strength:

More information

A Numerical study of the Fire-extinguishing Performance of Water Mist in an Opening Machinery Space

A Numerical study of the Fire-extinguishing Performance of Water Mist in an Opening Machinery Space Available online at www.sciencedirect.com Procedia Engineering 31 (2012) 734 738 International Conference on Advances in Computational Modeling and Simulation A Numerical study of the Fire-extinguishing

More information

Human Factors - Egress Analysis for High Hazard Occupancies. Presented by: Michael J. Klemenz, PE, SFPE

Human Factors - Egress Analysis for High Hazard Occupancies. Presented by: Michael J. Klemenz, PE, SFPE Human Factors - Egress Analysis for High Hazard Occupancies Presented by: Michael J. Klemenz, PE, SFPE Group H Other SFPE presenters today discussed issues relevant to Group H This presentation addresses

More information

Hot Issues in Fire Engineering 28 February 2012

Hot Issues in Fire Engineering 28 February 2012 Hot Issues in Fire Engineering 28 February 2012 A Note on Cabin Fire Design for Protecting Large Halls W.K. Chow Research Centre for Fire Engineering, Department of Building Services Engineering The Hong

More information

Adrian Milford Sereca - a Jensen Hughes Company, Project Engineer Vancouver, BC, Canada

Adrian Milford Sereca - a Jensen Hughes Company, Project Engineer Vancouver, BC, Canada Transit Vehicle Design Standards and Risk Analysis on Fire Development in Rapid Transit Vehicles Adrian Milford Sereca - a Jensen Hughes Company, Project Engineer Vancouver, BC, Canada Motivation Design

More information

SCHULTE & ASSOCIATES Building Code Consultants 880D Forest Avenue Evanston, IL /

SCHULTE & ASSOCIATES Building Code Consultants 880D Forest Avenue Evanston, IL / SCHULTE & ASSOCIATES Building Code Consultants 880D Forest Avenue Evanston, IL 60202 fpeschulte@aol.com 504/220-7475 A CRITIQUE OF HUGHES ASSOCIATES, INC. PAPER TITLED: Analysis of the Performance of Ganged

More information

Fire Test Evaluation using the Kerosene and Aviation Fuel

Fire Test Evaluation using the Kerosene and Aviation Fuel Fire Test Evaluation using the Kerosene and Aviation Fuel K. S. Bang, J.C. Lee, C. S. Seo, K. S. Seo, H. J. Kim* Korea Atomic Energy Research Institute, 15 Dukjin-Dong, Yuseung-gu, Daejeon, Korea 35-353

More information

Computational simulation of road tunnel fire protection by sprinklers

Computational simulation of road tunnel fire protection by sprinklers European Journal of Environmental and Safety Sciences 2014 2(2): 48-52 ISSN 1339-472X European Science and Research Institute (Original Research Paper) Computational simulation of road tunnel fire protection

More information

PROPOSAL BALLOT DUE BY: Thursday, September 18, 2008

PROPOSAL BALLOT DUE BY: Thursday, September 18, 2008 PROPOSAL BALLOT DUE BY: Thursday, September 18, 2008 NFPA 204 SMO-AAA Standard for Smoke and Heat Venting Staff Liaison: Return Completed Ballot To: Jill McGovern E-Mail to jmcgovern@nfpa.org Fax to 617-984-7110

More information

Full-scale Experiment of Longitudinal Ventilation Smoke Control System and Central Smoke Exhaust System in City Underwater Tunnel

Full-scale Experiment of Longitudinal Ventilation Smoke Control System and Central Smoke Exhaust System in City Underwater Tunnel Available online at www.sciencedirect.com Procedia Engineering 52 ( 2013 ) 330 335 Full-scale Experiment of Longitudinal Ventilation Smoke Control System and Central Smoke Exhaust System in City Underwater

More information

WATER MIST FIRE PROTECTION SYSTEMS FOR INDUSTRIAL CABLE TUNNELS AND TURBINE HALLS

WATER MIST FIRE PROTECTION SYSTEMS FOR INDUSTRIAL CABLE TUNNELS AND TURBINE HALLS WATER MIST FIRE PROTECTION SYSTEMS FOR INDUSTRIAL CABLE TUNNELS AND TURBINE HALLS Jukka Vaari 1, Amit Lior 2 1 2 VTT Technical Research Centre of Finland, Espoo, Finland Marioff Corporation Oy, Vantaa,

More information

Smoke Management in Subway Stations Due to Train Arson Fire Scenario

Smoke Management in Subway Stations Due to Train Arson Fire Scenario Smoke Management in Subway Stations Due to Train Arson Fire Yunlong Liu 1, Sean Cassady 1, Jerry Casey 1, Sanja Zlatanic 2 & Nasri Munfah 2 1. HNTB Corporation, 600 108 th Avenue NE STE 900, Bellevue,

More information

A NETWORK MODEL OF SIMULATING SMOKE MOVEMENT IN BUILDINGS

A NETWORK MODEL OF SIMULATING SMOKE MOVEMENT IN BUILDINGS , Volume 3, Number 4, p.151-157, 2001 A NETWORK MODEL OF SIMULATING SMOKE MOVEMENT IN BUILDINGS F. Liu and X.Z. Fu Faculty of Urban Construction and Environmental Engineering Chongqing University, Chongqing

More information

PRELIMINARY ANALYSIS OF THE NUMBER OF OCCUPANTS, FIRE GROWTH, DETECTION TIMES AND PRE-MOVEMENT TIMES FOR PROBABILISTIC RISK ASSESSMENT

PRELIMINARY ANALYSIS OF THE NUMBER OF OCCUPANTS, FIRE GROWTH, DETECTION TIMES AND PRE-MOVEMENT TIMES FOR PROBABILISTIC RISK ASSESSMENT PRELIMINARY ANALYSIS OF THE NUMBER OF OCCUPANTS, FIRE GROWTH, DETECTION TIMES AND PRE-MOVEMENT TIMES FOR PROBABILISTIC RISK ASSESSMENT DAVID CHARTERS DEAN MCGRAIL Arup Fire, 78 East Street, Leeds, LS9

More information

4th International Conference on Sensors, Measurement and Intelligent Materials (ICSMIM 2015)

4th International Conference on Sensors, Measurement and Intelligent Materials (ICSMIM 2015) 4th International Conference on Sensors, Measurement and Intelligent Materials (ICSMIM 2015) Multi-stage Series Heat Pump Drying System with Dehumidification Simulation and Experiment Verification Chao

More information

STACK EFFECT IN LIGHT WELL OF HIGH RISE APARTMENT BUILDING

STACK EFFECT IN LIGHT WELL OF HIGH RISE APARTMENT BUILDING STACK EFFECT IN LIGHT WELL OF HIGH RISE APARTMENT BUILDING H. Kotani, R. Satoh, T. Yamanaka Dept. of Architectural Engineering, School of Engineering, Osaka University, Osaka, Japan ABSTRACT The purpose

More information

Performance-based Fire Design of Air-supported Membrane Coal Storage Shed

Performance-based Fire Design of Air-supported Membrane Coal Storage Shed Available online at www.sciencedirect.com Procedia Engineering 52 ( 2013 ) 593 601 Performance-based Fire Design of Air-supported Membrane Coal Storage Shed ZHANG Lei a,b, ZHU Guo-qing a,b,*, ZHANG Guo-wei

More information

Advantages and Disadvantages of Fire Modelling

Advantages and Disadvantages of Fire Modelling Advantages and Disadvantages of Fire Modelling Dr Guillermo Rein School of Engineering University of Edinburgh & Imperial College London Dr Guillermo Rein 9 May 2012 Chief Fire Officers Association Annual

More information

First Revision No. 6-NFPA [ Section No. 2.2 ]

First Revision No. 6-NFPA [ Section No. 2.2 ] Page 1 of 18 First Revision No. 6-NFPA 555-2014 [ Section No. 2.2 ] 2.2 NFPA Publications. National Fire Protection Association, 1 Batterymarch Park, Quincy, MA 02169-7471. NFPA 12, Standard on Carbon

More information

The Research of Performance Comparison of Displacement and Mixing Ventilation System in Catering Kitchen *

The Research of Performance Comparison of Displacement and Mixing Ventilation System in Catering Kitchen * Journal of Environmental Protection, 2013, 4, 638-646 http://dx.doi.org/10.4236/jep.2013.46073 Published Online June 2013 (http://www.scirp.org/journal/jep) The Research of Performance Comparison of Displacement

More information

Investigating the Effects of Sprinkler Sprays on Fire-Induced Doorway Flows: A Two-Part Study. Jeremiah Crocker and Dr. Bin Xiao New Technology Team

Investigating the Effects of Sprinkler Sprays on Fire-Induced Doorway Flows: A Two-Part Study. Jeremiah Crocker and Dr. Bin Xiao New Technology Team Jeremiah Crocker and Dr. Bin Xiao New Technology Team Copyright 2010 Tyco Fire Suppression & Building Products. All rights reserved. The products and specifications published herein are for general evaluation

More information

Japanese Case Study: How to maintain the fire safety in subway station and tunnel

Japanese Case Study: How to maintain the fire safety in subway station and tunnel Japanese Case Study: How to maintain the fire safety in subway station and tunnel Takashi Kusa Railway International Standards Center 12 October 2011 Contents About Railway International Standards Center

More information

Chapter 17, Initiating Devices

Chapter 17, Initiating Devices Chapter 17, Initiating Devices Summary. Chapter 17 was Chapter 5 in NFPA 72-2007. The term authority having jurisdiction is replaced in some sections by the term other governing laws, codes, or standards.

More information

How design fires can be used in fire hazard analysis

How design fires can be used in fire hazard analysis How design fires can be used in fire hazard analysis Yung, D.T.; Bénichou, N. NRCC-44511 A version of this document is published in / Une version de ce document se trouve dans : Fire Technology, v. 38,

More information

CFD Model of a Specific Fire Scenario

CFD Model of a Specific Fire Scenario 16 th Australasian Fluid Mechanics Conference Crown Plaza, Gold Coast, Australia 2-7 December 27 CFD Model of a Specific Fire Scenario D. Mackay, T. Barber and E. Leonardi School of Mechanical and Manufacturing

More information

INFLUENCE OF SOLAR RADIATION AND VENTILATION CONDITIONS ON HEAT BALANCE AND THERMAL COMFORT CONDITIONS IN LIVING-ROOMS

INFLUENCE OF SOLAR RADIATION AND VENTILATION CONDITIONS ON HEAT BALANCE AND THERMAL COMFORT CONDITIONS IN LIVING-ROOMS INFLUENCE OF SOLAR RADIATION AND VENTILATION CONDITIONS ON HEAT BALANCE AND THERMAL COMFORT CONDITIONS IN LIVING-ROOMS Staņislavs GENDELIS, Andris JAKOVIČS Laboratory for mathematical modelling of environmental

More information

Natural Ventilation A Green Smoke Control Approach

Natural Ventilation A Green Smoke Control Approach Natural Ventilation A Green Smoke Control Approach Presented By: William Koffel, P.E., FSFPE Adam Graybeal, P.E. Authored by: Erik Anderson, P.E Koffel Associates Background New Engineering, Aviation,

More information

Smoke movement for sprinklered fires. Lougheed, G.D.; McCartney, C.; Taber, B.C.

Smoke movement for sprinklered fires. Lougheed, G.D.; McCartney, C.; Taber, B.C. Smoke movement for sprinklered fires Lougheed, G.D.; McCartney, C.; Taber, B.C. NRCC-43138 Posting courtesy American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. www.ashrae.org

More information

IFireSS International Fire Safety Symposium Coimbra, Portugal, 20 th -22 nd April 2015

IFireSS International Fire Safety Symposium Coimbra, Portugal, 20 th -22 nd April 2015 IFireSS International Fire Safety Symposium Coimbra, Portugal, 20 th -22 nd April 2015 SCALE MODEL EXPERIMENTS ON SMOKE MOVEMENT IN A TILTED TUNNEL photo Author 1 30 mm 40 mm photo Author 2 30 mm 40 mm

More information

Hot Issues in Fire Engineering 12 March 2013

Hot Issues in Fire Engineering 12 March 2013 Hot Issues in Fire Engineering 12 March 2013 An Update on Design Fires of Vehicular Tunnels W.K. Chow Fellow, Hong Kong Academy of Engineering Sciences Research Centre for Fire Engineering, Department

More information

Impact of quick incident detection on safety in terms of ventilation response

Impact of quick incident detection on safety in terms of ventilation response Impact of quick incident detection on safety in terms of ventilation response P. J. Sturm 1) ; C. Forster 2) ; B. Kohl 2) ; M. Bacher 1) 1) Institute for Internal Combustion Engines and Thermodynamics

More information

STUDY FOR SAFETY AT A RELATIVELY SHORT TUNNEL WHEN A TUNNEL FIRE OCCURRED

STUDY FOR SAFETY AT A RELATIVELY SHORT TUNNEL WHEN A TUNNEL FIRE OCCURRED - 133 - STUDY FOR SAFETY AT A RELATIVELY SHORT TUNNEL WHEN A TUNNEL FIRE OCCURRED Y. Mikame 1,2, N. Kawabata 1, M. Seike 1, M. Hasegawa 1 1 Kanazawa University, Japan 2 Metropolitan Expressway Company

More information

Shalaby Institute of Fire Protection Heyrothsberge, Germany.

Shalaby Institute of Fire Protection Heyrothsberge, Germany. International Water Mist Conference November 3-4, 2010, Prague, Czech Republic The Influence of Droplet Size of Water Mist on Extinguishment Fire Plume Dr.Hemdan Shalaby Institute of Fire Protection Heyrothsberge,

More information

Analysis of Constant Pressure and Constant Area Mixing Ejector Expansion Refrigeration System using R-1270 as Refrigerant

Analysis of Constant Pressure and Constant Area Mixing Ejector Expansion Refrigeration System using R-1270 as Refrigerant Analysis of Constant Pressure and Constant Area Mixing Ejector Expansion Refrigeration System using R-1270 as Refrigerant Ravi Verma 1, Sharad Chaudhary 2 1, 2 Department of Mechanical Engineering, IET

More information

ABSTRACT 1 INTRODUCTION

ABSTRACT 1 INTRODUCTION Fire Australia 2017 Fire Safety Engineering Stream - Quantification of Fire Safety AS/NZS 1668.1:2015 IS IT GOOD ENOUGH FOR PERFORMANCE-BASED SMOKE EXHAUST SYSTEM DESIGN ABSTRACT M.C. HUI and M. KHEDHER

More information

Full-Scale Measurement and Numerical Analysis of Liquefied Petroleum Gas Water Heaters with Ventilation Factors in Balcony

Full-Scale Measurement and Numerical Analysis of Liquefied Petroleum Gas Water Heaters with Ventilation Factors in Balcony Journal of Civil Engineering and Architecture 9 (215) 1341-1353 doi: 1.17265/1934-7359/215.11.9 D DAVID PUBLISHING Full-Scale Measurement and Numerical Analysis of Liquefied Petroleum Gas Water Heaters

More information

Modeling water-mist based suppression of 34 GJ car-deck fires using FDS

Modeling water-mist based suppression of 34 GJ car-deck fires using FDS Modeling water-mist based suppression of 34 GJ car-deck fires using FDS S. Li, R. Acharya, M. Colket, V. Sankaran, G. Poncia United Technologies Research Center L. Torpo Marioff Corporation March 1 st,

More information

THE COMBINATION OF FIRE EXTINGUISH SYSTEM AND LOCAL EXHAUST SYSTEM IN FUME HOOD

THE COMBINATION OF FIRE EXTINGUISH SYSTEM AND LOCAL EXHAUST SYSTEM IN FUME HOOD THE COMBINATION OF FIRE EXTINGUISH SYSTEM AND LOCAL EXHAUST SYSTEM IN FUME HOOD S.K. Lee 1, S.Y. Lin 1, T.C. Ko 1, and M.C. Teng 1 Department of Safety, Health, and Environmental Engineering, National

More information

Emergency Ventilation System Design - Preliminary Report Shishir Gupta

Emergency Ventilation System Design - Preliminary Report Shishir Gupta Emergency Ventilation System Design - Preliminary Report Shishir Gupta (shishir@mechartes.com), Abstract The existing stations and tunnels of Metro Railway, Kolkata are not equipped with effective emergency

More information

Computer Models For Fire and Smoke

Computer Models For Fire and Smoke Computer Models For Fire and Smoke Model Name: JASMINE Version: 3.1 Classification: Very Short Description: CFD or Field A CFD or field model for predicting consequences of fire to evaluate design issues

More information

Engineering Simulation in Built Environment and Civil Engineering Projects

Engineering Simulation in Built Environment and Civil Engineering Projects Engineering Simulation in Built Environment and Civil Engineering Projects Fluid Dynamics Simulation Mark Owens ANSYS UK Ltd 2010 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary Fires and Smoke

More information

Case Study 2 Production and Storage. SFPE Polish Chapter Wojciech Węgrzyński, Grzegorz Krajewski Building Research Institute (ITB)

Case Study 2 Production and Storage. SFPE Polish Chapter Wojciech Węgrzyński, Grzegorz Krajewski Building Research Institute (ITB) Case Study 2 Production and Storage SFPE Polish Chapter Wojciech Węgrzyński, Grzegorz Krajewski Building Research Institute (ITB) So What Are You We Going to Show You? A lot of tables, simplified methods

More information

Fire Dynamics Simulation and Evacuation for a Large Shopping Center (Mall), Part II, Evacuation Scenarios

Fire Dynamics Simulation and Evacuation for a Large Shopping Center (Mall), Part II, Evacuation Scenarios American Journal of Energy Engineering 2015; 3(4-1): 72-78 Published online June 12, 2015 (http://www.sciencepublishinggroup.com/j/ajee) doi: 10.11648/j.ajee.s.2015030401.15 ISSN: 2329-1648 (Print); ISSN:

More information

Fire Protection System and Life Safety Evaluation of Building X. Anthony W. Sublett

Fire Protection System and Life Safety Evaluation of Building X. Anthony W. Sublett Fire Protection System and Life Safety Evaluation of Building X Presented by Anthony W. Sublett Culminating Project Master of Science in Fire Protection Engineering California Polytechnic State University

More information

Case Study : Evaluation Smoke & Evacuation Performance of a College Auditorium

Case Study : Evaluation Smoke & Evacuation Performance of a College Auditorium Case Study : Evaluation Smoke & Evacuation Performance of a College Auditorium Ramisetti Sairam Department of Building Technologies &Services, School of Planning and Architecture, JNA&FAU Hyd E-mail :

More information

NECESSITY OF IN-DEPTH EVALUATION OF LONG-THROW SPRINKLER INSTALLATION AT TALL ATRIA STORING HIGH AMOUNTS OF COMBUSTIBLES

NECESSITY OF IN-DEPTH EVALUATION OF LONG-THROW SPRINKLER INSTALLATION AT TALL ATRIA STORING HIGH AMOUNTS OF COMBUSTIBLES , Volume 11, Number 1, p.4-10, 2012 NECESSITY OF IN-DEPTH EVALUATION OF LONG-THROW SPRINKLER INSTALLATION AT TALL ATRIA STORING HIGH AMOUNTS OF COMBUSTIBLES W.K. Chow Research Centre for Fire Engineering,

More information

A DESCRIPTION OF THE PROBABILISTIC AND DETERMINISTIC MODELLING USED IN FIRECAM

A DESCRIPTION OF THE PROBABILISTIC AND DETERMINISTIC MODELLING USED IN FIRECAM , Volume 1, Number 1, p.18-26, 1999 A DESCRIPTION OF THE PROBABILISTIC AND DETERMINISTIC MODELLING USED IN FIRECAM D. Yung, G.V. Hadjisophocleous and G. Proulx Fire Risk Management Program, National Research

More information